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Abstract—The fundamental secret-key rate vs. privacy-leakage
rate trade-offs for secret-key generation and transmission for
i.i.d. Gaussian biometric sources are determined. These results
are the Gaussian equivalents of the results that were obtained
for the discrete case by the authors and independently by Lai
et al. in 2008. Also the effect that binary quantization of the
biometric sequences has on the ratio of the secret-key rate and
privacy-leakage rate is considered. It is shown that the squared
correlation coefficient must be increased by a factor of π2/4
to compensate for such a quantization action, for values of the
privacy-leakage rate that approach zero, when the correlation
coefficient is close to zero.

I. INTRODUCTION

Maurer [19] and slightly later Ahlswede and Csiszar [1]
introduced the concept of secret sharing. In their source model
two terminals observe two dependent sequences X and Y . It
is the objective of both terminals to generate a common secret
key S by interchanging a public message H (helper data),
that should only contain a negligible amount of information
about the secret key. Ahlswede and Csiszar showed that the
maximum secret key rate that can be achieved in this way
is equal to the mutual information I(X; Y ) between the
sequences. Their achievability proofs can be expressed in
terms of the Slepian-Wolf methods that were presented by
Cover [5] in which binning of typical sequences plays an
important role, see also Ye and Narayan [6] and [11].

The concept of secret sharing is closely related to the
generation of common randomness. When two terminals try
to generate common randomness the issue of secrecy of the
helper data is ignored. Common randomness capacity was first
studied in a systematic way by Ahlswede and Csiszar [2].
Later helper terminals were introduced by Csiszar and Narayan
in their investigations in [6]. Venkatesan and Anantharam [27]
studied the idea to use channel noise for generation of common
randomness.

In a biometric setting, where the X-sequence corresponds to
the enrollment data and the Y -sequence to the authentication
data, it is crucial that the public message H leaks as little
information as possible about the biometric data. The reason
for this is that compromised biometric data cannot be replaced.
Smith [23] has investigated this leakage (privacy leakage) and
came to the conclusion that it cannot be avoided. A similar
conclusion can be found in Linnartz and Tuyls [18]. For key
generation the trade-off between secret-key rate and privacy-
leakage rate for the i.i.d. discrete case was determined recently
by the authors [12], and independently and at the same time,

by Lai et al [16]. Our results confirm the statement of Smith
for a binary symmetric double source (BSDS). The authors
[12] and Lai et al. [16] also consider secret-key transmission.
This technique is called key-binding in the review paper by
Jain et al. [13]. In this setting a model is studied in which an
independently chosen secret key should be transmitted by the
first terminal via a public message to the second terminal. The
two terminals observe two dependent biometric sequences, and
again the first requirement is that the public helper data should
be uninformative about the transmitted secret key. The second
requirement is that the privacy leakage in the helper data
should be as small as possible. Also for key transmission the
fundamental secret-key rate vs. privacy-leakage rate balance
was determined in [12] and [16].

Where in [12] and [16] the discrete case is considered,
we study here the case where the biometric sequences are
assumed to be generated by a Gaussian correlated source.
For such a Gaussian source we determine the fundamental
balance between the secret-key rate and the privacy-leakage
rate. Moreover we focus on the fundamental issues that occur
when Gaussian biometric sequences are binary (two-level)
quantized. Binary quantization of biometric data was first
proposed by Daugman [10] for iris recognition. Later Tuyls et
al. [21] considered binary quantization in practical secret-key
generation systems, with an emphasis on generating reliable
components. Kelkboom et al. [15] focussed specifically on
binary quantized Gaussian biometrics and found an expression
for the corresponding cross-over probability in the binary
domain. Quantization in quantum key distribution protocols
is discussed by Van Assche et al. [26]. Standard (natural and
Gray coded) multi-level quantizers for biometrics combined
with LDPC codes were studied by Ye at al. [30]. Sutcu et al.
[25] considered biometric-specific quantizers, also focussing
on LDPC codes. A multi-level quantizer based on likelihood
ratios was proposed by Chen et al. [7]. In Li et al. [17]
biometrical quantizers were analysed. It is observed by these
authors that the quantizer has a large impact on the so-called
entropy loss. Moreover they observe (see also [24]) that the
entropy loss serves as an upper bound to the information
leakage. As a consequence they state the problem to find a
bound on the exact (privacy) information leakage.

