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Abstract 
Ensemble Kalman Filter (EnKF) uses a randomized 

ensemble of subsurface models for error and uncertainty 
estimation. However, the complexity of geological models 
and the requirement of a large number of simulation runs 
make routine applications extremely difficult due to 
expensive computation cost. Grid computing technologies 
provide a cost-efficient way to combine geographically 
distributed computing resources to solve large-scale data 
and computation intensive problems. Hence, we design and 
implement a grid-enabled EnKF solution to ill-posed model 
inversion problems for subsurface modeling. It has been 
integrated into the ResGrid, a problem solving environment 
aimed at managing distributed computing resources and 
conducting subsurface-related modeling studies. Two 
synthetic cases in reservoir studies indicate that the 
enhanced ResGrid efficiently performs EnKF inversions to 
obtain accurate, uncertainty-ware predictions on reservoir 
production. This grid-enabled EnKF solution is also being 
applied for data assimilation of large-scale groundwater 
hydrology nonlinear models. The ResGrid with EnKF 
solution is open-source and available for downloading. 
 
1. Introduction 
 

The economic impact of inaccurate predictions is 
substantial, especially in petroleum industry which is 
notorious for its investment with high risk. Model 
inversion is important for value determination of 
model parameters and making accurate predictions 
[1]. It is used to of calibrate subsurface properties 
(e.g., porosity, permeability, and hydraulic 
conductivity) in a subsurface simulation model. By 
this way, the computed values of observables, such as 
rates, pressures (or head), and saturations, at different 
observation locations are in reasonable agreement 
with actual measurements of those quantities. 
Commonly, engineers manually adjust model 
parameters to minimize the square of the mismatch of 

all measurements and computed values. Nowadays, 
the increase in sensor deployment in oil and gas wells 
for monitoring pressure, temperature, resistivity, 
and/or flow rate (i.e., ‘‘smart/intelligent wells”) has 
added impetus to continuous model updating. Instead 
of simultaneously using all recorded data to generate 
an appropriate reservoir flow model, it has become 
important to capture reservoir flow information by 
incorporating real time data. Automatic and real time 
adjustment procedure is needed for efficient model 
inversion. 

The Ensemble Kalman Filter (EnKF) method [2] 
reduces a nonlinear minimization problem in a huge 
parameter space by changing objective function 
minimization with multiple local minima to a 
statistical minimization problem in the ensemble 
space. It searches for the mean rather than the mode 
of the posterior probability density function (pdf), 
avoids getting trapped in local minima like gradient 
methods, and thus is a promising methodology for 
various model inversion problems, such as reservoir 
modeling and groundwater modeling. Furthermore, 
the EnKF provides an ideal setting for operational 
reservoir monitoring and prediction with its updating 
features. This method is extensive adopted not only 
for model inversion, but also for uncertainty 
assessment, optimization, control, and so on.  

The EnKF method is processing-intensive due to 
iterative simulations of a large number of subsurface 
models. Large datasets (comprising model and state 
vectors) must be transferred from ensemble-specific 
simulation process to the Kalman gain or uncertainty 
assessment process, and back to ensemble process at 
each assimilation iteration.  The ensemble members 
of one data assimilation iteration are loosely 
organized with independency, which motivates us to 
pursue large-scale real-time data assimilation using 
grid computing technologies. 



 
Grid computing technologies [3] provide large-

scale computing capability with cost efficiency by 
cooperating geographically distributed, 
heterogeneous, and self-administrative resources. 
Execution reliability and iteration synchronization are 
two major challenges to conduct EnKF process 
across a grid. In a grid computing environment, 
EnKF performance may be constrained by the 
slowest computing resource and some ensemble 
members’ results may be lost due to system failure on 
distributed resources and/or vulnerable network 
connection. We present a grid-enabled EnKF solution 
which reduces waiting time on synchronization and 
increases execution reliability for EnKF processing. 
This solution is built on the DA-TC (Dynamic 
Assignment with Task Container) execution model 
[4], which is implemented on user space and no 
requirement for system configuration/software 
installations on remote sites.  

