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Abstract - The paper addresses the problem of demodulating 
Continuous Phase Modulation (CPM) signals embedded in 
Gaussian noise. The paper introduces a description of CPM 
signals by a state-space model. Based on this model, a 
noncoherent demodulation method of CPM signals, that uses an 
Extended Kalman Filter (EKF), was developed. The 
performances of the demodulation method were tested on two 
types of CPM modulated signals, embedded in noise: Minimum 
Shift Keying (MSK) and Gaussian Minimum Shift Keying 
(GMSK). The results, obtained from simulations performed in 
MATLAB, leaded to the conclusion that, for moderately low 
Signal to Noise Ratios (SNR), the EKF algorithm provides 
satisfactorily even good results in noncoherent demodulation of 
CPM signals. 
Keywords: state space, CPM signals, noncoherent demodulation, 
Extended Kalman filtering 

 

I. INTRODUCTION 

 
Continuous Phase Modulation is a class of modulation 

schemes with the attractive property of a constant envelope. 
Constant envelope signals suffer less distortion in high power 
amplifiers and are preferred for wireless applications. 
Continuous Phase Modulation and related forms of digital 
phase modulation, such as Continuous Phase Frequency Shift 
Keying (CPFSK), MSK and GMSK, are nonlinear 
modulation schemes, efficient from both bandwidth and 
power perspectives [1], [2]. MSK is a special case of 
continuous phase frequency shift keying technique where 
modulation index is equal to 0.5 which results in a minimum 
frequency separation such that the modulation frequencies are 
still orthogonal, offers advantages in performance and ease of 
implementation. In MSK [3], the modulated carrier does not 
contain in phase discontinuities and frequency changes at 
carrier zero crossings. It is typical for MSK that the 
difference between the frequency 0’s and 1’s is equal to half 
the data rate. MSK modulation makes the phase change linear 
and limited to ±(π/2) over the symbol interval. Due to the 
linear phase change effect, better spectral efficiency is 
achieved. 

In 1981 Murota and Hirade [4] proposed the use of a pre-
modulation Gaussian low-pass filter to shape the spectrum of 
MSK. This filter removes the sudden transitions in the 
frequency modulation pulses of an MSK signal. The resulting 
Gaussian Minimum Shift Keying modulation achieves a 
narrower spectrum with attenuated sidelobes. The main 

advantages of GMSK are its spectral efficiency, its constant 
phase property, which allows it to be used with nonlinear 
power-efficient amplifier, as well as its robust performance. 
GMSK modulation is used in many important wireless 
communications standards. CPM signals can be demodulated 
by a variety of coherent and noncoherent demodulation 
techniques. Particularly, the differential demodulator, the 
limiter-discriminator and variations of these two schemes 
have been used and proposed for use with GMSK signaling. 
In this paper, we propose a noncoherent procedure that uses 
Extended Kalman Filtering (EKF) to demodulate the MSK 
and GMSK signals. 

This paper is structured as follows. Section II introduces 
the state-space model of the CPM signal affected by additive 
Gaussian noise. In section III, we describe the Extended 
Kalman Filter algorithm, used in noncoherent demodulation 
of MSK and GMSK signals. Section IV provides simulation 
results. Finally, Section V gives the concluding remarks. 

 

II. THE STATE SPACE REPRESENTATION OF CPM SIGNAL 
MODEL 

 
A CPM signal, with constant amplitude embedded in 

additive noise [ ]w n , is expressed as: 

 [ ] [ ] [ ]cosy n A n w nϕ= +  (1) 
where the positive real-valued A  is the constant amplitude of 
the signal and [ ]nϕ  is the signal phase. The additive noise is 
white and Gaussian, having zero-mean and variance 2

wσ . 
 
A. The state space model and the transition equation of 

CPM received signal 

We define the following 2 1×  state vector [ ]nx : 

 [ ] [ ] [ ] T
n n nϕ⎡ ⎤= Ω⎣ ⎦x  (2) 

with 
 [ ] [ ] [ ]1n n nϕ ϕΩ = − −  (3) 

where [ ]nΩ  stands for the first order difference of the phase 

function [ ]nϕ . 
From (2), the signal phase can be written as: 
 [ ] [ ] [ ]1 1n n nϕ ϕ= − +Ω −  (4) 



Considering only the phase variations of a CPM signal, the 
state transition equation is written as: 
 [ ] [ ]1n n= −x Fx  (5) 
where the 2 2×  transition matrix F  has the form: 

 
1 1
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F  (6) 

We will assume that the frequency of the signal follows a 
random-walk model: 
 [ ] [ ] [ ]1n n v nΩ = Ω − +  (7) 

where [ ]v n  is a sequence of independently and identically 

distributed random scalars with the distribution ( )20, vN σ .  

The last equation must be added to (5) in order to obtain 
the complete description of the state evolution for the CPM 
received signal:  
 [ ] [ ] [ ]1n n v n= − +x Fx G  (8) 
where G  is a 2 1×  vector 
 [ ]0 1 T=G  (9) 

As reveals (8), the state transition equation of CPM 
received signal model is linear.  