It should be noted that the references above did not actually
focus on privacy leakage in their research. It is our objective
to demonstrate in this paper that quantization not only has
a significant effect on the secret-key rate as we know from



classical communication theory, but also on the trade-off
between the secret-key rate and the privacy-leakage rate.

Before we start with the presentation of our results we want
to make the reservation that we do not discuss the validity of
the Gaussian assumption in this paper. It is well-known that
most transmission channels can be modeled as additive white
Gaussian noise channels, however whether such models can
be used for a wide range of biometrics will probably remain
a point of discussion for the next years.

The outline of our paper is as follows. In section II we will
describe our Gaussian key-generation and key-transmission
models. We define the achievability of secret-key vs. privacy-
leakage rate-pairs. In section III we state our results, i.e. we
give the optimal trade-off between secret-key rate and privacy-
leakage rate. The proofs of these results are provided in the
appendix. In section IV we will discuss some properties of
the rate-leakage region for the Gaussian case and demonstrate
them using an example. Then in section V we will briefly
summarize the rate-leakage results that were obtained in [12]
for a binary symmetric double source. In section VI the effect
that binary quantization of the Gaussian biometric sequences
has on the rate-leakage trade-off is subject of investigation.
Section VII considers the rate-leakage performance of some
of the schemes that were proposed in the literature. In section
VIII we will make some concluding remarks.

II. DEFINITIONS

A. A Gaussian Biometric Source

A Gaussian biometric system is based on a Gaussian bio-
metric source {Gρ(x, y), x ∈ R, y ∈ R} that produces an X-
sequence x = (x1, x2, · · · , xN ) with N real-valued symbols
and a Y -sequence y = (y1, y2, · · · , yN ) also having N real-
valued components. The density corresponding to sequence
pair (X,Y ) is given by

pX,Y (x, y) =
N∏

n=1

Gρ(xn, yn), (1)

where

Gρ(x, y) =
1

2π
√

1− ρ2
exp

(
−x2 + y2 − 2ρxy

2(1− ρ2)

)
, (2)

for x ∈ R, y ∈ R, and correlation coefficient |ρ| < 1.
Observe that the source pairs {(Xn, Yn), n = 1, . . . , N} are
independent of each other and identically distributed (i.i.d.)
according to Gρ(·, ·). Also note that scaling can always be
applied to obtain unit X-variance and unit Y -variance.

B. Two Models

The sequences x and y are observed by an encoder and
decoder, respectively. The encoder produces an index h ∈
{1, 2, · · · ,MH}, which is referred to as helper data. These
helper data are made public and used by the decoder.

We can subdivide biometric systems into those in which
both terminals are supposed to generate a secret, and systems
in which a uniformly chosen secret is transmitted from the

encoder to the decoder. The generated or transmitted secret
s assumes values in {1, 2, · · · , MS}. The decoders estimate ŝ
of the secret s also assumes values from {1, 2, · · · ,MS}. In
transmission systems the secret S is a uniformly distributed
index, hence

Pr{S = s} = 1/MS for all s ∈ {1, 2, · · · , MS}. (3)

In the next subsections we will consider secret generation and
secret transmission in full detail.