The remainder of this paper is organized as 
follows. EnKF model inversion is briefly outlined in 
Section 2. Section 3 demonstrates two subsurface 
modeling applications using EnKF. Section 4 
describes the grid-enabled EnKF solution we present. 
Successful petroleum applications are described as 
use cases in Section 5. In the end, Section 6 
summarizes the concluding remarks and future 
directions.  
 
2. EnKF Model Inversion 
 

EnKF method is a Monte-Carlo implementation 
of a Bayesian update problem: Given a pdf 
(probability distribution function) of the state of a 
modeled system (the prior, often called the forecast in 
geosciences) and data likelihood, the Bayes theorem 
is used to obtain the pdf after data likelihood has been 
taken into account (the posterior, often called the 
analysis). The Bayesian update is combined with 
advancing model in time, incorporating new data 
from time to time.  The original Kalman Filter [5] 
assumes that all pdfs are Gaussian (the Gaussian 
assumption) and provides linear correction for the 
mean and the covariance matrix by the Bayesian 
update, as well as a formula for advancing the 
covariance matrix in time provided the system is 
linear. However, maintaining the covariance matrix is 
not feasible computationally for high-dimensional 
systems. For this reason, EnKFs were developed. 
EnKFs represent the distribution of system state 
using a collection of state vectors, called an ensemble, 
and replace covariance matrix by sample covariance 
computed from the ensemble. The ensemble is 

operated with as if it was a random sample, although 
the ensemble members are not independent indeed - 
the EnKF ties them together. One advantage of 
EnKFs is that advancing the pdf in time is achieved 
by simply advancing each member of the ensemble. 

Figure 1 shows EnKF workflow. An EnKF 
process is initialized by generating an ensemble of 
initial reservoir models using a prior geostatistical 
assumption. Production data are incorporated 
sequentially in time, and reservoir models are 
updated as new production data is introduced. An 
EnKF consists of three processes at each time step: 
forecast based on current state variables (i.e., flow 
equations solving with current static and dynamic 
parameters), data assimilation (computation of 
Kalman gain), and state variables updating. The 
evolution of dynamic variables is dictated by flow 
equations.  

 
 

Figure 1. Typical EnKF workflow. 
 

The ensemble of state variables is modeled 
by multiple realizations. Observed data are 
incorporated into models sequentially in time as they 
become available and the ensemble of reservoir 
models are evolving with time representing 
measurement assimilations at a given time. When 
new measurements of observed data are acquired, 
forward flow simulations are conducted by using the 
most current state vector to the time at which new 
production data are collected. Then analysis step is 
performed to update the state vector in order to 
reflect the new data. Each assimilation represents 
some degree of increment of quality to the estimation 
of reservoir model.  The degree of this increment 
depends on how much information the new measured 
data is carrying. Thus, there is no need to start the 
process all over again from the original starting time 
in order to incorporate the new acquired data. 

The EnKF can be built upon any subsurface 
simulator as a ‘‘plug-in” because it only requires 
simulator output. A simulator acts as a black box in 



the process of EnKF. Thus, EnKF method coding is 
significantly simpler than traditional gradient-based 
history matching methods where complicated coding 
of sensitivity calculations is required for different 
simulators and access to simulator source code is 
needed [6, 7, 8, 9]. Another advantage of EnKF is 
that it provides an ensemble of Ne reservoir models 
all of which assimilate up-to-date production data 
with computer time of approximately Ne flow 
simulations. Because CPU time for data assimilation 
is very small compared to flow simulation, it can be 
done at user local machine(s). 
 
3. Subsurface Modeling Applications 
 
3.1. Reservoir Modeling 
 

Most data assimilation problems in petroleum 
reservoir engineering are highly non-linear, 
characterized by many variables. EnKF starts with an 
ensemble of initial reservoir models, sampled from 
the prior pdf of model state. State 
vector, ),,,( 21 Neyyyy !!!= , is categorized into 

three parts as T

jjjj mgmfmy ))(,)(,(= , where j 
denotes realization index, m static parameters 
(reservoir properties, e.g., permeability and porosity) 
based on the initial knowledge of a reservoir, )(mf  
dynamic parameters (e.g., pressure and saturation) 
assumed to be certain at the initial stage, 