 
B. The observation equation 

In order to estimate the parameters of CPM signals 
corrupted by noise, a nonlinear observation equation is used. 
In this sense, the measured signal [ ]y n  is expressed as: 

 [ ] [ ]( ) [ ]cos Ty n A n w n= +l x  (10) 

where 
 [ ]1 0T =l  (11) 
From (10), we can conclude that the observation equation is 
nonlinear, which means that, in order to use EKF, we apply 
the first order linearization procedure to 

[ ]( ) [ ]( )cos Tn n=h x l x  in (10) around the estimation of the 
state vector ˆ 1n n⎡ − ⎤⎣ ⎦x , [7]: 

[ ]( ) ( ) [ ]( )
ˆ 1

ˆ ˆ1 1
n n

n n n n n nδ
δ = −⎡ ⎤⎣ ⎦

= ⎡ − ⎤ + − ⎡ − ⎤⎣ ⎦ ⎣ ⎦
x x

hh x h x x x
x

(12) 

with: 

 [ ] ( )
ˆ 1

ˆsin 1T

n n

n n nδ
δ = −⎡ ⎤⎣ ⎦

= = − ⎡ − ⎤⎣ ⎦
x x

hH l l x
x

 (13) 

The replacement of [ ]( )nh x  by its first order 
approximation has dramatic effects on the stability and the 
convergence of the EKF algorithm, which implies the 
occurrence, especially at very low SNR’s, of “lack of 
convergence” cases. 

 

III. THE EKF ALGORITHM 

 
As far as the observation model is nonlinear, in order to 

apply the Kalman filtering procedure as it was shown, a first 

order linearization around estimated ˆ 1n n⎡ − ⎤⎣ ⎦x  is needed at 
each step of the standard Kalman algorithm. The procedure is 
known as the Extended Kalman Filter (EKF) algorithm [5] 
and it uses state-space equations (8) and (1), as well as the 
linearization of the observation function around the current 
vector estimate (10). 

The initial state [ ]1x , the observation noise [ ]nw  and the 

state noise [ ]v n  are assumed jointly Gaussian and mutually 

independent. Let ˆ 1n n⎡ − ⎤⎣ ⎦x  and 1n n⎡ − ⎤⎣ ⎦R  be the 

conditional mean and the conditional variance of [ ]ˆ nx  given 

the observations [ ] [ ]1 , , 1n −y y…  and let ˆ n n⎡ ⎤⎣ ⎦x  and 

n n⎡ ⎤⎣ ⎦R  be the conditional mean and conditional variance of 

[ ]ˆ nx  given the observations [ ] [ ]1 , , ny y… . Then [7] 
 

Measurement update equations 
 [ ] ( )ˆsin 1Tn n n= − ⎡ − ⎤⎣ ⎦H l l x  

[ ] [ ] [ ] [ ]( ) 121 1T T
wn n n n n n n n σ

−
= ⎡ − ⎤ ⎡ − ⎤ +⎣ ⎦ ⎣ ⎦K R H h R H  (14) 

 [ ] [ ] ( )( )ˆ ˆ ˆ1 cos 1Tn n n n n y n n n⎡ ⎤ = ⎡ − ⎤ + − ⎡ − ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦x x K l x  (15) 

 [ ] [ ]1 1n n n n n n n n⎡ ⎤ = ⎡ − ⎤ − ⎡ − ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦R R K H R  (16) 
Time update equations 
 ˆ ˆ1n n n n⎡ + ⎤ = ⎡ ⎤⎣ ⎦ ⎣ ⎦x Fx  (17) 

 21 T T
vn n n n σ⎡ + ⎤ = ⎡ ⎤ +⎣ ⎦ ⎣ ⎦R FR F GG  (18) 

where [ ]nK  is the Kalman gain matrix at moment n . 
 
As initial conditions, the following equations are used: 
 [ ]0ˆ 1 0 0 T⎡ ⎤ = Ω⎣ ⎦x  (19) 

 
2 1 0

1 0
0 19

π ⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦
R  (20) 

 

IV. SIMULATION RESULTS 

 
This section shows some preliminary results of the 

simulations performed for the noncoherent demodulation by 
the EKF algorithm of CPM signals in additive Gaussian 
noise.  

In order to emulate the proposed demodulation method, a 
transmission system, that uses MSK or GMSK modulation, 
was simulated using the program MATLAB version 7.6. The 
message consists of a unipolar random sequence, generated 
by the MATLAB function randsrc. The CPM modulated 
signal propagates through a communication channel affected 
by additive, white and Gaussian noise (AWGN), having zero-
mean and variance 2

wσ . The extended Kalman filter algorithm, 
presented in the previous Section, implements a noncoherent 
demodulation of the received signal. Simulations were 



performed for different values of the sampling rate (nSamp) 
and of the signal to noise ratio (SNR). The sampling rate 
indicates the number of samples by message bit that EKF 
uses for demodulation. It was found that the EKF algorithm 
performs satisfactorily even at low levels of SNR. 