C. Secret Generation
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Fig. 1. Model for biometric secret generation.

In a biometric secret-key generation system, see Fig. 1,
the encoder observes the biometric source sequence X and
produces a secret S and helper data H , hence

(S, H) = e(X), (4)

where e(·) is the encoder mapping. The helper data H are sent
to the decoder which is also observing the second biometric
source sequence Y . This decoder now forms an estimate Ŝ of
the secret that was chosen by the encoder, hence

Ŝ = d(Y ,H), (5)

where d(·, ·) is the decoder mapping.
Definition 1: A rate-leakage pair (R,L) with R ≥ 0

is achievable in a Gaussian biometric secret-key generation
setting if for all δ > 0 for all N large enough there exist
encoders and decoders such that1

Pr{Ŝ 6= S} ≤ δ,

H(S) + Nδ ≥ log(MS) ≥ N(R− δ),
I(S; H) ≤ Nδ,

I(X; H) ≤ N(L + δ). (6)

Moreover, let Gsg
ρ be the region of all achievable rate-leakage

pairs for a secret-key generation system based on Gaussian
source density Gρ(·, ·).
D. Secret Transmission

In a biometric secret-key transmission system, see Fig. 2, a
secret S, that is to be transmitted from encoder to decoder, is
uniformly distributed, see (3). The encoder observes the source
sequence X and the secret S and produces the integer helper
data H , hence

H = e(S, X), (7)

1We take 2 as base of the log throughout this paper.
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Fig. 2. Model for biometric secret transmission.

where e(·, ·) is the encoder mapping. The public helper data
H are sent to the decoder that also observes the other source
sequence Y . This decoder forms an estimate Ŝ of the secret
that was transmitted, hence

Ŝ = d(H, Y ), (8)

and d(·, ·) is the decoder mapping.
Definition 2: In a Gaussian biometric secret-key transmis-

sion system, a rate-leakage pair (R,L) with R ≥ 0 is
achievable if for all δ > 0 for all N large enough there exist
encoders and decoders such that

Pr{Ŝ 6= S} ≤ δ,

log(MS) ≥ N(R− δ),
I(S; H) ≤ Nδ,

I(X; H) ≤ N(L + δ). (9)

Moreover, let Gst
ρ be the region of all achievable rate-leakage

pairs for a secret-key transmission system based on Gaussian
source density Gρ(·, ·).

III. STATEMENT OF RESULTS

In order to state our results we first define the region Rρ.
After that we present two theorems.

Rρ
∆= {(R, L) : 0 ≤ R ≤ 1

2
log

(
1

αρ2 + 1− ρ2

)
,

L ≥ 1
2

log
(

αρ2 + 1− ρ2

α

)
,

for 0 < α ≤ 1}. (10)

Theorem 1 (Secret Generation):

Gsg
ρ = Rρ. (11)

Theorem 2 (Secret Transmission):

Gst
ρ = Rρ. (12)

IV. PROPERTIES OF THE REGION Rρ , AND AN EXAMPLE

A. Convexity
To prove the convexity of Rρ we define the rate-leakage

function
Rρ(L) ∆= max

(R,L)∈Rρ

R, (13)

for which we can write

Rρ(L) =
1
2

log
(

1− ρ2/22L

1− ρ2

)
. (14)

Now it can be shown that the second derivative
d2Rρ(L)/dL2 ≤ 0. Therefore Rρ(L) is convex-∩ in
L ≥ 0 and consequently region Rρ is convex.

B. Asymptotic Secret-Key Rate

Note that asymptotically for increasing privacy-leakage rate

lim
L→∞

Rρ(L) = lim
L→∞

1
2

log
(

1− ρ2/22L

1− ρ2

)

=
1
2

log
(

1
1− ρ2

)
= I(X;Y ). (15)

It is important to notice that the privacy-leakage rate has to
increase to infinity to achieve this limit.

C. Slopes

If one is interested in achieving a small privacy-leakage
rate L, the ratio between the secret-key rate and the privacy
leakage rate becomes important. For the ”rate-zero slope” γ0

of the tangent to Rρ(L) at L = 0 we find

γ0
∆=

dRρ(L)
dL

∣∣∣∣
L=0

=
ρ2

1− ρ2
. (16)

Inspection shows that this slope is equal to the signal-to-noise
ratio for the ”channel” from X to Y .