)(mg observation variables (e.g., well production 
data). Observation variables are kept in the state 
vector for the purpose of building a linear relation 
between the state vector and the observed data. The 
model states and the associated uncertainty are 
integrated in time using a reservoir simulator. 
Updating can be carried out when any observation is 
available. The updated states are calculated through 
the Kalman filter formula:  
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Where the superscript u denotes updating, p 
forecasting, },{ kjobsd  observed data perturbed by 
noise, H observation operator with only zeros and 
ones as its entries simply equivalent to picking out 
the corresponding observation variables from the 
state vector, 
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Equation (3) shows that only mean and variance are 
involved in a update step. If the distribution of model 
parameters and dynamic variables are not Gaussian 
distribution, non-physical values, such as saturation 
profile, are generated. To solve it, water front arrival 
time for water front grid block is involved in state 
vector: 
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  [4] 
where N1 and N2 are the starting and the ending 
gridblocks of the front area, respectively. Eqn. 1, 2 
and 3 are used to update the state vector at Eqn 4.  
After update step, the water front arrival time should 
be back transformed to saturation profiles.  The 
process is often called re-parameterization with 
EnKF. 
 
3.2. Groundwater Hydrology 
 

Continuous decline in ground water levels and 
the projected increases in ground water need a 
scientific, systematic management plan to protect 
ground water from saltwater intrusion without 
causing environmental detriment. To achieve this 
goal, the development of a multi-objective saltwater 
intrusion management model with the optimized 
conjunctive use of surface water and ground water 
using large-scale simulation is needed [10]. 

The governing equations of groundwater 
resource (Eqn. 5) have several model parameters 
which are not directly measurable and must be 
estimated by an inverse procedure using historical 
groundwater head and salinity concentration 
observations. The influence of each parameter is 
quantified through a sensitivity analysis. The 
parameters with high degree of sensitivities with 
respect to ground water head and salinity 
observations are further identified using a formal 
inverse procedure. The iterative stochastic approach 



used by EnKF is applied to estimate transmissivity 
and head distributions in heterogeneous aquifers. The 
process is similar to that used in petroleum 
application. The aquifer responses such as pressure 
head are measured at some locations at various time 
intervals. The purpose is to continuously characterize 
the aquifer properties and to predict its performance 
and uncertainty at future time. 

The transient fluid flow in aquifers satisfying the 
following governing equation: 

t
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subject to the initial and boundary conditions: 
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where ),( txg  is the source/sink term, ),( txh is the 
pressure head, )(0 xH  is the initial head in the 
domain D, H(x,t) is the head at Dirichlet boundary 
segments, )(xK

s
 is the hydraulic conductivity, 

),( txQ is the flux across Neumann boundary 
segments, )(xn  is an outward vector normal to the 
boundary, and 

s
S  is the specific storage. The 

hydraulic conductivity )(xK
s

is like permeability 
used in petroleum application is treated as random 
space function. 

s
S is assumed deterministic constant. 

The above equation is solved to get )(xK
s

, 
which is a random function. The method used can be 
Monte Carlo (i.e., EnKF) or moment-equation 
approaches. Hydraulic conductivity )(xK

s
 is log 

normal distribution as permeability, )(xY  is given 
as follows. 
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where )(0 xY  is the mean, )(xY !  is the zero-mean 
fluctuation. Suppose there are 

Y
N direct 

measurements of log hydraulic conductivity and 
h
N  

pressure head measurements and measured at some 
time intervals. The data assimilation process the 
stochastic differential flow equation is solved 
forward with time by using the KLME (Karhunen-
Loeve based moment equation) method [11], which 
indicates the potential applicability to high resolution, 
large-scale predictive models. In this method, the 
hydraulic conductivity field is treated as a random 
spatial function and is decomposed using the KL 

(Karhunen-Loeve) expansion. The pressure head is 
expanded using the perturbative polynomial 
expansion. On the basis of these expansions, the 
higher-order terms are truncated and the KLKF (KL 
Kalman Filter) is based on the first-order 
approximation of the pressure head. The KLKF 
utilizes a number of principal modes to propagate the 
statistics of the state vector. The forward step can be 
solved accurately and efficiently using the KLME, 
which can be solved in parallel using the existing 
flow model. The data assimilation step is operated 
based on the state statistics given by the forward step 
and the observations.   
 
