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Abstract—Recently, single-symbol maximum-likelihood (ML)
decodable distributed space-time block coding (DSTBC) has been
developed for use in cooperative diversity networks. However, the
symbol rate of the DSTBC decreases with the number of relays.
This issue can be addressed if the channel phase information
(CPI) of the first-hop is exploited, and such code is referred to as
DSTBC-CPI. Some complex single-symbol decodable DSTBCs-
CPI were reported in the literature. However, no upper-bound on
the symbol rate of such DSTBC-CPI has been derived, although
it is a fundamental issue. Furthermore, finding a tight (more
preferably achievable) upper-bound is essential to check if any
developed code is optimum or not. In this letter, we derive an
upper-bound on the symbol rate of real single-symbol decodable
DSTBC-CPI and show that the bound is independent of the
number of relays in the network. Finally, we demonstrate that
our derived bound is actually achievable.

Index Terms—Channel phase information, DSTBC, symbol
rate, upper-bound.

I. INTRODUCTION

IN a cooperative network, the relays cooperate to help
the source transmit the information-bearing symbols to

the destination [1],[2]. The cooperative strategy of the relays
is crucial and it decides the performance of a cooperative
network. A simple cooperative strategy is the repetition-based
cooperative strategy [2]. This cooperative strategy achieves the
full diversity order in the number 𝐾 of relays. Furthermore,
the maximum likelihood (ML) decoding at the destination is
single-symbol ML decodable.1 However, the repetition-based
cooperative strategy has poor bandwidth efficiency, since its
symbol rate2 is just 1/𝐾 . Many works have been devoted
to improving the bandwidth efficiency of the cooperative
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1A code or a scheme is single-symbol ML decodable, if its ML decoding

metric can be written as a sum of multiple terms, each of which depends on
at most one transmitted information-bearing symbol.

2In this paper, the symbol rate of a cooperative strategy or a distributed
space-time code is defined to be the ratio of the number of transmitted
information-bearing symbols to the number of time slots used by the relays
to transmit all these symbols.

networks, such as the cooperative beamforming [3] or the
relay selection [4]. More attentions have been given to the dis-
tributed space-time block code (DSTBC) [5]–[14] and various
issues have been studied for DSTBCs [15]–[17]. Although
all those DSTBCs could improve the bandwidth efficiency,
they were not single-symbol ML decodable in general, and
hence, they had much higher decoding complexities than the
repetition-based cooperative strategy.

Addressing the decoding complexity, some researchers have
studied the DSTBC achieving the single-symbol ML decod-
ability3 and the full diversity order. In [20], Hua et al. found
that most codes based on existing orthogonal designs were not
single-symbol ML decodable any more. In [21] and [22], the
authors used the generalized coordinate interleaved orthogonal
designs and proposed the clifford unitary weight single-symbol
decodable codes in cooperative networks. The codes were
single-symbol ML decodable, but only for certain number of
relays. Furthermore, the codes could achieve the full diversity
order only for some specially designed constellations, not gen-
eral constellations such as the standard quadrature amplitude
modulation (QAM).

Recently, the DSTBC achieving the single-symbol ML
decodability and full diversity for any number of relays and
any general constellations was developed [23]. The associated
matrices of those codes were row-monomial4, and hence, they
always generated uncorrelated noises at the destination, which
lead to the single-symbol ML decodability and the full diver-
sity order. Furthermore, an upper-bound onthe symbol rate of
the DSTBC was derived [23]. This upper-bound revealed that
the DSTBC had a much higher (approximately twice) symbol
rate than the repetition-based cooperative strategy, irrespective
of the number of relays

However, even the improved symbol rate of the DSTBC [23]
decreases with the number 𝐾 of relays, and it asymptotically
approaches zero as 𝐾 grows as in the repetition-based strategy.
This issue can be addressed if the channel state information
(CSI) of the channels from the source to the relays (the
first-hop) is exploited by the relays as studied in [24] and
independently in [22]. Note that such CSI of the first-hop is
already available at the relay, and thus, exploiting the CSI
does not imply any increase of pilot signaling or feedback
overhead.5 Specifically, the channel phase information (CPI)
of the first-hop was used at the relays in order to further boost

3Single symbol decodability was also studied for the conventional STBCs
including quasi-orthogonal STBCs; for example, see [18] and [19].

4A matrix is said to be row-monomial (column-monomial) if the matrix
has at most one non-zero entry on every row (column) [25].

5Note that the CSI of the channels from the relays to the destination (the
second-hop) can be available at the relays only by using extra pilot signaling
and feedback overhead. If such CSI of the second-hop were available at the
relays, the distributed beamforming could be used across the multiple relays.

1536-1276/11$25.00 c⃝ 2011 IEEE
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the symbol rate of the DSTBC and the codes were refereed to
as DSTBC-CPI [22], [24]. However, no upper-bound on the
symbol rate of DSTBC-CPI was derived in [22]; but deriving
(preferably achievable) upper-bound is a fundamental issue
and it is essential to test if any developed code is optimum or
not. This issue is addressed in this letter.6

In this letter, as in [24] and [22], we consider the DSTBC-
CPI. We derive an upper-bound on the symbol rate of the
DSTBC-CPI. The derived upper-bound is much higher than
that of the DSTBC of [23], especially for large 𝐾 . In par-
ticular, the upper-bound on the symbol rate of DSTBC-CPI
is independent of the number 𝐾 of relays, which ensures the
codes have good bandwidth efficiency even when there are
many relays. Finally, we demonstrate that an existing STBC
can be used as the proposed DSTBC-CPI and it satisfies the
derived upper-bound; that is, we demonstrate that our obtained
bound is actually an achievable bound.

