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A recent design issue of adaptive cruise control systems is how to reduce fuel consumption when
following a preceding vehicle. High fuel economy is achievable through reducing acceleration level,
however, it is also significantly restrained by two other functional demands, track capability and
driver desired response. In the framework of multi-objective coordination, this paper develops and
experimentally validates an economy-oriented headway control algorithm for a passenger car with
internal combustion engine. The control algorithm is synthesised in a hierarchical structure. The upper
controller, undertaking a major coordinating task, is designed based on the model predictive control
theory. Fuel economy, tracking capability, and the driver desired response are formulated as its cost
function and constraints in a finite prediction horizon. As further analysis indicated, such a design
inevitably results in infeasible control inputs in some extreme cases, e.g. urgent situations involving
rapid acceleration/deceleration.A constraint softening method is adopted to enlarge the feasible region
in the cost of somewhat sacrificing the optimality of the original cost function. Finally, a prototyping
controller is developed based on xPC toolbox and equipped in a passenger car. The followed field tests
show that, compared to a linear quadratic controller, such an algorithm improves both fuel economy
and tracking capability while also being more responsive to driver car-following behaviours.

Keywords: adaptive cruise control; model predictive control; fuel economy; tracking capability

1. Introduction

In an adaptive cruise control (ACC) system, the headway control mode mainly focuses on track-
ing a target vehicle according to a given headway policy. This task is critical to ACC’s function
of assisting drivers, e.g. reducing driver workload, because it releases foot manipulation of
drivers. Just as drivers with different styles consume different amounts of fuel; the same is true
for vehicles with different headway control algorithms [1]. Ioannou has observed a fuel differ-
ence of 6% for some commonly-used algorithms in a rapid accelerating scenario [2]. Today,
with increasing economy demands in the road transportation sector, this fuel-saving potential
is drawing growing attention from automobile manufacturers and government agencies. The
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2 S. Eben Li et al.

related economy-oriented headway control is promising considering large penetration of the
ACC into markets in the near future.

Two pioneering studies on this technology, to the best of our knowledge, date back to the
beginning of this century. In 2001, Marsden pointed out the feasibility of saving fuel based on
his observation that the ACC reduced the standard derivation of acceleration by 44–52% in
normal traffic flow [3]. Following Marsden’s study, Bose further demonstrated by simulations
that this acceleration attenuation decreased about 8% total fuel of a mixed traffic flow [4].
Subsequently, researchers intentionally focus on the algorithm design for the headway control
mode in order to decrease fuel consumption to the maximum extent.Today three main strategies
have been used in designing: (I) Coordinating control of engine and transmission [5,6]; (II)
shorten inter-vehicle distance [7,8]; (III) smooth longitudinal acceleration [2,9,10].

The first strategy regulates engine and transmission simultaneously and aims to increase the
probability of engines working in the economic region [5,6]. In the second strategy, shorter
inter-vehicle distance means less aerodynamic drag, which in turn reduces external resistances
of following vehicles [8]. These two strategies are useful in theory, but their application
is significantly limited by high coordinating complexity in Strategy I and additional risks
of rear-end collision in Strategy II. In comparison, the last strategy is more realistic under
today’s technical status. Its basic idea, originating from Marsden’s founding, is to reduce the
acceleration level as much as possible. Using this strategy, Ioannou et al. developed a nonlinear
filter for headway controllers to avoid large acceleration in urgent situations [2]. Jonsson
et al. designed a Dynamic Programming-based off-line controller to depress longitudinal
acceleration, with which simulations showed a fuel reduction of 5% [9].

However, reducing acceleration alone is not sufficient in designing an economy-oriented
headway control algorithm. Even though a lower level of acceleration in itself implies better
economy, it also weakens the tracking capability and enlarges the inter-vehicle distance errors.
In an accelerating case, an excessively large distance often induces frequent vehicle cut-ins
from adjacent lanes and, in fact, deteriorates fuel economy instead of improving; in a braking
case, the excessively short distance may increase the risk of rear-end collision and cause driver’s
intervention. The most extreme situation, where fuel economy is the exclusive objective, is
to always run the vehicle at economic speed, in which case economy becomes optimal while
tracking capability is totally lost. Moreover, it is critical to realise that drivers’ or passengers’
evaluations are an essential component of any ACC efficacy; no matter how effective an ACC
model theoretically is, it will be useless if drivers choose not to use it. Therefore, if fuel
economy is exclusively emphasised, ACC would scarcely satisfy driver’s expectation. This
failure may cause drivers to intervene by intermittent foot braking. In such situations, the ACC
function of following a predecessor is inevitably lost, let alone assisting drivers, quite apart
from its original intention. In summary, when designing an economy-oriented headway control
algorithm, it is critical to systematically consider multiple objectives instead of focusing on
only one.