4. Implementing Grid-Enabled EnKF 
 

The ResGrid toolkit [12] was designed to 
manage distributed computing resources across a grid 
and conduct subsurface-related modeling studies, 
including response surface modeling and sensitivity 
analysis. The ResGrid portal provides a web-based 
entry point for reservoir engineers to access the grid, 
concealing many complexities and technical details 
of simulation specification, job scheduling, and 
resource management from end users.  
We extend the functionality of the ResGrid by 
presenting a grid-enabled EnKF solution. The 
implementation of the solution is based on the DA-
TC execution model. We introduce this execution 
model briefly before describing the solution of the 
grid-enabled EnKF.  
 
4.1. DA-TC Execution Model 
 

The DA-TC model introduces task container (TC) 
concept. A TC is viewed as a normal job to a local 
resource scheduling system. It is submitted into a 
queue, waiting for resource allocation. The local 
scheduler allocates resources to a TC under its own 
scheduling policies. Resources are released after a 
TC execution ends. From task execution perspective, 
a TC is a host environment. It provides a 
standardized method to manage the lifecycle of task 
execution on any participating cluster. Each task is 
associated with task metadata. A TC retrieves task 
execution requirements from metadata and takes 
actions to perform a task, including stagein, 
invocation, task termination, task execution 
monitoring, stageout, etc. A TC is a lightweight 
environment. It can be easily deployed and launch 
any existing ‘‘legacy” task executables on 
participating clusters. 

An application execution agent (AEA) is 
employed to conduct dynamic task assignment in the 



DA-TC execution model. AEA maintains a queue of 
tasks waiting for execution. A task container reports 
any status changes of itself and its running task(s) to 
AEA. According to the runtime status of task 
containers, AEA takes actions to assign tasks to 
different task containers. Certain task scheduling 
algorithms are adopted by AEA. Each task assigned 
on a TC (or say, a participating cluster) does not need 
to wait for resource allocation in the local scheduling 
system since the TC already holds the required 
resources. The tasks assigned onto a TC can be 
guaranteed quick execution. 

Figure 2 shows the interaction diagram between 
AEA and TC. To carry out an application execution, 
the first thing for AEA to do is to submit TCs to 
participating clusters. The submitted TCs are placed 
as normal jobs at the end of the scheduling queues on 
participating clusters, waiting for resource allocation 
by local resource management systems. One 
participating cluster may host multiple task 
containers, according to different load balancing 
strategies adopted by AEA. After a TC obtains the 
required computing resources from a local scheduling 
system, it communicates with AEA for task 
assignment. First, the TC sends AEA a message to 
claim that it is ready to run a task. Second, AEA 
updates TC status table and then a task (or more) is 
selected, based on application workflow management 
strategies. Third, task stage in, execution, and stage 
out are performed, and the status tables associated 
with tasks and TCs on AEA are updated. After a task 
is completed successfully, AEA and TC are ready for 
the execution of next task. 
 

 
 
Figure 2 The interaction diagram between AEA and TC. 
‘‘R” denotes running and ‘‘Q” queuing. ‘‘Other” delegates 
the jobs submitted by other users. 
 

          The dynamic task assignment strategy and the 
task container technology in the DA-TC model 
essentially improve QoS of application execution in a 
multicluster grid environment from three major 
aspects: 1) Application turnaround time is 
significantly reduced due to dynamically load 
balancing; 2) Application execution reliability is 
upgraded as task assignment is based on resource 
runtime status; 3) Monitoring and steering of 
application execution is greatly improved. More 
details can be seen [4]. 
 
4.2. Grid-Enabled EnKF Solution 
 

Taking advantages of the DA-TC execution 
model, things become much easier. One of 
challenging issues for implementing grid-enabled 
EnKF is efficient simulation synchronization. In each 
EnKF iteration, simulations are dispatched onto 
geographically distributed computing resources. 
Typically, it is very hard to predict the completion 
time of each simulation due to self administration of 
participating resources. Filter execution and task 
assignment for next iteration have to wait until all 
simulation results are returned. The DA-TC 
execution model provides excellent feature for 
simulation synchronization. AEA in the DA-TC 
checks the status of each tasks and task containers to 
decide whether or not the current iteration of EnKF is 
completed. 