Notation: Bold upper and lower letters denote matrices and
row vectors, respectively. Also, diag[𝑥1, ⋅ ⋅ ⋅ , 𝑥𝐾 ] denotes the
𝐾×𝐾 diagonal matrix with 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝐾 on its main diagonal;
0 the all-zero matrix; 𝑰 the identity matrix; (⋅)∗ the complex
conjugate; (⋅)𝐻 the Hermitian; (⋅)𝑇 the transpose. Let 𝑿 =
[𝒙1; ⋅ ⋅ ⋅ ;𝒙𝐾 ] denote the matrix with 𝒙𝑘 as its 𝑘-th row, 1 ≤
𝑘 ≤ 𝐾 .

II. SYSTEM MODEL

Consider a cooperative network with one source, 𝐾 relays,
and one destination. Every terminal has only one antenna
and is of half-duplex. Denote the channel from the source
to the 𝑘-th relay by ℎ𝑘 and the channel from the 𝑘-th relay
to the destination by 𝑓𝑘, where ℎ𝑘 and 𝑓𝑘 are spatially
uncorrelated complex Gaussian random variables with zero
mean and unit variance. As in many other publications on
cooperative networks, the destination is assumed to have full
CSI, i.e., it knows the instantaneous values of ℎ𝑘 and 𝑓𝑘
by using pilot signals; while the source is assumed to have
no CSI. Furthermore, we assume the relays are the so-called
partially-coherent relays as defined in [22]. Specifically, the
relays have partial CSI of the first-hop only. For example,
the 𝑘-th relay has the CPI of the first-hop, i.e., it knows
the phase 𝜃𝑘 of the channel coefficient ℎ𝑘.7 Note that this
assumption does not imply more pilot signals compared to
the assumption that the relays have no CSI of the first-hop.
Actually, in order to make the destination have full CSI, the
relays always need to forward the pilot signals from the source
to the relays. Furthermore, the relays always need to transmit
their own pilot signals to the destination [20]. Therefore, the
same amount of pilot signals is needed in all circumstances.
Furthermore, the assumption that the relays have the CPI of the
first-hop does not imply any feedback overhead, because the
relays do not need any CSI of the channels from themselves
to the destination.

6[24] is the conference version of this paper and some results of this
paper was partially presented in [24]. However, no analytical proofs including
Appendices A, B, and C of this paper were presented in [24].

7In this paper, we assume that the relays can estimate 𝜃𝑘 without any errors
as in [12], [20]. It will be interesting to study the scenario when the relays do
not have perfect estimations of 𝜃𝑘 ; but it is beyond the scope of this paper.

At the beginning, the source transmits 𝑁 complex-valued
information-bearing symbols over 𝑁 consecutive time slots.8

Let 𝒔 = [𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁 ] denote the information-bearing symbol
vector transmitted from the source, where the power of 𝑠𝑛 is
𝐸𝑠. The received signal vector 𝒚𝑘 at the 𝑘-th relay is given
by 𝒚𝑘 = ℎ𝑘𝒔 + 𝒏𝑘, where 𝒏𝑘 = [𝑛𝑘,1, ⋅ ⋅ ⋅ , 𝑛𝑘,𝑁 ] is the
additive noise at the 𝑘-th relay and it is uncorrelated complex
Gaussian with zero mean and identity covariance matrix. All
the relays are working in the amplify-and-forward mode and
the amplifying coefficient 𝜌 is

√
𝐸𝑟/(1 + 𝐸𝑠) for every relay,

where 𝐸𝑟 is the transmission power at every relay. The 𝑘-th
relay first obtains 𝒚̃𝑘 by 𝒚̃𝑘 = 𝑒−𝑗𝜃𝑘𝒚𝑘 and then builds the
transmitted signal vector 𝒙𝑘 as 𝒙𝑘 = 𝜌(𝒚̃𝑘𝑨𝑘 + 𝒚̃∗

𝑘𝑩𝑘). The
matrices 𝑨𝑘 and 𝑩𝑘 are called the associated matrices of 𝑿
and they have the dimension of 𝑁 × 𝑇 . The received signal
vector at the destination is given by 𝒚 = 𝒘𝑿 + 𝒏, where
𝒘 = [𝜌𝑓1∣ℎ1∣, ⋅ ⋅ ⋅ , 𝜌𝑓𝐾 ∣ℎ𝐾 ∣], 𝑿 = [𝒔𝑨1+𝒔∗𝑩1; ⋅ ⋅ ⋅ ; 𝒔𝑨𝐾+
𝒔∗𝑩𝐾 ], and 𝒏 =

∑𝐾
𝑘=1(𝜌𝑓𝑘𝑒

−𝑗𝜃𝑘𝒏𝑘𝑨𝑘 + 𝜌𝑓𝑘𝑒
𝑗𝜃𝑘𝒏∗

𝑘𝑩𝑘) +
𝒏𝑑. It is easy to see that the mean of 𝒏 is zero and the
covariance matrix 𝑹 of 𝒏 is given by

𝑹 =

𝐾∑
𝑘=1

(
∣𝜌𝑓𝑘∣2

(
𝑨𝐻

𝑘 𝑨𝑘 +𝑩𝐻
𝑘 𝑩𝑘

))
+ 𝑰. (1)

III. UPPER-BOUND ON SYMBOL RATE OF DSTBC-CPI

As the DSTBC was defined in [23], we first mathematically
define the DSTBC-CPI as follows.