In this paper, we first develop and then experimentally verify an economy-oriented head-
way control algorithm that is designed to optimally coordinate multiple objectives. Here
such objectives as high fuel economy, necessary tracking capability and good driver desired
response are balanced under the model predictive control (MPC) framework. Better fuel
economy remains our first priority, yet great emphasis is also given to necessary tracking
capability and good driver desired response. The remainder of this paper is structured as fol-
lows. Section 2 reviews the model for the car-following system for control, followed by the
quantification of multiple objectives in a finite prediction horizon. Section 3 addresses the
issue of the infeasible solution by employing a constraint softening method and achieves its
real-time implementation. In Section 4, field tests are conducted to validate this method’s
success.
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Vehicle System Dynamics 3

2. Synthesis of multi-objective coordinating algorithm

A typical car-following system contains two vehicles, a preceding one and a following one. As
in many applications [11,12], its control algorithm is designed using a hierarchical structure
composed of a lower and an upper controller. The former compensates for the nonlinear
dynamics in vehicle dynamics while the latter conducts the space tracking. The upper controller
is synthesised using the MPC framework in this paper, which dominates the coordination of
multiple objectives.

2.1. Car-following model for control

The following vehicle to be modelled is a passenger car with a 2.0 l gasoline engine, five-speed
automatic transmission and hydraulic braking system. Its vehicle longitudinal dynamics are
inherently nonlinear. Some salient features include static nonlinearity in engine, discontinuous
gear ratio, and quadratic aerodynamic drag [12]. In the lower controller, those nonlinearities are
compensated for by using an inverse dynamic model [11]. In addition, a hysteresis switching
logic is adopted to avoid the simultaneous actions of driving and braking [13]. The connection
of the lower controller and vehicle longitudinal dynamics constructs a virtual plant, whose
dynamics is approximated to be linear, as suggested in [10]. Using sinusoidal excitation [14],
the connected plant is modelled as a first-order inertial transfer function:

af = KL

TLs + 1
afdes, (1)

where afdes is the desired longitudinal acceleration, af is the actual longitudinal acceleration,
TL = 0.45 s and KL = 1.0 are time constant and system gain for nominal plants, respec-
tively. By integrating a quadratic headway policy [15] (ddes = r · (v − vfmean) + τh · v + d0),
the dynamic of the car-following system is governed by⎡

⎣�ḋ
�v̇
ȧf

⎤
⎦ =

⎡
⎣0 1 −τh − r(2vf − vfmean)

0 0 −1
0 0 −1/TL

⎤
⎦

⎡
⎣�d

�v
af

⎤
⎦ +

⎡
⎣ 0

0
KL/TL

⎤
⎦ afdes +

⎡
⎣0

1
0

⎤
⎦ ap, (2)

where [�d, �v, af ]T is the system state denoting distance error, relative speed, and longitu-
dinal acceleration, respectively; afdes is the control input; ap is the measurable disturbance
denoting the preceding vehicle acceleration; vf is the vehicle speed; and τh, r and vfmean are the
parameters of headway policy denoting the headway time, quadratic coefficient, and average
speed in experiments, respectively.

Note that Equation (2) has a quasi-linear structure, even though it is still inherently non-
linear because of its speed-dependent coefficients. The nonlinearity helps to enhance the
accuracy of predicting system dynamics while also significantly increasing the computing
burden of the corresponding MPC controller. Our solution to facilitate computation is to lin-
earise Equation (2) at each sampling point, and to change linearised coefficients as time goes by
in order to reflect the speed-varying nonlinearity. The details will be discussed in Section 3.1.

2.2. Performance index for upper controller

As suggested by Bageshwar et al. [16], an ACC controller with multiple objectives is naturally
cast into an MPC framework. Today, MPC has shown great merits in vehicle automation,
e.g. [17–19]. Many of them focus on the stability and robustness of cruise control or spacing
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4 S. Eben Li et al.

tracking. To further expand their application, we introduce multiple objectives in the headway
control mode. To design such a controller, one of the key points lies in how to mathematically
quantify multiple objectives.