Another interesting parameter is the ”rate-one slope” de-
fined as

γ1
∆= max

(R,R−1)∈Rρ

R

1−R
. (17)

It is not so difficult to see that in the Gaussian case

γ1 =
2− log(4− 3ρ2)

log(4− 3ρ2)
. (18)

D. Example
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Fig. 3. Boundary of the achievable region Rρ for three values of ρ.

In Fig. 3 we have depicted the boundary of the region
Rρ, i.e. Rρ(L), as a function of the leakage L for three
values of the square of the correlation coefficient ρ, i.e. for
ρ2 = 1/2, 3/4, and 15/16. Note that corresponding asymptotic
secret-key rates I(X;Y ) are 1/2, 1, and 2 bit respectively. We
can also determine the rate-zero slopes for these three values of



ρ2. It turns out that the slopes are 1, 3, and 15, respectively.
We may conclude from this behavior that better biometrics
have a better rate-zero slope. Therefore it is important to put
enough effort in pre-processing the biometric data, such that
as little extra noise as possible is introduced.

V. BINARY SYMMETRIC BIOMETRIC SYSTEMS

A binary symmetric biometric system is based on a binary
symmetric double source {Q(x, y), x ∈ {0, 1}, y ∈ {0, 1}}.
This source produces a sequence x = (x1, x2, · · · , xN ) with
N symbols from {0, 1} and a sequence y = (y1, y2, · · · , yN )
also having N components in {0, 1}. Sequence pair (x, y)
occurs with probability

Pr{(X,Y ) = (x, y)} =
N∏

n=1

Q(xn, yn). (19)

We consider a binary symmetric source with crossover proba-
bility 0 ≤ q ≤ 1/2, hence Q(x, y) = (1− q)/2 for y = x and
q/2 for y 6= x. For such a source the rate-leakage function,
for both key generation and key transmission, is equal to

Rq(L) = 1− h(p ∗ q), (20)

for p satisfying h(p ∗ q)− h(p) = L. Here h(·) is the binary
entropy function in bits. This was proved by the authors in
[12].

A first problem is now to find out what the rate-zero
slope for a binary system is, as a function of the cross-over
probability q of the binary symmetric double source. Therefore
we consider the behavior of 1 − h(p) for ε = 1

2 − p close to
zero. Note that in this case

1− h( 1
2 − ε)

log(e)

= ln(2) + (
1
2
− ε) ln(

1
2
− ε) + (

1
2

+ ε) ln(
1
2

+ ε)

= (
1
2
− ε) ln(1− 2ε) + (

1
2

+ ε) ln(1 + 2ε)

=
1
2

ln(1− 4ε2)− ε ln(1− 2ε) + ε ln(1 + 2ε)

≈ 2ε2. (21)

Next observe that

p ∗ q = (
1
2
− ε)(1− q) + (

1
2

+ ε)q =
1
2
− ε(1− 2q). (22)

Therefore we can make the following approximations

1− h(p ∗ q) ≈ log(e)2ε2(1− 2q)2

h(p ∗ q)− h(p) = 1− h(p)− 1 + h(p ∗ q)
≈ log(e)2ε2(1− (1− 2q)2), (23)

and we finally may conclude that

γ0
∆=

dRq(L)
dL

∣∣∣∣
L=0

=
(1− 2q)2

1− (1− 2q)2
. (24)

For crossover probabilities q = 0.2500, 0.1667, and 0.0804
we have computed the rate-leakage function using (20). The

resulting curves were plotted in Fig. 4. Check that the rate-
zero slopes for L close to 0, are 0.3333, 0.8000, and 2.3801
respectively.
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Fig. 4. Secret-key rate versus privacy-leakage rate functions for three values
of the cross-over probability q.

VI. BINARY QUANTIZATION

In this section we will study the effect of binary quantization
of the Gaussian biometric sequences. We assume that after
quantization processing on the resulting binary sequences is
performed. It will be clear that the resulting binary statistic is
binary symmetric as in the previous section. The main problem
is now to find out how the cross-over probability q relates to
the correlation coefficient ρ of the Gaussian statistic.
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Fig. 5. Compressing a cigar (left) such that it becomes a ball (right).