Definition 1: A 𝐾 ×𝑇 code matrix 𝑿 is called a DSTBC-
CPI in variables 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁 if the entries of 𝑿 are 0, ±𝑠𝑛,
±𝑠∗𝑛, or multiples of these indeterminates by 𝚥 =

√−1, and
if the matrix 𝑿 satisfies the following equality

𝑿𝑹−1𝑿𝐻 = ∣𝑠1∣2𝑭 1 + ⋅ ⋅ ⋅+ ∣𝑠𝑁 ∣2𝑭𝑁 , (2)

where 𝑭 𝑛 = diag[𝐹𝑛,1, ⋅ ⋅ ⋅ , 𝐹𝑛,𝐾 ] and 𝐹𝑛,1, ⋅ ⋅ ⋅ , 𝐹𝑛,𝐾 are
non-zero. Furthermore, the associated matrices 𝑨𝑘 and 𝑩𝑘,
1 ≤ 𝑘 ≤ 𝐾 , are row-monomial.

It is easy to check that the DSTBC-CPI are single-symbol
ML decodable. By using the technique in [23], it can be shown
that the DSTBCs-CPI also achieve the full diversity order.
In general, the covariance matrix 𝑹 is not a diagonal matrix
as we have seen in [23], and hence, the proposed DSTBC-
CPI is fundamentally different from the conventional STBCs
defined in [26] whose definition is based on 𝑿𝑿𝐻 . In fact, the
existence of 𝑹−1 in the definition of the DSTBC-CPI makes
the analysis of the code much more difficult. Fortunately,
the covariance matrix 𝑹 becomes a diagonal matrix if the
associated matrices 𝑨𝑘 and 𝑩𝑘 are set to be row-monomial
as shown in [23]. We adopt this setting in this letter and the
analysis becomes possible. The objective of this paper is to
find a tight (more desirably, achievable) upper-bound on the
symbol rate on the DSTBC-CPI. To this end, we first prove
the following lemma.

Lemma 1: Assume 𝑿 is a DSTBC in variables 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁 ,
i.e., every row of 𝑿 contains the information-bearing symbols

8If the information-bearing symbols are real-valued, one can use the rate-
one generalized real orthogonal design proposed by [26] in the cooperative
networks without any changes. The codes achieve the single-symbol ML
decodability and the full diversity order [20]. Therefore, we focus on the
complex-valued symbols in this paper.
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𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁 . Moreover, assume that the noise covariance matrix
𝑹 of 𝑿 is diagonal. After proper column permutations, we
can partition 𝑹−1 into 𝑹−1 = diag[𝑹1,𝑹2, ⋅ ⋅ ⋅ ,𝑹𝑊 ] such
that the main diagonal entries of 𝑹𝑤 are all equal to 𝑅𝑤, 𝑤 =
1, ⋅ ⋅ ⋅ ,𝑊 , and that 𝑅𝑖 ∕= 𝑅𝑗 for 𝑖 ∕= 𝑗. After the same column
permutations, we can partition 𝑿 into 𝑿 = [𝑿1, ⋅ ⋅ ⋅ ,𝑿𝑊 ].
Let 𝑿̃𝑤 denote a matrix composed of all the non-zero rows
in 𝑿𝑤.9 Assume that 𝑿̃𝑤 contains 𝑁𝑤 different information-
bearing symbols and they are 𝑠𝑤1 , ⋅ ⋅ ⋅ , 𝑠𝑤𝑁𝑤

.10 Then 𝑿 is a
DSTBC-CPI if and only if every sub-matrix 𝑿̃𝑤 is a DSTBC-
CPI in variables 𝑠𝑤1 , ⋅ ⋅ ⋅ , 𝑠𝑤𝑁𝑤

.
Proof: See Appendix A.

This lemma implies that, when a DSTBC 𝑿 generates un-
correlated noises at the destination, the code is single-symbol
ML decodable as long as it can be partitioned into several
single-symbol ML decodable codes. Lemma 1 is crucial to
derive an upper-bound on the symbol rate of the DSTBC-
CPI. This is because it enables us to analyze the symbol rate
of every individual sub-matrix 𝑿̃𝑤 instead of 𝑿 itself. When
𝑿̃𝑤 has one or two rows, it is easy to see that its symbol rate
can be as large as one. When 𝑿̃𝑤 has more than two rows,
the following lemma shows that the symbol rate of 𝑿̃𝑤 is
exactly 1/2.

Lemma 2: Assume 𝑿 is a DSTBC-CPI and its noise co-
variance matrix is 𝑹. By proper column permutations, we
can partition 𝑹−1 into 𝑹−1 = diag[𝑹1,𝑹2, ⋅ ⋅ ⋅ ,𝑹𝑊 ] such
that the main diagonal entries of 𝑹𝑤 are all equal to 𝑅𝑤 and
𝑅𝑖 ∕= 𝑅𝑗 for 𝑖 ∕= 𝑗. By the same column permutations, we
can partition 𝑿 into 𝑿 = [𝑿1, ⋅ ⋅ ⋅ ,𝑿𝑊 ]. Let 𝑿̃𝑤 denote all
the non-zero rows in 𝑿𝑤 and assume the dimension of 𝑿̃𝑤

is 𝐾𝑤×𝑇𝑤. Then the symbol rate of 𝑿̃𝑤 is exactly 1/2 when
𝐾𝑤 > 2.

Proof: See Appendix B.
Based on Lemmas 1 and 2, we now derive an upper-

bound on the symbol rate of the DSTBC-CPI in the following
theorem.

Theorem 1: When 𝐾 > 2, the symbol rate ℛ of the
DSTBC-CPI satisfies the following inequality

ℛ =
𝑁

𝑇
≤ 1

2
. (3)

Proof: See Appendix C.
We notice that the symbol rate of the DSTBC-CPI does not

decrease with the number 𝐾 of relays. Thus, the DSTBC-CPI
have good bandwidth efficiency even in a cooperative network
with many relays. Furthermore, compared to the DSTBC
in [23], the DSTBC-CPI improve the bandwidth efficiency
considerably, especially when the cooperative network has a
large number of relays.