Fuel economy, tracking capability, and driver desired response, including limitations from
vehicle dynamics and traffic flow, are interrelated and mutually influenced; each of them shapes
ACC behaviours and ACC design should take all of them into account. For simplification,
we first discuss their description and then integrate their mathematical formulae into the
performance index of MPC. For tracking capability, it is defined as follows:

(A1) The tracking errors converge to zero in the steady-state;
(A2) In accelerating cases, the inter-vehicle states should be in the driver permissible tracking

range to avoid frequent cut-ins from adjacent lanes;
(A3) In braking cases, rear-end collision must be avoided whenever physically possible.

With respect to fuel economy, we expect lower fuel consumption than other ACC controllers,
denoted as (B). To meet the objective of the driver desired response, ACC should satisfy three
vital driver characteristics:

(C1) Driver desired distance feature;
(C2) Driver longitudinal ride comfort;
(C3) Driver car-following (DCF) characteristics.

These three objectives are categorised into two groups and described by a quadratic cost
function and three inequality constraints, respectively. Note that (C1), in the form of headway
policy, is implicitely embedded into Equation (2) and does not emerge in the performance
index. The cost function, which includes (A1), (B) and (C3), is expressed as

J =
∫ (k+P)·Ts

k·Ts

L(�d, �v, af , afdes) dt

L = wy�d · ‖�d‖2 + wy�v · ‖�v‖2

+ wu · ‖afdes‖2 + wdu · ‖ȧfdes‖2

+ wya · ‖afR − af‖2,

(3)

where Ts is the sampling time, k · Ts is the current time, P · Ts is the prediction length, ‖ · ‖
represents two-norms, and afR is the reference acceleration. In Equation (3), the tracking
capability (A1) is specified by penalising both �d and �v. Their quadratic integrand operates
differently, depending on the quantity of tracking errors, and tends to penalise larger errors
and neglect smaller ones. Its minimisation obviously yields that �d = 0 and �v = 0. The
fuel economy (B) is described by minimising afdes, as well as its jerk. This minimisation will
both smooth and depress the acceleration and accordingly yield better fuel economy. The last
term is relevant to the DCF characteristics (C3). When following a speed-changing car, drivers
manipulate vehicles according to their own preferences. The preferred acceleration reflects
driver desired car-following dynamics [20]. Often,ACCs work in light and moderate congested
traffic, and drivers exhibit approximately linear behaviours to the variation of tracking errors.
Here, a quasi-linear DCF model is used to imitate driver external manipulating behaviours in
car-following scenarios [21]:

afR = SVE(vf) · kV · �v + SDE(vf) · kD · �d, (4)

where, afR refers to the reference acceleration.Another reason to use a quasi-linear DCF model
is to facilitate real-time implementation of following the MPC controller. The error between
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Vehicle System Dynamics 5
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Figure 1. SVE and SDE functions of passenger car drivers.
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Figure 2. Configuration of experimental platform.

af and afR is minimised in order to compel ACC to coincide with the model of DCF dynamics.
In Equation (4), kV and kD are nominal control gains, SVE (sensitivity to velocity error) and
SDE (sensitivity of distance error) are functions of vehicle speed vf , reflecting the change of
control gains w.r.t. vehicle speed vf . Refer to the modelling method introduced in [21], these
parameters are identified using experimental data of passenger car drivers in naturalistic traffic
flow, yielding kV = 0.162, kD = 0.0203 and SVD/SDE illustrated in Figure 1. (The identified
parameters are the average of 33 experienced drivers, including 26 males and 7 females; the
traffic scenarios contain urban arterial roads and inter-city expressway.).