Another issue on implementing grid-enabled 
EnKF is how to handle waiting time on remote 
queues for each iteration. In the traditional grid 
execution model [13], jobs submitted have to follow 
scheduling policies on remote sites, waiting for 
resource allocation from the end of queues. Overall 
execution time of an EnKF process with amount of 
iterations would be unbearably long due to waiting in 
the queue sat each iteration. Through the DA-TC 
model, once the required resources are allocated at 
the first iteration, task containers hold resources until 
the whole EnKF process is done and the following 
iterations can be executed without waiting.  

Figure 3 illustrates the logic to implement the 
grid-enabled EnKF. After each task assignment via 
the DA TC model carries out, the statement, whether 
or not all tasks are assignment are assigned and all 
task containers are ready, is examined by checking 
the task and container status tables in the DA-TC. If 
the answer is no, the process on task assignment 
continues. If the answer is yes, an application-
specific Kalman filter provided by application 
researchers is invoked. This filter program analyzes 
simulation results and concludes whether further 



iteration(s) is needed or not. If the results are not 
acceptable, new task set and corresponding data set 
are generated as well as task assignment continues. 
 

 
 
Figure 3 The logic of the grid-enabled EnKF solution. 
 
4.3. Model Inversion Scenario with ResGrid 
 

The grid-enabled EnKF solution is seamless 
integrated with the basic services provided by the 
ResGrid, such as resource broking service, data 
archive service, and ResGrid portal. Figure 4 
illustrates the model inversion scenario within the 
ResGrid. The steps are as followed:  

1. A user logs in the EnKF manager and 
retrieves a GSI certificate from a proxy 
server. The certificate authorizes the user to 
access grid resources and implement secure 
data transfer.        

2. Using EnKF managers to generate initial 
ensemble, Ne set of reservoir properties by 
filling the Gaussian semi-varigram and 
conditional data of reservoir in form. Then, 
stochastic simulation is accomplished 
automatically.}  

3. ResGrid service is launched and ensemble 
state vectors are built into the reservoir 
models. DA-TC takes effect to submit 
simulations to grid. If it is not the first time 
step, all the state vectors are filled with 
updated information.  

4. The grid-enabled EnKF solution waits until 
all the simulation tasks of the ensemble 
finish. The state vectors are abstracted from 

output of Ne simulations. ResGrid archive 
brings all the state variables from remote 
resources to local machine.  

5. The EnKF solution searches water front area 
from saturation profiles of all ensemble, 
predetermines time window for current 
assimilation step, and resubmits simulation 
jobs of the model with new time window by 
launching DA-TC again.  

6. GridFTP brings time window back for all 
water front area grid blocks, and build up 
state vectors with model parameters, 
pressure, saturation and water front arrival 
time, compute the Kalman gain. 

7. The solution updates the state vectors and 
back transforms the water front arrival time 
to saturation profile.    

8. If the current time step is the final step, then 
do the forecast and uncertainty analysis. 
Otherwise, go back to Step 3. 

 

 
Figure 4. Flowchart of reservoir model inversion by EnKF 
in the ResGrid 
 
4.4. Computation Cost 
 

In the DA-TC execution model, once a task 
container has been allocated resources, it persists as a 
job on remote resource and therefore retains the 
resources until all forecast of all members assigned to 
the container are completed. Thus, all runs assigned 
to a container have only one queue wait and dynamic 
task assignment makes the containers with fast speed 
execute more tasks (dynamic load balancing); with 
many members and assimilations per container, this 
greatly reduces the total queue time. The total 



computation time is the simulation time for all 
ensemble models, plus  time for Kalman gain 
calculation at the update steps, plus queue waiting 
time (from job submission to execution) at grid 
clusters. The example study has 400 ensemble 
members. Assimilation occurs every 10 days up to 
100 days in the case study. If there are nonphysical 
values generated for updated saturation 
(e.g., ]1,0[!S ) or other state variables in 
assimilation step, the simulator is restarted from the 
previous step with the model parameter vector from 
the current update. Iterations are applied until the 
updated state vector satisfies the pre-defined physical 
bound.  