Remark 1: The improvement of the symbol rate is mainly
because the relays exploit the CPI in the code construction. As
we saw in [23], because the code matrix of a DSTBC contains

9As an example, if 𝑿 =

⎡
⎣ 𝑠1 −𝑠2 0 0

𝑠∗2 𝑠∗1 0 0
0 0 𝑠1 𝑠2

⎤
⎦, we have 𝑊 = 2,

𝑹1 = diag[1 + ∣𝜌𝑓1∣2 + ∣𝜌𝑓2∣2, 1 + ∣𝜌𝑓1∣2 + ∣𝜌𝑓2∣2], 𝑹2 = diag[1 +

∣𝜌𝑓3∣2, 1 + ∣𝜌𝑓3∣2], 𝑿1 =

[
𝑠1 −𝑠2
𝑠∗2 𝑠∗1

]
, and 𝑿2 = [𝑠1 𝑠2].

10Note that 𝑠𝑤1 , ⋅ ⋅ ⋅ , 𝑠𝑤𝑁𝑤
are all from the set 𝒔 = [𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁 ].

the channel coefficient ℎ𝑘, the associated matrices 𝑨𝑘 and 𝑩𝑘

must satisfy the following condition

𝑨𝑘1𝑹
−1𝑨𝐻

𝑘2
= 𝑩𝑘1𝑹

−1𝑩𝐻
𝑘2

= 0, 𝑘1 ∕= 𝑘2. (4)

This condition severely limited the symbol rate of the DSTBC.
On the other hand, by exploiting the CPI, the code matrix
𝑿 of a DSTBC-CPI does not have any channel coefficients.
Instead of the condition (4), therefore, the associated matrices
𝑨𝑘 and 𝑩𝑘 of a DSTBC-CPI just need to satisfy the following
condition

𝑨𝑘1𝑹
−1𝑨𝐻

𝑘2
+𝑩𝑘1𝑹

−1𝑩𝐻
𝑘2

= 0, 𝑘1 ∕= 𝑘2. (5)

Thus, the symbol rate is greatly improved. Furthermore, recall
that exploiting the CPI at the relays does not increase the pilot
signals or require any feedback overhead.

Remark 2: Interestingly enough, the upper-bound 1/2 de-
rived in Theorem 1 is achievable by well-known codes, so-
called the rate-halving codes in [26]. It is easy to prove that
the rate-halving codes satisfy Definition 1. For example, when
𝑁 = 4 and 𝐾 = 4, the DSTBC-CPI achieving the upper-
bound 1/2 is given as follows:

𝑿 =

⎡
⎢⎢⎣

𝑠1 −𝑠2 −𝑠3 −𝑠4 𝑠∗1 −𝑠∗2 −𝑠∗3 −𝑠∗4
𝑠2 𝑠1 𝑠4 −𝑠3 𝑠∗2 𝑠∗1 𝑠∗4 −𝑠∗3
𝑠3 −𝑠4 𝑠1 𝑠2 𝑠∗3 −𝑠∗4 𝑠∗1 𝑠∗2
𝑠4 𝑠3 −𝑠2 𝑠1 𝑠∗4 𝑠∗3 −𝑠∗2 𝑠∗1

⎤
⎥⎥⎦ .

(6)
As another example, when 𝑁 = 4 and 𝐾 = 3, the DSTBC-
CPI achieving the upper-bound 1/2 is given as follows:

𝑿 =

⎡
⎣

𝑠1 −𝑠2 −𝑠3 −𝑠4 𝑠∗1 −𝑠∗2 −𝑠∗3 −𝑠∗4
𝑠2 𝑠1 𝑠4 −𝑠3 𝑠∗2 𝑠∗1 𝑠∗4 −𝑠∗3
𝑠3 −𝑠4 𝑠1 𝑠2 𝑠∗3 −𝑠∗4 𝑠∗1 𝑠∗2

⎤
⎦ .

(7)
Note that the upper-bound derived in Theorem 1 is the

maximum achievable rate.
Remark 3: In [21] and [22], some single-symbol ML

decodable DSTBCs-CPI were reported for certain number of
relays and the symbol rates were higher than 1/2. However,
those codes did not achieve full diversity order for general
constellations such as the standard QAM. The codes [21], [22],
were constructed based on so-called the coordinate interleaved
orthogonal design (similar to the constellation rotation) and
can be seen as complex single-symbol decodable DSTBCs.
The codes could achieve full diversity only for some specially
designed constellations. Furthermore, in [21] and [22], no
upper-bound on the symbol rate of DSTBCs-CPI was derived,
although this is a fundamental issue. In contrast to those
works, the proposed DSTBCs-CPI should be considered as
real single-symbol decodable DSTBCs. We do not make any
special assumption on the constellation and we answer the fun-
damental question in Theorem 1 by deriving the upper-bound
on the symbol rate. The obtained upper-bound is valid for
all single-symbol ML decodable DSTBCs-CPI achieving full-
diversity for any constellation including the standard QAM.

IV. NUMERICAL RESULTS

In this section, we present some numerical results to demon-
strate the performance of the DSTBC-CPI. In our simulation,
we assume uncorrelated flat Rayleigh fading channels among
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Fig. 1. Comparison of the rate-3/4 code [12], DSTBC [23], DSTBC-CPI,
and the repetition-based cooperative strategy, 𝑁 = 4, 𝐾 = 4.