Fig. 1 presents a part of a binary message sequence, sent 
by MSK modulation, together with the demodulated signal 
given by the EKF filter output, the instantaneous frequency 
[ ]nΩ . The sampling rate chosen for this example was 

nsamp 16 samples / bit=  and the signal to noise ratio 
SNR 8dB= . In Fig. 1, it can be observed that, for the 
conditions mentioned above, the estimated signal concords to 
the message sent, even for fast bit changes in the sent 
message. 

Performance evaluation of a data transmission system has, 
among the most important parameters, the bit error rate 
(BER). In order to test the capabilities of the noncoherent 
demodulation of CPM signals by EKF detection, an algorithm 
was developed that search the optimal value of the decision 
threshold in order to restore the received bits. The same 
procedure is used both for MSK and GMSK demodulation. 

To make a comparative analysis of MSK and GMSK 
modulations, similar sets of measurements were taken in 
consideration. The performances of the Extended Kalman 
filter for the two types of modulation will be described below. 

Fig. 2 illustrates the dependence of the MSK system BER 
performance on the sampling rate. Simulations were 
performed for four different values of the SNR (SNR = 2, 4, 
6, 8dB) and for two different sampling rates (nSamp=4 and 
8). It can be seen that, for SNR = 6dB and SNR = 8dB, the 
sampling rate variations do not affect dramatically the BER 
performance of MSK demodulation by EKF system.  

Fig. 3 presents the dependence of performances of GMSK 
demodulation by EKF filtering on the sampling rate of the 
algorithm. Simulations were carried out under identical 
conditions with those used in the case of MSK detection. In 

this case, simulations were performed for four different 
values of the sampling rate (nSamp = 4,8,16 and 24). A 
compromise between the signal to noise ratio and the 
sampling rate must be always searched for. As seen in the 
figure the performance increases as the sampling rate 
increases. 

 
Fig. 4 shows, in the case of MSK signal detection by EKF, 

the dependence of BER performances on the signal to noise 
ratio (Eb/No), for three different values of the sampling rate, 
namely: nSamp = 4, 8 and 16. The results were compared 
with the theoretical curve. 

As expected, the EKF demodulator performances improve 
with the sample rate increase. It was found that, for nSamp = 
4, if 4dBb oE N < , the extended Kalman filter’s stability is 
no longer assured and, therefore, the algorithm becomes 
divergent. Consequently, the noncoherent demodulator by 
EKF algorithm can not be used under such conditions. 
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Fig. 3.  The dependence of GMSK demodulation performance on the 
sampling rate of the EKF algorithm for different values of SNR in the 

case BT = 0.3.  
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Fig. 1.  MSK with SNR=8dB signal detected by EKF. 
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Fig. 2.  The dependence of MSK demodulation performance on the 
sampling rate of the EKF algorithm for different values of SNR. 



 

Fig. 5 compares the BER performances of the EKF 
algorithm for the two types of CPM modulation (MSK and 

GMSK). We used the same sampling rate, nSamp=8, in both 
cases. As seen in the figure, the MSK signals demodulation 
gives better results than the GMSK signal demodulation. It is 
noted that the curves obtained by EKF for MSK modulation 
are closest to the ideal curve. 

Fig. 6 compares the BER performances of the EKF 
algorithm for the MSK and GMSK modulation with the 
sampling rate nSamp=16. As seen in the figure, the curves 
obtained for MSK and GMSK demodulation with the BT=0.5 
indicate similar performance for an Eb/No ratio less then 4dB. 
For an Eb/No ratio grater than 6dB, the performance of the 
GMSK is superior to that obtained by MSK modulation.  

 

V. CONCLUSIONS 

 
The coherent detection or the digital signal demodulation 

requires a receiver, able to determine or to estimate with 
acceptable errors both the frequency and the phase of the 
carrier frequency. Noncoherent techniques are generally less 
expensive and easier to build than coherent techniques and 
are often preferable, though they can degrade performance 
under certain channel conditions. Although generally 
coherent detection performs better than noncoherent 
detection, in AWGN channels, the carrier synchronization 
subsystems, necessary for coherent detection are more 
complex. That means that as long as the signal to noise ratio 
is sufficiently large, the noncoherent detection methods 
represent the simplest and practical approach. 

In this paper we introduce a description of CPM signals by 
a state-space model, which permits the use of extended 
Kalman filter, in order to demodulate this kind of signals. We 
have studied the performances of the method for two types of 
signals from this class: MSK and GMSK modulations. We 
have compared their BER performances with the theoretical 
curve. The results, obtained from the simulations, leaded to 
the fact that, for moderately low SNR’s, the EKF algorithm 
provides satisfactorily good results in noncoherent 
demodulation. 
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Fig. 4.  The dependence of MSK demodulation performance on SNR for 
different values of sampling rate of EKF algorithm.  
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Fig.5.  The comparison of performances of MSK and GMSK signal 
detection by EKF for the sampling rate nSamp =8. 
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Fig.6.  The comparison of performances of MSK and GMSK signal 
detection by EKF for the sampling rate nSamp =16. 

  