Take an example. The maximum iterations are 
set to ten. Ten iterations are expected to be adequate 
based on EnKF for similar models [14]. According to 
our experience, the average iteration requirement is 
two. The number of simulation runs for this example 
is 400 ! 1 (1 forecast + 2 iterations) ! 10 
(assimilation times) =12,000 synchronized updates. 
Average processor time per simulation is 10 minutes; 
the computational time is about 83 days using 1 
processor. In our case, all the simulations are 
submitted to 256, 15, or 14-processor clusters 
(running a mix of Linux and AIX). We use 5 to 10 
containers depending on cluster size, and each 
container uses 1 processor; thus the execution time is 
~100 hours. Assuming queue waiting time is 5 hours 
for each forecast step, the total time for EnKF 
processing is 100+5 = 105 hours using the DA-TC 
execution model because there is only one wait. The 
total time will increase to 100+5!10 =150 hours if 
DA-TC is not used and the queue is re-entered for 
each forecast step. The queue waiting time depends 
on the grid cluster status, and may range from 
minutes to days. If the production history is quite 
long, the accumulated queue time will increase and 
negate the computational gains of grid computing. 
 
5. Case Study 
 
5.1. 1D Buckley-Levertt water-flooding 
problem 

 
A one dimensional 32-grid reservoir model is 

defined with no dip. The model contains one injector 
I1 at grid 1 to inject water and one producer P1 at 
grid 32 to produce oil.  Eight non-uniform reservoir 
models are generated from LU Decomposition. The 
porosity is normal distributed and the permeability is 
log-normally distributed. The porosity is assumed 
with mean 0.2 and standard deviation of 0.04. ln(k) 
has a mean of 5.5 (when k is in md. 1 md = 

0.9896233!10-12 m2) and standard deviation of 0.5. 
The two variables are correlated with cross-
correlation coefficient of 0.5. The ranges of the two 
variables are 18 grid blocks and variogram model is 
exponential. Then a ‘‘true” porosity and permeability 
field with unconditional LU Decomposition [15] is 
created. One hundred porosity and permeability fields 
are generated by LUSIM. 
 

Bottom-hole pressure constrained for the 
injector I1 is 4500 psig. And 1500 psig is the Bottom-
hole pressure constrains for producer P1. The 
measurement is generated by using the ‘‘true” 
porosity and permeability, and adds noise to the 
simulation results. Measurement is assimilated once 
for 68 days after the water front at 21st. The data to be 
assimilated here are water injection rate, oil producer 
rate, water cut and the water saturation at grid 21. 
Measurement errors are assumed to be Gaussian with 
mean 0 and standard deviation of 5% of magnitude of 
the observed data in rates, 1% in the water saturation. 

From Section 2, it seems that EnKF may not 
work very well when the state vector is strongly non-
linear then non-Gaussian. The EnKF may lead to 
non-physical saturation values. In this part, the re-
parameterization with EnKF is applied. The re-
parameterization method comes from the fact that the 
water saturation distribution outside water front area 
exhibits a Gaussian behavior, whiles the distribution 
in the water front area, and has a bimodal distribution. 
Based on the fact, the re-parameterization needs to be 
done only for the front area where the Grid-block 
water saturation distribution shows a strong non-
Gaussian character. The new approach uses water 
front arrival time but saturation as the state vector, 
because the non-Gaussian saturation distributions are 
primarily observed near the water front. 