0 2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average SNR per bit [dB]

A
ve

ra
ge

 B
it 

E
rr

or
 R

at
e

 

 
DOSTBC−CPI, 2 bps/Hz
DOSTBC [23], 2 bps/Hz
DOSTBC−CPI, 1 bps/Hz
DOSTBC [23], 1 bps/Hz

Fig. 2. Comparison of DSTBC [23] and DSTBC-CPI, 𝑁 = 8, 𝐾 = 6.

the terminals. The channel coefficients remain constant for
the entire transmission of one code block. We define the
average signal-to-noise ratio (SNR) per bit as the ratio of 𝐸𝑟

to the logarithm of the size of the modulation scheme. Fur-
thermore, we adopt the power allocation proposed in [10], i.e.,
𝐸𝑠 = 𝐾𝐸𝑟. For comparison, the repetition-based cooperative
strategy is chosen as the performance benchmark because it
has single-symbol decodability and is widely studied. We also
include the rate-3/4 code in [12] because it is a very well-
known STBC. Please note that this code is not single-symbol
ML decodable in cooperative networks. Lastly, the DSTBCs
in [23] is considered, as we want to show the performance
improvement by exploiting the CPI at the relays.

In Fig. 1, we let 𝑁 = 4 and 𝐾 = 4. We see that the
average bit-error rate (BER) performance of the DSTBC-CPI
is much better than that of the repetition-based cooperative
strategy, especially when the bandwidth efficiency is 2 bps/Hz.
The DSTBC and the DSTBC-CPI have almost the same
performance. This is because, when 𝑁 = 4 and 𝐾 = 4, they
have the same symbol rate 1/2. Fig. 1 also demonstrates that

the performance of the DSTBC-CPI is slightly worse than that
of the rate-3/4 code proposed in [12]. But, note that the rate-
3/4 code is not single-symbol ML decodable, and hence, its
decoding complexity is much higher than that of the DSTBC-
CPI. In Fig. 2, we set 𝑁 = 8 and 𝐾 = 6. For this case, the
average BER performance of the DSTBC-CPI is now much
better than that of the DSTBC. This is because, when 𝑁 = 8
and 𝐾 = 6, the symbol rate of the DSTBC-CPI is still 1/2 by
making use of the CPI; while the symbol rate of the DSTBC
becomes 1/3.

V. CONCLUSION

In this letter, we considered single-symbol ML decodable
DSTBC achieving full diversity order and exploiting the chan-
nel phase information of the first-hop. For the code, we derived
an upper-bound on the symbol rate of the code. The upper-
bound on the symbol rate revealed that the DSTBC exploiting
CPI has a much higher bandwidth efficiency than the DSTBC
of [23]. In particular, the upper-bound on the symbol rate of
the DSTBC exploiting CPI is independent of the number 𝐾 of
relays, and hence, the code has particularly better bandwidth
efficiency with many relays than the DSTBC of [23] or
the repetition-based transmission, because the symbol rate of
the DSTBC decreases with the number of relays. We also
demonstrated that a well-known existing STBC can be used as
such DSTBC exploiting CPI and it achieves the upper-bound.
That is, our derived upper-bound is the achievable bound.

APPENDIX A

Proof of Lemma 1

The sufficient part is easy to verify. Thus, we focus on the
necessary part, i.e., if 𝑿 is a DSTBC-CPI, all the sub-matrices
𝑿𝑤 are also DSTBC-CPI. Assume that the dimension of 𝑹𝑤

is 𝑇𝑤 × 𝑇𝑤.
Firstly, we show that 𝑿𝑤𝑹𝑤𝑿

𝐻
𝑤 is a diagonal matrix.

Because 𝑿1, ⋅ ⋅ ⋅ ,𝑿𝑤 contain all the non-zero entries in 𝑿 ,
it follows from (2) that, when 𝑘1 ∕= 𝑘2, [𝑿𝑹−1𝑿𝐻 ]𝑘1,𝑘2 is
given by

[𝑿𝑹−1𝑿𝐻 ]𝑘1,𝑘2 =
𝑊∑

𝑤=1

𝑇𝑤∑
𝑡=1

[𝑿𝑤]𝑘1,𝑡[𝑿𝑤]
∗
𝑘2,𝑡𝑅𝑤 = 0.

(A.1)
If all the terms in this summation are zero, it is trivial to show
that

∑𝑇𝑤

𝑡=1[𝑿𝑤]𝑘1,𝑡[𝑿𝑤]
∗
𝑘2,𝑡

𝑅𝑤 = 0 for 1 ≤ 𝑤 ≤ 𝑊 , which
means 𝑿𝑤𝑹𝑤𝑿

𝐻
𝑤 is a diagonal matrix.

If there is one term [X𝑤1 ]𝑘1,𝑡1 [X𝑤1 ]
∗
𝑘2,𝑡1

𝑅𝑤1 ∕= 0, some
other terms must cancel this term in order to make (A.1) hold.
Actually, the non-zero term [X𝑤1 ]𝑘1,𝑡1 [X𝑤1 ]

∗
𝑘2,𝑡1

𝑅𝑤1 must
be cancelled by exactly one other term. This can be shown
by contradiction. We assume that [X𝑤1 ]𝑘1,𝑡1 [X𝑤1 ]

∗
𝑘2,𝑡1

𝑅𝑤1 is
cancelled by two other terms together, i.e.,

[X𝑤1 ]𝑘1,𝑡1 [X𝑤1 ]
∗
𝑘2,𝑡1𝑅𝑤1 + [X𝑤2 ]𝑘1,𝑡2 [X𝑤2 ]

∗
𝑘2,𝑡2𝑅𝑤2

+ [X𝑤3 ]𝑘1,𝑡3 [X𝑤3 ]
∗
𝑘2,𝑡3𝑅𝑤3 = 0. (A.2)