Suppose that the cigar in Fig. 5, left, corresponds to coordi-
nates (x, y) where the Gaussian density Gρ(x, y) equals some
constant. Now the variance in the Y = X direction is (1+ρ)/2
and (1− ρ)/2 in the Y = −X direction. Note that the cross-
over probability q corresponds to the mass of the cigar in the
second or fourth quadrant. Instead of manipulating with the
integral, we can compress the cigar in the Y = X direction,
by a factor

√
(1 + ρ)/(1− ρ), to transform it into a circle,

see Fig. 5, right. Then the cross-over probability is then the
angle between the two black lines, divided by π. Compression
brings the tangent of half the angle between the black lines



from one down to
√

(1− ρ)/(1 + ρ). Therefore

q =
2
π

arctan
(√

1− ρ

1 + ρ

)
. (25)

This formula, together with (24) allows us to determine the
zero-rate slope of a binary quantized system.

In Fig. 4 we have chosen the cross-over probabilities q
according to (25) for squared correlation-coefficients 1/2, 3/4,
and 15/16. It can be checked that the resulting zero-rate slopes
(0.3333, 0.8000, and 2.3801 respectively) are significantly
smaller than the corresponding zero-rate slopes (1, 3, and 15)
from Fig. 3.

For small values of the squared correlation coefficient ρ2

we can quantify the loss that is caused by binary quantization.
In that case we can approximate q by

q ≈ 1
2
− ρ

π
, (26)

and formula (24) results in the rate-zero slope

γ0 =
(2ρ/π)2

1− (2ρ/π)2
. (27)

We can conclude from this and (16) that the squared corre-
lation coefficient ρ2 must be increased by a factor of π2/4
to compensate for the binary quantization actions, if we are
interested in maintaining the rate-zero slope constant.

Representing this loss in decibels gives 3.92 dB, which is
twice the loss in signal-to-noise ratio that we get in transmis-
sion over an AWGN channel when we do binary signalling
at the transmitter and hard decision at the receiver, and focus
on capacity (see Proakis [20], p. 460) at small signal-to-noise
ratios. The factor of two could be explained from the fact that
in a biometric system we quantize at both sides.

VII. COMPARISON

In this section we discuss the privacy-leakage properties of
some secret-key generation schemes that were described in
the literature. It should be noted that here we consider the
operational rates.

The (key-generation) scheme presented by Linnartz and
Tuyls [18], which is based on quantization index modulation
(QIM, see [8]), has a privacy-leakage rate that is infinite. If
we focus on σ2

x/σ2
n = 3 (or ρ2 = 3/4) then I(X;Y ) = 1 bit.

Now with quantization interval-size q = 1.41σx we obtain for
the security-leakage rate I(S; H) = 0.0101 bit and an error
probability Pe = 0.2218 and consequently secret-key rate of
at most 0.2366 bit. The privacy-leakage that is unavoidable
for this key rate, see Fig. 3, is only a few tenths of a bit. Note
however that that infinitely large privacy-leakage that comes
with the Linnartz-Tuyls scheme, does not imply that we can
recover the biometric sequence from the helper data.

In biometric key-transmission systems based on fuzzy com-
mitment (proposed by Juels and Wattenberg [14]), during
enrollment a randomly chosen codeword from a binary error-
correcting code is added modulo-2 to the binary enrollment
sequence. If the rate of this code is R, the secret-key rate is R

too, and the privacy-leakage rate is equal to 1− R if the en-
rollment sequence is uniform and identically distributed. If the
observed biometric is symmetric with cross-over probability q
and R = 1−h(q), the pair (R, 1−R) is optimal, i.e. it satisfies
(20), with p = 0. When the rate is taken smaller than 1−h(q)
however, the leakage increases and the resulting pair (R, L)
becomes suboptimal. If the binary biometric sequences result
from binary quantization of real-valued (Gaussian) sequences,
the effect described in the previous section causes an extra
loss. As an example of such systems we mention Tuyls et
al. [21]. Note that the rate-one slope (18) can be used as a
benchmark to evaluate the performance of fuzzy commitment
combined with binary quantization.