Other objectives, including (A2), (A3) and (C3), are more relevant to safety and comfort,
suitable to be bounded instead of being optimised:⎧⎪⎨

⎪⎩
jf min < jfdes(t)jf max

af min < afdes(t) < af max,

af min < af(t) < af max

t ∈ [k · Ts, (k + P) · Ts], (5)

{
�dmin ≤ �d(t) ≤ �dmax

�vmin ≤ �v(t) ≤ �vmax
, t ∈ [k · Ts, (k + P) · Ts], (6)
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6 S. Eben Li et al.
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Figure 3. Realisation of rear-end collision avoiding function. (a) Longitudinal acceleration, (b) inter-vehicle
distance, and (c) slack variable in MO controller.

d(t) ≥ dsafe

dsafe = max{TTC · �v, ds0}, t ∈ [k · Ts, (k + P) · Ts], (7)

where jfmin, jfmax, afmin, afmax are the bounds of jerk and acceleration, dsafe is the safety threshold
of distance, and �dmin, �dmax, �vmin, and �vmax are the bounds of tracking errors. Note that
�dmin, �dmax, �vmin, and �vmax vary with respect to vf to reflect the changes of driver
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Vehicle System Dynamics 7

Table 1. Key parameters in cost function and constraints.

Parameter Value Parameter Value Parameter Value

wy�d 0.02 wy�v 0.025 way 0.5
wu 5 wdu 0.001 Ts 0.1 s
�d̄max 7.2 m �v̄max 0.8 m/s afmax 0.5 m/s2

�d̄min −6.7 m �v̄min −0.8 m/s afmin −1.5 m/s2

TTC −2.5 s ds0 5 m P 50

sensitivity:

�dmin = SDE(vf) · �d̄min, �dmax = SDE(vf) · �d̄max

�vmin = SVE(vf) · �v̄min, �vmax = SVE(vf) · �v̄max.
(8)

Equation (5) represents ride comfort demand from drivers. This demand constrains both accel-
eration and jerk, as suggested in [22]. Equation (6) constrains both �d and �v to avoid overly
large or overly short tracking errors. This constraint originates from the driver permissible
tracking range, identified based on naturalistic driver experiments. When tracking errors are
bounded in this range, vehicle cut-in or driver intervention does not easily occur and accord-
ingly the tracking process becomes more smoothing, which is also helpful to fuel economy.
Safety means no rear-end collisions, always maintaining a nonnegative inter-vehicle clear-
ance. The time-to-collision (TTC) strategy is used to restrain minimum distance [23]. Together
with minimum distance strategy, Equation (7) is designed, in which dsafe refers to the safety
threshold.

2.3. Analysis of multi-objective coordination

Under the MPC framework, the control input actually results from solving an optimisation
problem originated from a cost function and relevant constraints. We call such an MPC con-
troller as a multi-objective coordinating algorithm, abbreviated as MO. Some key parameters
are shown in Table 1.

In MO, particular focus is placed on reducing longitudinal acceleration since our primary
goal is high fuel economy. Therefore, relatively large weighting coefficients for af and afdes
are selected compared to those for �d and �v, as shown in Table 1. The optimisation of
J in Equation (3) is approximately equivalent to an exclusive minimisation on acceleration,
which is rather beneficial in improving fuel economy. In addition, great benefit is also gained
in numerical computation because such a cost function will lead to a quadratic programming
(QP) problem rather than a complicated nonlinear programming problem. Nevertheless, the
weighting coefficients of �d and �v still exist for controller stabilisation. Since stabilisation
implies convergence, tracking errors converge in steady scenarios and therefore (A1) naturally
holds. The reference acceleration afR in Equation (3) originates from the DCF model and
reflects driver desired acceleration in a car-following process. Therefore, the minimisation
of the error between af and afR will compel the ACC to conform to driver’s expectation,
satisfying (C3).

Inequality (5) restricts afdes and af in order to meet (B2), which not only enhances ride
comfort, but also avoid fuel-wasting urgent acceleration/deceleration. As discussed before,
fuel improvement will decrease tracking capability in an ACC. In MO, severe drop in tracking
capability is limited by strict constraints on tracking errors, as shown in Equation (6). Its goal
is to constrain excessively large tracking errors and avoid frequent vehicle cut-ins or driver
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8 S. Eben Li et al.

intervention. Additionally, Inequality (7) stipulates the permissible minimum distance and
accordingly any rear end collision will be avoided whenever physically possible.

3. Real-time algorithm with feasible solutions

In MPC, Equation (5)–(7) are referred to as hard constraints because their bounds were not
allowed to be violated. Meanwhile Equation (5) weakens the accelerating/decelerating ability
and tracking errors sometimes unavoidably reach their bounds. To avoid overshooting tracking
errors, a reasonable approach is to strengthen the control input. However, in practice, this is
unrealistic because the control input is almost always located on its upper bound in accelerating
scenarios, leaving no space to be increased further. A similar conclusion is also obtained in
braking scenarios. At this moment, the tracking errors keep increasing or decreasing along
their original directions due to vehicle inertia. Once overshooting occurs, the optimisation
problem has no feasible solution, resulting in the issue of infeasibility.