In order to make this equality hold, one of the following
three equalities must hold: 1) [X𝑤2 ]𝑘1,𝑡2 = ±[X𝑤1 ]𝑘1,𝑡1 ; 2)
[X𝑤3 ]𝑘1,𝑡3 = ±[X𝑤1 ]𝑘1,𝑡1 ; 3) ±[X𝑤2 ]𝑘1,𝑡2 = ±[X𝑤3 ]𝑘1,𝑡3 =
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[X𝑤1 ]
∗
𝑘2,𝑡1

. However, those three equalities all contradict with
our assumption that the covariance matrix 𝑹 is diagonal. For
example, we assume [X𝑤1 ]𝑘1,𝑡1 = 𝑠𝑤1

𝑛 , 1 ≤ 𝑛 ≤ 𝑁𝑤1 ,
and the equality [X𝑤2 ]𝑘1,𝑡2 = ±[X𝑤1 ]𝑘1,𝑡1 holds. Thus,
[X𝑤2 ]𝑘1,𝑡2 = ±𝑠𝑤1

𝑛 and 𝑠𝑤1
𝑛 is transmitted in the 𝑘1-th row of

𝑿 for at least twice. This makes the noise covariance matrix
𝑹 non-diagonal, which contradicts with our assumption. If we
assume [X𝑤1 ]𝑘1,𝑡1 [X𝑤1 ]

∗
𝑘2,𝑡1

𝑅𝑤1 is cancelled by more than
two other terms, the same contradiction can be seen similarly.
Thus, [X𝑤1 ]𝑘1,𝑡1 [X𝑤1 ]

∗
𝑘2,𝑡1

𝑅𝑤1 is cancelled by exactly one
other term in the summation (A.1) and we have

[X𝑤1 ]𝑘1,𝑡1 [X𝑤1 ]
∗
𝑘2,𝑡1𝑅𝑤1 + [X𝑤2 ]𝑘1,𝑡2 [X𝑤2 ]

∗
𝑘2,𝑡2𝑅𝑤2 = 0.

(A.3)
Furthermore, because 𝑅𝑖 ∕= 𝑅𝑗 when 𝑖 ∕= 𝑗, (A.3) also implies
that 𝑅𝑤1 = 𝑅𝑤2 and 𝑤1 = 𝑤2. This means that, if one term
in the summation (A.1) is non-zero, it must be cancelled by
exactly one other term, which is from the same sub-matrix
𝑿𝑤. Therefore, we have

∑𝑇𝑤

𝑡=1[𝑿𝑤]𝑘1,𝑡[𝑿𝑤]
∗
𝑘2,𝑡

𝑅𝑤 = 0,
when 𝑘1 ∕= 𝑘2, and 𝑿𝑤𝑹𝑤𝑿

𝐻
𝑤 is a diagonal matrix.

Secondly, we show that the information-bearing sym-
bols 𝑠𝑤1 , ⋅ ⋅ ⋅ , 𝑠𝑤𝑁𝑤

are contained in every row of 𝑿𝑤.
Because every main diagonal entry of 𝑹𝑤 is the same
and 𝑿𝑤 only contains non-zero rows, it follows from
𝑹 =

∑𝐾
𝑘=1

(
∣𝜌𝑓𝑘∣2

(
𝑨𝐻

𝑘 𝑨𝑘 +𝑩𝐻
𝑘 𝑩𝑘

))
+ 𝑰 that 𝑿𝑤

actually does not contain any zero entries. Then we as-
sume that [𝑿𝑤]𝑘1,𝑡1 = 𝑠𝑤𝑛 , 1 ≤ 𝑛 ≤ 𝑁𝑤. Because
every entry in 𝑿𝑤 is non-zero, we can find another non-
zero entry [𝑿𝑤]𝑘2,𝑡1 , 𝑘1 ∕= 𝑘2, from the 𝑡1-th column
of 𝑿𝑤. Thus, [𝑿𝑤𝑹𝑤𝑿

𝐻
𝑤 ]𝑘1,𝑘2 must contain the term

[𝑿𝑤]𝑘1,𝑡1 [𝑿𝑤]
∗
𝑘2,𝑡1

𝑅𝑤. Because [𝑿𝑤𝑹𝑤𝑿
𝐻
𝑤 ]𝑘1,𝑘2 = 0,

[𝑿𝑤]𝑘1,𝑡1 [𝑿𝑤]
∗
𝑘2,𝑡1

𝑅𝑤 must be cancelled by another term and
we assume it is [𝑿𝑤]𝑘1,𝑡2 [𝑿𝑤]

∗
𝑘2,𝑡2

𝑅𝑤, 𝑡1 ∕= 𝑡2. In order to
make [𝑿𝑤]𝑘1,𝑡1 [𝑿𝑤]

∗
𝑘2,𝑡1

𝑅𝑤 + [𝑿𝑤]𝑘1,𝑡2 [𝑿𝑤]
∗
𝑘2,𝑡2

𝑅𝑤 = 0,
we must have [𝑿𝑤]𝑘1,𝑡2 = ±[𝑿𝑤]𝑘1,𝑡1 or [𝑿𝑤]

∗
𝑘2,𝑡2

=
±[𝑿𝑤]𝑘1,𝑡1 . Due to the row-monomial condition, [𝑿𝑤]𝑘1,𝑡2

can not be ±[𝑿𝑤]𝑘1,𝑡1 , and hence, we have [𝑿𝑤]𝑘2,𝑡2 =
±[𝑿𝑤]