Ye et al. [30] consider the Gaussian case. They apply scalar
multi-level quantization instead of binary quantization at the
enrollment side. Moreover at the authentication side soft de-
cision is used. Therefore this scheme certainly improves upon
the fuzzy commitment schemes with respect to the secret-key
rate. The privacy-leakage rate is not considered but it should be
clear that the syndrome rate increases when the quantizer depth
grows. Therefore the Ye et al. method in principle incorporates
the balance between privacy-leakage and secret-key rate. What
is not optimal is that scalar quantization is used. A scheme
with similar properties was presented by Bloch et al. [4].

VIII. CONCLUDING REMARKS

Kelkboom et al. [15] also investigated how the cross-over
probability depends on the statistics of a Gaussian source and
came up with expressions similar to (25) for various settings.

We have taken here mutual information as a metric for
privacy leakage. This gave us the opportunity to determine the
fundamental trade-off. Maybe however other metrics would be
more appropriate. We could e.g. try to create helper data such
that the estimation error made by an arbitrary reconstruction
device having access to the helper data is maximized. Using
rate-distortion theory we can lower bound this distortion since
we have an upper bound on the privacy-leakage rate (if we fix
the secret-key rate), but such a bound may not be tight.

We have determined the trade-off for i.i.d. Gaussian sources
here. In practice a biometric however consists of components
having correlation values within a smaller or larger range. It
should be possible to find the rate-leakage function for such
sources based on the basic trade-off for the i.i.d. case that was
found here.

A final remark is about coding schemes. Inevitably the
first concern is to design codes (preferably based on standard
components and methods) that achieve the trade-off that we
found here. A second point of attention should be to find out
what happens with the leakage if we apply conservative codes.
We have already seen that with fuzzy commitment decreasing
the rate results in an increased privacy-leakage.
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APPENDIX

A. Proof of Theorem 1

The proof of this theorem consists of two parts. The first
part, i.e. the converse will be treated in detail. The second part
concerns the achievability of which we will only provide an
outline.

1) The Converse: First we consider the entropy of the
secret. We use that Ŝ = d(H,Y ) and Fano’s inequality
H(S|Ŝ) ≤ F , where F

∆= 1 + Pr{Ŝ 6= S} log(MS).

H(S) = I(S; H, Y N ) + H(S|H,Y N , Ŝ)

≤ I(S; H, Y N ) + H(S|Ŝ)
≤ I(S; H) + I(S;Y N |H) + F

= I(S; H) + I(S, H; Y N ) + F

= I(S; H) + h(Y N )− h(Y N |S, H) + F. (28)

Now we continue with the leakage.

I(XN ; H) ≥ H(H, Ŝ|Y N )−H(S, H|XN )

= H(S,H, Ŝ|Y N )−H(S|H, Y N , Ŝ)
−H(S, H|XN )

≥ H(S,H|Y N )−H(S|Ŝ)−H(S, H|XN )
≥ H(S,H|Y N )− F −H(S,H|XN )
= I(S,H;XN )− I(S, H; Y N )− F

= h(XN )− h(XN |S,H)
−h(Y N ) + h(Y N |S,H)− F. (29)

We are now ready to use Shannon’s entropy power inequal-
ity [22]. For a simple proof of this inequality see [28]. We
use here a conditional version of the entropy power inequality
similar to Lemma II in [3]. However first we have to transform
the statistical relation between X and Y as described by the
density in (2) into an additive version. Note that

Y = ρX + N, (30)

where N is Gaussian with mean zero and variance 1−ρ2, and
independent of X , see Fig. 6.
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Fig. 6. Additive equivalent relation between two unit variance correlated
variables X and Y .