3.1. Constraint softening method

One effective way to address infeasibility is called the constraint softening method [24]. Its
fundamental is to transform hard constraints into soft constraints by enlarging the bounds
whenever states or inputs overshoot. There are two common types of constraint softening
methods according to their slack variables: vector variables and scale variables [25,26]. The
former independently softens each inequality in constraints, but considerably increases the
dimension of optimised variables, thus affecting the computing efficiency of the optimisation
problem. The latter regards all the inequalities as an integral, adds only one new optimised
variable, and has little effect on efficiency. We adopted a scalar slack variable to soften the
hard constraints considering the demand of real-time implementation.

A new cost function with a slack variable ε is defined:

ψ = J + ρε2, ε ≥ 0, (9)

where ρ is the weighting coefficient. The constraints (5) and (6) are transformed into soft
constraints in [k · Ts, (k + P) · Ts]:

amin + ε · vaf
min ≤ afdes(k|i) ≤ amax + ε · vaf

max, (10)⎧⎪⎨
⎪⎩

�dmin + ε · v�d
min ≤ �d(k|i) ≤ �dmax + ε · v�d

max

�vmin + ε · v�v
min ≤ �v(k|i) ≤ �vmax + ε · v�v

max,

af min + ε · vaf
min ≤ af(k|i) ≤ af max + ε · vaf

max

(11)

where v#
min and v#

max are relaxation coefficients. The superscript # stands for �d, �v or af .
Here, Equations (10) and (11) are called soft constraints because their bounds are allowed to
be violated. Thereafter, the coordinated control of multiple objectives is realised by solving
the following optimisation problem (12):

min
afdes(t)

ψ(k), t ∈ [k · Ts, (k + P) · Ts]

Subject to: (a) Plant model − Equation (2);

(b) Soft constraints − Equations (10) and (11);

(c) Hard constraints − Equation (7).

(12)
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Vehicle System Dynamics 9

In Problem (12), when hard constraints (5) and (6) do not hold, the slack variable ε automati-
cally becomes positive. Even the constrained variables, e.g. �v and �d, violate their bounds,
Equations (10) and (11) will still hold because of their ε-dependent bounds. The violation,
however, is not completely free, limited by penalising ε in the cost function (9), and therefore
a balance between constraint violation and control optimality is sought. When original con-
straints (5) and (6) hold, the slack variable ε becomes zero and Problem (12) is equivalent to
the problem with hard constraints.

Here the constraint (7) is not allowed to be violated for safety considerations. Moreover, to
retain it, as hard constraint does not cause any issue of infeasibility because of the following
reasons. In Problem (12), all constraints are defined in the prediction horizon [k · Ts, (k + P) ·
Ts].When the preceding vehicle decelerates rapidly in an urgent situation, d at time (k + P) · Ts

always reaches the safety threshold dsafe in advance of d at time (k · Ts) due to prediction. In
such a case, Problem (12) always decreases afdes at time (k + P) · Ts to avoid the violation
of d((k + P) · Ts). Since the constraint on afdes is softened in the whole prediction horizon,
this will increase ε and strengthen the braking force at time k · Ts. Consequently, the risk of
rear-end collision is still capable of being eliminated without causing any infeasibility.

3.2. Numerical computation

Considering MPC is usually implemented in a discrete-time domain, we need to transform the
time-continuous Problem (12) into a time-discrete form (15) at a specified sampling time Ts.

Note that Equation (2) is quasi-linear and its coefficients are time-varying, dependent on
vehicle speed. In theory, its discretisation is relatively difficult because an analytical solution of
integration of nonlinear matrix does not exist. To avoid this issue, we combine the piece-wise
linearisation [27] and T–S (Takagi–Sugono) fuzzy modelling technology [28], and construct
a discrete-time state space model with a unique formula. The procedure of discretisation is:
(1) firstly, select two speed points vfHigh = 25 m/s and vfLow = 10 m/s to represent highway
and city road traffic flow, respectively; (2) then, discretise equation (1) at each speed using the
zero-order hold method, yielding two linear models; (3) finally, the two models are weighted
and summed, thereby obtaining a piece-wise state space model:⎡

⎣�d(k + 1)