∗
𝑘1,𝑡1

= ±𝑠𝑤∗
𝑛 . This means that the 𝑘2-th row contains

the information-bearing symbol 𝑠𝑤𝑛 as well. Taking a similar
approach, we can show that the information-bearing symbols
𝑠𝑤1 , ⋅ ⋅ ⋅ , 𝑠𝑤𝑁𝑤

are contained in every row of 𝑿𝑤.
Because 𝑿𝑤𝑹𝑤𝑿

𝐻
𝑤 is a diagonal matrix and every

row of 𝑿𝑤 contains all the information-bearing symbols
𝑠𝑤1 , ⋅ ⋅ ⋅ , 𝑠𝑤𝑁𝑤

, 𝑿𝑤𝑹𝑤𝑿
𝐻
𝑤 can be written as

𝑿𝑤𝑹𝑤𝑿
𝐻
𝑤 = ∣𝑠𝑤1 ∣2𝑴1 + ⋅ ⋅ ⋅+ ∣𝑠𝑤𝑁𝑤

∣2𝑴𝑁𝑤 , (A.4)

where 𝑴𝑛 are diagonal and all the main diagonal entries are
non-zero. Note that, if the relays only transmit 𝑿𝑤 to the
destination, 𝑹𝑤 is actually the inverse of the noise covariance
matrix at the destination. This is because 𝑿𝑤 and 𝑹𝑤 are
obtained after the same column permutations. Therefore, (A.4)
is equivalent to (2). Furthermore, since 𝑿𝑤 is a sub-matrix of
𝑿 , it automatically satisfies conditions of Definition 1. Thus,
we conclude that 𝑿𝑤 is a DSTBC-CPI.

APPENDIX B

Proof of Lemma 2

From Lemma 1, every sub-matrix 𝑿𝑤 is a DSTBC-CPI in
variables 𝑠𝑤1 , ⋅ ⋅ ⋅ , 𝑠𝑤𝑁𝑤

. Furthermore, it is possible to show that
the DSTBC-CPI satisfies

𝑿𝑿𝐻 = ∣𝑠1∣2𝑮1 + ⋅ ⋅ ⋅+ ∣𝑠𝑁 ∣2𝑮𝑁 (B.1)

where 𝑮𝑛 = diag[𝐺𝑛,1, ⋅ ⋅ ⋅ , 𝐺𝑛,𝐾 ] and 𝐺𝑛,1, ⋅ ⋅ ⋅ , 𝐺𝑛,𝐾 are
strictly positive. Therefore, every sub-matrix 𝑿𝑤 is also a
generalized orthogonal design. We refer to any entry contain-
ing 𝑠𝑤𝑛𝑤

as the 𝑠𝑤𝑛𝑤
-entry. Similarly, any entry containing 𝑠𝑤∗

𝑛𝑤

is referred to as the 𝑠𝑤∗
𝑛𝑤

-entry.
By the row-monomial condition, any row in 𝑿𝑤 can not

contain more than one 𝑠𝑤𝑛𝑤
-entry or 𝑠𝑤∗

𝑛𝑤
-entry. Therefore, the

rate of 𝑿𝑤 is lower-bounded by 1/2, which is achieved when
every row contains exactly one 𝑠𝑤𝑛𝑤

-entry and one 𝑠𝑤∗
𝑛𝑤

-entry
for 1 ≤ 𝑛𝑤 ≤ 𝑁𝑤.

Then we show that the rate can not be strictly larger than
1/2 by contradiction. Without loss of generality, we assume
the first row of 𝑿𝑤 is [𝑠𝑤1 , ⋅ ⋅ ⋅ , 𝑠𝑤𝑁𝑤

, 𝑠𝑤∗
1 , ⋅ ⋅ ⋅ , 𝑠𝑤∗

𝑁 ′
𝑤

], where

𝑁
′
𝑤 < 𝑁𝑤. Hence, the rate of 𝑿𝑤 is 𝑁𝑤/(𝑁𝑤 +𝑁

′
𝑤) and it

is strictly larger than 1/2. Furthermore, because every entry in
𝑿𝑤 is non-zero, every row in 𝑿𝑤 contains exactly 𝑁𝑤+𝑁

′
𝑤

non-zero entries. Because 𝑠𝑤∗
𝑁 ′

𝑤+1
, ⋅ ⋅ ⋅ , 𝑠𝑤∗

𝑁𝑤
are not transmitted

by the first row, the second row can not have any 𝑠𝑤𝑛𝑤
-entries,

𝑁
′
𝑤+1 ≤ 𝑛𝑤 ≤ 𝑁𝑤. This can be shown by contradiction. For

example, if the second row has 𝑠𝑤
𝑁 ′

𝑤+1
on the first column, the

inner product of the first and second rows must have the term
𝑠𝑤1 𝑠

𝑤∗
𝑁 ′

𝑤+1
. Because 𝑿𝑤 is a generalized orthogonal design,

the inner product of any two rows must be zero. In order to
cancel the term 𝑠𝑤1 𝑠

𝑤∗
𝑁 ′

𝑤+1
, the first row must have an 𝑠𝑤∗

𝑁 ′
𝑤+1

-
entry, which contradicts our assumption. Thus, the second row
can not contain any 𝑠𝑤𝑛𝑤

-entries, 𝑁
′
𝑤 + 1 ≤ 𝑛𝑤 ≤ 𝑁𝑤. On

the other hand, because the second row must contain exactly
𝑁𝑤 + 𝑁

′
𝑤 non-zero entries, it must have the 𝑠𝑤𝑛𝑤

-entries for
1 ≤ 𝑛𝑤 ≤ 𝑁

′
𝑤 and the 𝑠𝑤∗

𝑛𝑤
-entries for 1 ≤ 𝑛𝑤 ≤ 𝑁𝑤.