From the (conditional version of the) entropy power inequal-
ity we may conclude that if 1

N h(XN |S, H) = 1
2 log2(2πeα)

then 1
N h(Y N |S, H) ≥ 1

2 log2(2πe(αρ2 + 1− ρ2)). Note that
we may assume that 0 < α ≤ 1 since X has unit variance, and
α = 0 would imply that H(S, H) = ∞ which is impossible
for finite ranges MS and MH .

For achievable (R, L) for all δ > 0 and N large enough,
we first obtain that

log(MS)
N

≤ H(S)
N

+ δ

≤ I(S;H) + h(Y N )− h(Y N |S, H) + F

N
+ δ

≤ δ +
1
2

log
(

1
αρ2 + 1− ρ2

)
+

1
N

+ δ
log(MS)

N
+ δ

(31)

for some 0 ≤ α ≤ 1. In the last inequality the fact that Y has
unit variance led to differential entropy h(Y N ) = N

2 log(2πe).
From (31) we may conclude that

R− δ ≤ log(MS)
N

≤
2δ + 1

2 log
(

1
αρ2+1−ρ2

)
+ 1

N

1− δ
. (32)

Moreover for achievable (R, L) for all δ > 0 and N large
enough, we get

L + δ ≥ I(XN ;H)
N

≥ h(XN )− h(XN |S,H)− h(Y N ) + h(Y N |S, H)− F

N
,

≥ 1
2

log
(

αρ2 + 1− ρ2

α

)
− 1

N
− δ

log(MS)
N

, (33)

for some 0 < α ≤ 1. Now, in the last inequality we used that
the differential entropies h(XN ) = h(Y N ) since X and Y
both have unit variance.

If we let δ ↓ 0 and N → ∞, then we obtain the converse
from both (32) and (33). As an intermediate step it follows
from (32) and |ρ| < 1 that log(MS)/N is finite.

2) Outline of the Achievability Proof: Let 0 < α ≤ 1. We
start by fixing the joint density of U,X, and Y such that the
Markov condition U −X − Y holds. Let U be Gaussian with
mean zero and variance 1− α. Moreover assume that

X = U + V, (34)

where V, independent of U , is Gaussian with mean zero and
variance α, see Fig. 7. Finally Y follows from X as in Fig. 6.

U ∈ N (0, 1− α)-

6

-

V ∈ N (0, α)

X
+

¶

µ

³

´

Fig. 7. Additive noise V transforming U into X .

Note that now I(U ;Y ) = 1
2 log

(
1

αρ2+1−ρ2

)
and I(U ;X) =

1
2 log

(
1
α

)
.

Next we randomly generate roughly 2NI(U ;X) sequences
u, Gaussian, with mean zero and variance 1 − α. Each
of those sequences gets a random s-label and a random
h-label. These labels are uniformly chosen. The s-labels
can assume roughly 2NI(U ;Y ) values, the h-label roughly



2N(I(U ;X)−I(U ;Y ) values. The encoder, upon observing the
source sequence x, first finds a sequence u that is jointly
typical with x. It is understood that we use Gaussian typicality
here, see Cover and Thomas [9], Chapter 9, also [29]. Since
there are roughly 2NI(U ;X) such sequences, this is possible
with vanishing error probability. Then the encoder outputs the
s-label corresponding to this sequence as secret, and sends
the h-label corresponding to u as helper data to the decoder.
The decoder observes the source sequence y and determines
the source sequence û with an h-label matching to the helper
data, such that (û, y) is jointly typical. It can be shown that
the decoder can reliably recover u now, since it has to search
among roughly 2NI(U ;Y ) alternatives. It is easy to check that
the leakage is not larger than I(U ; X)−I(U ; Y ). An important
additional property of the proof is that u can be recovered
reliably from both the s-label and the h-label. Now, after
having proved that H(U) is roughly equal to NI(U ; X) and
using that H(S) ≤ NI(U ; Y ) and H(H) ≤ N(I(U ; X) −
I(U ;Y )) (roughly), it easily follows that I(S; H) is negligible.
Uniformity of the secret S also can be demonstrated similarly.