�v(k + 1)

af(k + 1)

⎤
⎦ = A(λ)

⎡
⎣�d(k)

�v(k)

af(k)

⎤
⎦ + B(λ)afdes(k) + G(λ)ap(k)

A(λ) = λAHigh + (1 − λ)ALow

B(λ) = λBHigh + (1 − λ)BLow

G(λ) = λGHigh + (1 − λ)GLow,

(13)

where A#, B# and G# are system matrices of discrete-time models and the subscript # is ‘High’
or ‘Low’, representing vfHigh or vfLow; λ is so-called T–S factor, defined as function of speed:

λ =

⎧⎪⎨
⎪⎩

0 vf < vfLow

(vf − vfLow) (vfHigh − vfLow)−1, vfLow ≤ vf ≤ vfHigh

1 vf > vfHigh

. (14)

Here, Equation (13) is still inherently nonlinear because of its speed-varying system matrices
via the T–S factor λ. Nevertheless, the computing efficiency is considerably enhanced. In
different sampling times, λ varies with vehicle speed for accurate prediction of plant dynamics.
During each sampling period, λ is assumed to be fixed and the MPC algorithm becomes
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10 S. Eben Li et al.

linear, capable of being more efficiently computed. Moreover, the change of vehicle speed
is always small because the prediction horizon is short (P = 50 and P · Ts = 5 s). Therefore,
the assumption that λ is fixed in each sampling period is reasonable. The same discretising
strategy is applied to cost function and constraints. A detailed discussion of discretisation is
beyond the scope of this paper, but can be found in Maciejowski’s book [25]. Now, rewriting
the MPC controller in the discrete-time domain, we have:

[j∗fdes(k + i|k)|i=0:P−1, ε∗(k)] = arg min
jfdes(k+i|k)|i=0:P−1,ε(k)

ψ(k, i), i = 1 : P,

Subj. to :

(a) Time-discrete form of model (2), that is Equation (13)

(b) Time-discrete form of constraints (10), (11);

(c) Time-discrete form of constraint (7);

(15)

Where jfdes(k) is the desired longitudinal jerk, (k + i|k) denotes the predicted value at the
(k + i)th step based on kth step information.

The last stage of real-time implementation is to numerically optimise Problem (15) in the
specified time Ts. Because Problem (15) naturally leads to a QP, a Dantzig–Wolfe active set
algorithm [29] is selected to compute the optimal desired jerk [jfdes ∗ (k + i|k)]i=1:P and the
optimal slack variable ε ∗ (k). In each sampling time, only the head element jfdes ∗ (k + 0|k)

is adopted to compute the optimal control input:

afdes(k) = afdes(k − 1) + j∗fdes(k + 0|k) · Ts, (16)

where afdes(k − 1) is the control input in the last step.

4. Performance verification

4.1. Experimental platform

The experimental platform is constructed based on a sedan with a 2.0 l gasoline engine and a
five-speed automatic transmission. The configuration is shown in Figure 2. The radar detects
the target car ahead and calculates the inter-vehicle states, including both�d and�v.The three-
axis accelerometer measures longitudinal, lateral and vertical acceleration. The preceding
vehicle’s acceleration is estimated via both radar outputs and acceleration measurements.
This information, together with vehicle states, are sent to the xPC© box via a data-sharing
CAN bus. In the xPC box, the Dantzig–Wolfe algorithm is programmed using C++; other
functional modules, e.g. the lower controller, switch logic, radar signal processing, actuator
controllers and human machine interface, are built with Matlab/Simulink©. The actuator ECU
regulates the electronic throttle and EVB (Electronic Vacuum Booster) to track the desired
commands.

A standard linear quadratic regulator (simply notated by LQ) is designed referring to [11]
as a comparison. No external disturbance is assumed to exist in this LQ regulator (external
disturbance is the preceding vehicle’s acceleration). Moreover, its cost function, including
coefficients, is identical to MO, except that it has no terms of acceleration error and longitudinal
jerk. In LQ, a linear model is necessary, and it is derived from Equation (13) by fixing vp at
15 m/s. In addition, there is no constraint in LQ.