The first assimilation time is 30 days. The water 
front area is from grid block 8 to 16. In order to 
obtain the entire distribution of water arrival time at 
water front area, reservoir simulator must run to 60 
days (time window) to let water front of each 
realization pass through the front area. The statistics 
of the front area is always represented by the time of 
water arrival. In this way, the model state can be 
better approximated by a Gaussian distribution, and 
then the EnKF updating can be used without losing 
information. The updated saturation profiles from the 
traditional EnKF and EnKF with re-parameterization 
are compared in Figure 5. Although the variances of 
saturation estimation by two methods have decreased, 
the oscillation of saturation profiles of traditional 
EnKF is substantial and many updated saturation 
values are beyond the physical bounds may result in 
problems for assimilating future data. But the EnKF 



with re-parameterization has no such kind of problem. 
The improved EnKF has been applied in grid-enable 
workflow. 
% 

 
(a) Before EnKF 

  
(b) The traditional EnKF 

 
(c) The EnKF with re-parameterization 

 
Figure 5. Initial and update porosity ensemble with the 
reference denoted by the bold curve. 
 
5.2 2D Water-flooding problems 
 

The EnKF workflow is applied to a 2-D water-
flooding, real-time reservoir model updating [2, 14].  
A 2D geostatistical permeability field 16!16!1 has 
grids cell of 60!60!10 ft. The model is generated 
by unconditional LU decomposition simulation [15] 

The mean and variance of ln(k) are 5.5 and 1, 
respectively. The units of permeability are 
millidarcies. The variogram is exponential with 
ranges of 10 grid blocks and 5 grid blocks in the 
directions of 45 and 135 degrees (relative to x). 

The simulation is for an isolated five spot which 
is initially at uniform, irreducible water saturation.  
The injector (in the center) has constant bottom-hole 
pressure of 4,500 psi. All four (at the corner) 
producers have constant bottom hole pressure of 
1,500 psi. Measurement error is assumed to be 5 
percent for oil and water production rates. 

For the EnKF in this case study, the state vector 
has 3!256elements plus the observation data; the 
observation data are water and oil production rate of 
4 producers (8 elements per assimilation). The model 
parameter is ln(k); the state variables are pressure and 
saturation. After the 40 day assimilation step (Figure 
6). the inverted permeability distributions are close to 
the reference permeability, whether one consider the 
mean or particular ensemble members. The inversion 
is most accurate where fluxes are high (e.g., along the 
streamlines connecting the injector to producers). 
Note in particular, the two fields of ensemble 
members are not identical, which appears at the 
northeast quadrant.  
All capture the high permeability area in the center 
part. 
 

 
(a) ln(k) reference field 

 
 

(b) ln(k), ensemble mean at 40 days 
 



 
(c) ln(k), member 

 
(d)   ln(k), member 350 at 150 at 40 days (0.75pv 
mobile) 40 days(0.75pv mobile) 
 
6. Conclusions and future work 
 

We present a grid-enabled EnKF solution, built 
on the DA-TC execution model that aims to 
incorporate grid resources with application reliability 
improvement and turnaround time reduction for each 
EnKF’s iteration. This solution already has been 
integrated into the ResGrid, a grid middleware toolkit 
for subsurface-related modeling studies. Using the 
enhanced ResGrid toolkit, we have conducted the 
traditional and re-parameterization EnKF for 
continuous updating of reservoir models to assimilate 
real-time production data. Re-parameterization with 
EnKF can solve the non-linearity and non-
Gaussianity problem in oil and system. From this 
study, we can draw the following conclusions: 

1) EnKF is efficient and robust for real-time 
reservoir updating to assimilate up-to-date production  
data. 

2) By introducing the re-parameterization in the 
EnKF updating process, more accurate models are 
attained, resulting in better matching of production 
data and more accurate predictions. Also, the filter 
updating process becomes stable. 

3) The EnKF application to groundwater 
resource scheme would be easy to implement, yet 
very efficient in grid environment. 

There are two major directions for our future 
work. First, the functionality of the grid-enabled 
EnKF solution will be enhanced and seamlessly 
integrated into the ResGrid ensemble manager. When 
new data arrive, users intervene with a request, or 

sensor-driven alarms will be relayed to the grid, the 
ensemble manager will initiate a new round of 
inversion and update parameter sets, parameter 
uncertainty ranges, and prediction uncertainty ranges. 
The updated prediction uncertainties will be used to 
update alarm parameters. Second, we will explore a 
wider range of applications areas (e.g., weather 
forecast and earth sciences) to take advantages of our 
EnKF solution and grid computing resources. 
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