Since 𝐾𝑤 > 2, we can do further investigation on the
third row of 𝑿𝑤. The third row is decided by the first and
the second row jointly. Because the first row does not have
𝑠𝑤∗
𝑁 ′

𝑤+1
, ⋅ ⋅ ⋅ , 𝑠𝑤∗

𝑁𝑤
, the third rows can not have any 𝑠𝑤𝑛𝑤

-entries,

𝑁
′
𝑤 + 1 ≤ 𝑛𝑤 ≤ 𝑁𝑤. Furthermore, because the second row

does not have any 𝑠𝑤𝑛𝑤
-entries, 𝑁

′
𝑤 + 1 ≤ 𝑛𝑤 ≤ 𝑁𝑤, the

third row can not have any 𝑠𝑤∗
𝑛𝑤

-entries, 𝑁
′
𝑤 +1 ≤ 𝑛𝑤 ≤ 𝑁𝑤.

Hence, the third row can only have the 𝑠𝑤𝑛𝑤
-entries and the

𝑠𝑤∗
𝑛𝑤

-entries for 1 ≤ 𝑛𝑤 ≤ 𝑁
′
𝑤. There are at most 2𝑁

′
𝑤 non-

zero entries in the third row and it contradicts with the fact
that every row in 𝑿𝑤 contains exactly 𝑁𝑤 + 𝑁

′
𝑤 non-zero

entries. This means that the rate of 𝑿𝑤 can not be strictly
larger than 1/2. Because it has been shown that the rate of
𝑿𝑤 is lower-bounded by 1/2, we conclude that the rate of
𝑿𝑤 is exactly 1/2 when 𝐾𝑤 > 2.

APPENDIX C

Proof of Theorem 1

Like in Lemmas 1 and 2, we partition 𝑿 into 𝑿1, ⋅ ⋅ ⋅ ,𝑿𝑤,
and we assume the dimension of 𝑿𝑤 is 𝐾𝑤 × 𝑇𝑤. Because
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𝑿𝑤 does not contain any zero entries, the total number of
non-zero entries in 𝑿𝑤 is 𝐾𝑤𝑇𝑤. For convenience, we refer
to any entry containing 𝑠𝑛 as the 𝑠𝑛-entry. Similarly, any entry
containing 𝑠∗𝑛 is referred to as the 𝑠∗𝑛-entry.

We first consider the case that 𝐾 = 3. Because 𝐾 = 3,
there is only one sub-matrix in 𝑿1, ⋅ ⋅ ⋅ ,𝑿𝑤 that contains
three rows. Without loss of generality, we can assume that
𝑿1 is such sub-matrix, i.e., 𝐾1 = 3. Then we partition 𝑿
into 𝑿 = [𝑿1,𝑿

′
]. Note that every column in 𝑿

′
can

contain at most two non-zero entries; otherwise, this column
should be included in 𝑿1. By Lemma 2, 𝑿1 is a DSTBC-
CPI and its rate is exactly 1/2. Furthermore, we assume 𝑿1

is in variables 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑁1 , 1 ≤ 𝑁1 ≤ 𝑁 . By the proof of
Lemma 2, every row of 𝑿1 contains exactly one 𝑠𝑛-entry
and one 𝑠∗𝑛-entry, 1 ≤ 𝑛 ≤ 𝑁1. Therefore, there is no 𝑠𝑛-
entry or 𝑠∗𝑛-entry in 𝑿

′
; otherwise, there will be more than

one 𝑠𝑛-entries or 𝑠∗𝑛-entries in a row of 𝑿 , which will make
the noise covariance matrix 𝑹 non-diagonal. Thus, the matrix
𝑿

′
is actually a DSTBC-CPI in variables 𝑠𝑁1+1, ⋅ ⋅ ⋅ , 𝑠𝑁 .

Furthermore, because every column in 𝑿
′

has at most two
non-zero entries, it is easy to show that its rate can not be
larger than 1/2 by following the proof of Theorem 2 in [23].11

Because the rate of 𝑿1 is exactly 1/2 and the rate of 𝑿
′
is less

than 1/2, the rate of 𝑿 = [𝑿1,𝑿
′
] must be upper-bounded

by 1/2 when 𝐾 = 3.
Secondly, we consider the case that 𝐾 > 3. We assume the

sub-matrices 𝑿1, ⋅ ⋅ ⋅ ,𝑿𝑊 ′ contain one or two rows and the
sub-matrices 𝑿𝑊 ′+1, ⋅ ⋅ ⋅ ,𝑿𝑤 contain three or more rows, i.e.
𝐾𝑤 ≤ 2 for 1 ≤ 𝑤 ≤ 𝑊

′
and 𝐾𝑤 ≥ 3 for 𝑊

′
+1 ≤ 𝑤 ≤ 𝑊 .

Thus, the rate of 𝑿𝑤 is exactly 1/2 for 𝑊
′
+ 1 ≤ 𝑤 ≤ 𝑊 .

This means, if an information-bearing symbol 𝑠𝑛 appears in a
row of 𝑿𝑤 ,𝑊

′ ≤ 𝑤 ≤ 𝑊 , it appears exactly twice. On the
other hand, (B.1) implies that every row of 𝑿 must have the
information-bearing symbol 𝑠𝑛 for at least once, 1 ≤ 𝑛 ≤ 𝑁 .
Therefore, the following inequality holds

𝑊
′∑

𝑤=1

𝐾𝑤𝑇𝑤 +

𝑊∑

𝑤=𝑊 ′+1

𝐾𝑤𝑇𝑤

2
≥ 𝑁𝐾. (C.1)

On the other hand, there are totally 𝑇𝑤 columns in 𝑿𝑤.
Thus, the total number 𝑇 of columns in 𝑿 is given by
𝑇 =

∑𝑊
𝑤=1 𝑇𝑤. Then, from (C.1), it is easy to obtain

2𝑁 ≤ 𝑇 under the assumption that 𝐾 > 3 and 𝐾𝑤 ≤ 2
for 1 ≤ 𝑤 ≤ 𝑊

′
, and hence, the rate of 𝑿 is upper-bounded

by 1/2 when 𝐾 > 3.
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