In experiments, a ‘virtual’ preceding vehicle is used, instead of a real leading car. ‘Virtual’
means that the radar outputs are imitated in software, including the imperfection of radar and
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Vehicle System Dynamics 11

data processing, e.g. signal noise in MMW reflection, digital quantisation and limited update
rate in CAN bus, etc. The purpose of using a virtual leading car is (1) to avoid unpredictable
danger in case of system malfunction; (2) to provide repeatable and identical speed profiles for
controller comparison. The experiment scenarios are designed based on commonly existing
traffic flow, including: (a) a rapid braking scenario; (b) sinusoidal speed scenario; (c) highway
and city road driving cycles used in ISUZU Ltd. The MO is considered to be successful
if it improves fuel economy while not sacrificing tracking capability and the driver desired
response.

4.2. Rapid braking scenario

In this scenario, the preceding car rapidly decelerates from 15 m/s to 1 m/s at a deceleration of
−2.5 m/s2. The ACC car follows it at the same initial speed of 15 m/s with the initial distance
error of zero.

In this scenario, the inter-vehicle distance quickly decreases because the preceding vehicle
brakes rapidly. Figure 3(a) shows that LQ provides insufficient deceleration due to relatively
small coefficients of tracking errors in its cost function. At 23 s, the distance becomes zero
and a rear-end collision occurs. In contrast, as shown in Figure 3, MO automatically increases
both the slack variable ε and the braking force when distance approaches the safety threshold,
and thereby effectively eliminates the risk of a rear-end collision caused by the pursuit of high
fuel economy.

4.3. Sinusoid speed scenario

The experiment in this scenario lasts for 60 s. The preceding car runs at a sinusoid speed
profile with initial speed 10 m/s and acceleration amplitude 0.6 m/s2. The ACC car has an
initial speed of 8 m/s. Figure 4 shows the experimental results of the first 50 s, and Figure 5
shows the phase plots of vf − �d in two time sections, 0–25 s and 37–57 s. In these figures,
the pink dotted line represents the original bound and the red dot-dash line represents the
reference trajectory dominated by the DCF model.

Because of the nonzero initial �v, the whole experiment results contained two stages: a
transient stage from 0 to 20 s and a steady stage from 20 s to the end.

In the transient stage, due to the large initial state error, both LQ and MO tend to adopt
large acceleration for faster state convergence. The MO constrains its desired acceleration
while the LQ does not as shown in Figure 4(a). This constraint on acceleration not only helps
improve ride comfort, but also decreases engine fuel rate, as shown in Figure 4(e). Neverthless,
both MO and LQ output state trajectories that considerably deviate from the reference. After
entering the steady-stage, however, the acceleration constraint in MO becomes inactive. As
Figure 5(b) shows, the MO trajectory is much closer to the reference than LQ. This indicates
that the minimisation of the error between af and afR in MO has gone into effect, and its
car-following dynamics better agrees with passenger driver’s expectation (which is imitated
by the DCF model).

Table 2 summarises the fuel consumption in experiments. While it is apparent that MO
improves fuel economy compared to LQ, this improvement is at the cost of enlarging tracking
errors. As shown in Figure 4(c), MO outputs a distance larger than LQ, especially in the tran-
sient stage, but this enlargement does not obviously sacrifice the tracking capability because
the distance error is still within the driver permissible tracking range.

In addition, even though the tracking errors may exceed their permissible tracking range in
some urgent scenarios, MO increases the slack variable and intensifies acceleration or decel-
eration to reduce excessive tracking errors. This behaviour has been explicitly demonstrated
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Figure 4. Experimental results of first 50 s. (a) Longitudinal acceleration, (b) relative speed, (c) distance error, (d)
throttle angle of engine, (e) braking pressure of braking system and (f) fuel rate of engine.

in Section 4.2. Even in the sinusoidal speed scenario, we can also see similar outputs in MO.
For instance, the slack variable ε increases whenever �v overshoots its bounds as illustrated
in Figure 4(b). It implies that stronger suppression must be implemented on �v. That is, for
the reason that the maximum of �v in MO is smaller than LQ in the steady stage.

4.4. City road and highway driving cycles

In order to verify the performance comprehensively, two driving cycles are adopted to represent
typical city road and highway traffic flow (Profiles come from IZUZU Ltd.). Their speed
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Figure 5. Comparison of driver and ACC car-following dynamics. (a) Phase plot of vf − �d in transient stage
(0–25 s) and (b) phase plot of vf − �d in steady stage (37–57 s).

Table 2. Total fuel consumption in the exper-
iment.