B. Proof of Theorem 2

The converse for this theorem is an adapted version of the
converse for secret generation. The achievability proof is also
based on the achievability proof for secret generation.

1) Converse: As in the converse for secret generation

log(MS) = H(S) ≤ I(S; H) + h(Y N )− h(Y N |S, H) + F,
(35)

and

I(XN ; H) ≥ h(XN )− h(XN |S, H)
−h(Y N ) + h(Y N |S,H)− F. (36)

For achievable (R, L) for all δ > 0 and N large enough,
we first obtain that

log(MS)
N

≤ I(S; H) + h(Y N )− h(Y N |S,H) + F

N

≤ δ +
1
2

log
(

1
αρ2 + 1− ρ2

)
+

1
N

+ δ
log(MS)

N
(37)

for some 0 < α ≤ 1. From (37) we may conclude that

R− δ ≤ log(MS)
N

≤
δ + 1

2 log
(

1
αρ2+1−ρ2

)
+ 1

N

1− δ
. (38)

As before for achievable (R, L) for all δ > 0 and N large
enough, we get

L + δ ≥ I(XN ; H)
N

≥ 1
2

log
(

αρ2 + 1− ρ2

α

)
− 1

N
− δ

log(MS)
N

, (39)

for some 0 < α ≤ 1. If we let δ ↓ 0 and N → ∞, then we
obtain the converse from both (38) and (39).

2) Achievability Proof: The achievability proof correspond-
ing to Theorem 2 is based on the proof of Theorem 1. The
difference is that we use a so called masking layer, see Figure
8, that uses the generated secret Sg in a one-time pad system
to hide the transmitted secret St. Such a masking layer was
already used by Ahlswede and Csiszar [1]. The operations in
the masking layer are simple. Denote by ⊕ addition modulo
MS and by ª subtraction modulo MS then

Ht = St ⊕ Sg,

Ŝt = Ht ª Ŝg = St ⊕ (Sg ª Ŝg), (40)

where Ht should be considered as additional helper data.

St
¶

µ

³

´
-

6 6

- -ª
Ŝt

⊕

Sg Ŝg

St ⊕ Sg
¶

µ

³

´

Fig. 8. The masking layer.

Now keeping in mind that St is uniform on {1, 2, · · · ,MS}
and independent of XN , the generated secret Sg, and corre-
sponding helper data Hg, we obtain

I(St;Hg, (St ⊕ Sg))
= I(St; Hg) + I(St; (St ⊕ Sg)|Hg)
≤ H(St ⊕ Sg)−H(St ⊕ Sg|Hg, St)
≤ log(MS)−H(Sg|Hg, St)
≤ log(MS)−H(Sg|Hg)
≤ log(MS)−H(Sg) + I(Sg; Hg) (41)

and

I(XN ; Hg, (St ⊕ Sg))
= I(XN ; Hg) + I(XN ; (St ⊕ Sg)|Hg)
≤ I(XN ; Hg) + H(St ⊕ Sg)−H(St ⊕ Sg|Hg, X

N , Sg)
≤ I(XN ; Hg) + log(MS)−H(St|Hg, X

N , Sg)
= I(XN ; Hg) + log(MS)− log(MS)
= I(XN ; Hg). (42)

Theorem 1 states that there exist (for all δ > 0 and N large
enough) encoders and decoders for which Pr{Ŝg 6= Sg} ≤ δ,
and

H(Sg) + Nδ ≥ log(MS) ≥ N(R− δ),
I(Sg; Hg) ≤ Nδ,

I(XN ; Hg) ≤ N(L + δ). (43)

Therefore, using the masking layer implies that Ŝt = St if
Ŝg = Sg , and thus Pr{Ŝt 6= St} ≤ δ, and

log(MS) ≥ N(R− δ),
I(St; Hg, (St ⊕ Sg)) ≤ 2Nδ,

I(XN ; Hg, (St ⊕ Sg)) ≤ N(L + δ), (44)

and consequently rate-leakage pairs that are achievable for
secret generation are also achievable for secret transmission.
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