LQ MO Save

Fuel consumption 50.9 47.1 8.1%
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Figure 6. City road and Highway driving cycles.

profiles are illustrated in Figure 6. Similar to Sections 4.1 and 4.2, the ACC car is controlled
to follow the ‘virtual’ preceding vehicle by the MO and LQ, respectively.

To comprehensively reflect tracking capability, define a tracking index (TI) composed of
both �v and �d as

TI = 1

N

N∑
i=1

(
|�v(i) · SVE| +

∣∣∣∣�d(i) · SDE

KDV

∣∣∣∣
)

, (17)

where N is the length of driving cycle, KDV is the weighting coefficient, reflecting different
emphasis on �d and �v. Here, KDV is selected as 10 for passenger drivers. The TI value under
city road and high way driving cycles is shown in Figure 7. The corresponding fuel index (FI),
in unit litre per 100 km (l/100 km), is shown in Figure 8. Additional experimental results are
summarised in Tables 3 and 4.
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Figure 8. Comparison of fuel economy.

Table 3. City road driving cycle.

Units MO LQ Improvement

Fuel cons. Litre 0.77 0.81 –
Mileage km 7.4 7.4 –
FI l/100 km 10.4 11.0 5.3%
Tracking index – 1.33 1.56 14.9%

Table 4. Highway driving cycle.

Units MO LQ Improvement

Fuel cons. Litre 0.81 0.83 –
Mileage km 10.3 10.3 –
FI l/100 km 7.8 8.1 2.5%
Tracking index – 0.31 0.33 1.8%

In the city road driving cycle, MO reduces the FI by 5.3% compared to LQ, and the track-
ing index is reduced by 14.9%. The highway driving cycle involves less aggressive driving,
and therefore both fuel economy and tracking capability are only slightly improved, with
improvement of 2.5% and 1.8%, respectively.

The city driving cycle better demonstrates the success of imitating DCF characteristics due
to richer accelerating and decelerating scenarios. Figure 9 shows that MO outputs a trajectory
closer to the reference than LQ because of the introduction of a DCF model in the controller
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Figure 9. Comparison of driver desired response. (a) LQ algorithm and (b) MO algorithm.

design. This imitation to the DCF model has the potential to improve driver desired response,
thus making an ACC more acceptable as an assistant system.

4.5. Complementary explanation

Both MO and LQ belong to optimal controllers, but their outputs are of significant difference
despite their similar cost function. Experiment results demonstrate that MO decreases fuel
consumption further while not sacrificing, or even improves, tracking capability and the driver-
desired response. This improvement on multiple objectives can be ascribed to two intrinsic
differences of the two controllers:

(1) The implementation of LQ has an implicit assumption, no external disturbance. A car-
following system actually has external disturbances in the form of the preceding vehicle’s
acceleration, which makes a standard LQ regulator somewhat lose its optimality. In com-
parison, MO can predict the external disturbance and take advantage of this prediction,
thereby achieving better comprehensive performances than a standard LQ regulator.

(2) Nonlinearity and constraint in plants are another reason for two controllers’ difference
in performance. In theory, MPC is capable of optimally controlling constrained nonlin-
ear plants in each step while LQ cannot. Since the plant in this paper is nonlinear and
constrained, it is not surprising that LQ is somewhat worse in performance than MPC.

5. Conclusions

We developed and experimentally verified in this paper an economy-oriented headway control
algorithm forACC, which possessed a function of simultaneously dealing with multiple objec-
tives: high fuel economy, necessary tracking capability and a good driver desired response. It
is concluded that:

(1) For internal combustion engine vehicles, reducing longitudinal acceleration level is an
effective way to improve fuel economy. However, reducing acceleration alone is not a suf-
ficient exclusive objective in designing an economy-oriented headway control algorithm.
The requirements from automation and drivers also significantly shape the behaviours of
ACC, and consequently affect the improvement of fuel consumption.
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16 S. Eben Li et al.

(2) The introduction of a driver permissible tracking range helps to avoid cut-ins from adjacent
lanes. The integration of a DCF model coincide ACC with DCF characteristics, and it has
the potential to avoid unnecessary driver intervention caused by a driver’s feelings of
discomfort.

(3) The MPC framework is capable of dealing with multiple interactive objectives in a
economy-orientedACC. The field test results demonstrate that the designed MO algorithm
can reduce both fuel consumption and tracking errors of the ACC vehicle while not
sacrificing driver desired response.
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