
Graphic Symbol Recognition using Graph Based Signature  
and Bayesian Network Classifier 

 
 

Muhammad Muzzamil Luqman, Thierry Brouard and Jean-Yves Ramel 
Université François Rabelais de Tours, Laboratoire d'Informatique (EA 2101) 

64, Avenue Jean Portalis, 37200 Tours – France 
muhammadmuzzamil.luqman@etu.univ-tours.fr, {brouard, ramel}@univ-tours.fr 

 
 

Abstract 
 

We present a new approach for recognition of 
complex graphic symbols in technical documents. 
Graphic symbol recognition is a well known challenge 
in the field of document image analysis and is at heart 
of most graphic recognition systems. Our method uses 
structural approach for symbol representation and 
statistical classifier for symbol recognition. In our 
system we represent symbols by their graph based 
signatures: a graphic symbol is vectorized and is 
converted to an attributed relational graph, which is 
used for computing a feature vector for the symbol. 
This signature corresponds to geometry and topology 
of the symbol. We learn a Bayesian network to encode 
joint probability distribution of symbol signatures and 
use it in a supervised learning scenario for graphic 
symbol recognition. We have evaluated our method on 
synthetically deformed and degraded images of pre-
segmented 2D architectural and electronic symbols 
from GREC databases and have obtained encouraging 
recognition rates.  
 
1. Introduction and related works 
 

Graphics recognition is a subfield of document 
image analysis and it deals with graphic entities that 
appear in document images. As pointed out by Lladós 
and Sánchez in [1]: documents from electronics, 
engineering, music, architecture and various other 
fields use domain-dependent graphic notations which 
are based on particular alphabets of symbols. These 
industries have a rich heritage of hand-drawn 
documents and because of high demands of application 
domains, overtime symbol recognition is becoming 
core goal of automatic image analysis systems. Some 
typical applications of symbol recognition include 
hand-drawn based user interfaces, backward 
conversion from raster images to CAD, content based 
retrieval from graphic document databases and 

browsing of graphic documents. A detailed discussion 
on application domains is in [2, 3] and a quick 
historical overview of the work on graphic symbol 
recognition is given by Tombre et al. [4].  

Graphic symbol recognition is generally approached 
by structural methods of pattern recognition which 
normally use graph based representations and thus 
inherit the various advantages associated with these 
representations. These methods, for example [5, 6] and 
the methods mentioned in [1], then employ graph 
matching or graph comparison techniques for symbol 
recognition. Graph matching and graph comparison are 
time consuming tasks and they limit the ability of these 
systems to scale to large number of symbol models. 
Moreover, structural methods generally require in-
depth domain knowledge and this hinders the 
possibility of having a generalized system of symbol 
recognition. Another approach for graphic symbol 
recognition is use of statistical methods of pattern 
recognition. These methods represent graphic symbol 
by feature vector or signature (we use these terms 
interchangeably) and use a statistical classifier for 
symbol recognition. The use of signatures and 
statistical classifiers allows designing of fast and 
efficient systems which are sufficiently scalable and 
domain independent. A state of the art for various 
methods that employ different structural or statistical 
approaches for graphic symbol recognition is in [7]. 

The rest of paper is organized as follows: section 2 
is devoted to general description of our method and 
section 3 provides detailed description of each part of 
system. Experimental results are presented in section 4 
and we present some concluding remarks and future 
directions of work in section 5. 

 
2. Proposed method 
 

2.1 A combination of structural and statistical 
approaches 
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We have approached the problem of graphic symbol 
recognition by employing a structural method for 
symbol representation and a statistical classifier for 
recognition. In this paper we take forward the work of 
Qureshi et al. [8]. They vectorize a graphic symbol, 
construct its attributed relational graph and compute a 
structural signature (G-signature as they call it). For 
classification of query symbol they use nearest 
neighbor rule with Euclidian distance as measure of 
dissimilarity. The structural signature is discriminant in 
case of hand-drawn or vectorial deformations and has 
been shown invariant of rotation and scaling. We argue 
that the computation of Euclidian distance in a brute 
force manner (between query symbol and each 
prototype in training set) limits this system to scale to 
large number of symbol models or to be used by real 
time applications. The system is based on vectorization 
and faces a high degree of uncertainty as the level of 
noise and deformation increase. In our system we use 
structural signature with a statistical classifier. We 
have selected Bayesian networks for dealing with 
uncertainty in symbol signatures. We deal only with 
linear graphic symbols in this work i.e. symbols that 
consist of only straight lines and arcs. This gives us a 
chance to optimize the structural signature for these 
types of symbols. The signature is given in Figure 3 
and it is discussed in section 3.2. 

 
2.2 Bayesian networks 
 

Bayesian networks are probabilistic graphical 
models and are represented by their structure and 
parameters. Structure is given by a directed acyclic 
graph and it encodes the dependency relationships 
between domain variables whereas parameters of the 
network are conditional probability distributions which 
are associated with its nodes. A Bayesian network like 
other probabilistic graphical models encodes joint 
probability distribution of a set of random variables 
and could be used to answer all possible inference 
queries on these variables. A humble introduction to 
Bayesian networks is in [9] and [10].  

Bayesian networks have already been applied 
successfully to a large number of problems in machine 
learning and pattern recognition and are well known 
for their power and potential of making valid 
predictions under uncertain situations. But in our 
knowledge there are only a few methods which use 
Bayesian networks for graphic symbol recognition. 
Recently Barrat et al. [11] have used the naïve bayes 
classifier in a ‘pure’ statistical manner for graphic 
symbol recognition. Their system use three shape 
descriptors (Generic Fourier Descriptor, Zernike 
descriptor and R-Signature 1D) and applies 
dimensionality reduction for extracting the most 

relevant and discriminating features to formulate a 
feature vector. This reduces the length of their feature 
vector and eventually the number of variables (nodes) 
in network. The naïve bayes classifier is a powerful 
Bayesian classifier but it assumes a strong 
independence relationship among attributes given class 
variable. We believe that the power of Bayesian 
networks is not fully explored; as instead of using pre-
defined dependency relationships we can obtain a 
better Bayesian network classifier if we find 
dependencies between all variable pairs from 
underlying data. 

 
2.3 Originality of our approach 
 

Our method is an original adaptation of Bayesian 
network learning for the problem of graphic symbol 
recognition. We use a structural signature for symbol 
representation. The signature is computed from the 
attributed relational graph of graphic symbol and is 
composed of geometric and topologic characteristics of 
the structure of symbol. We use a Bayesian network 
for symbol recognition. This network is learned from 
underlying training data by using the quite recently 
proposed genetic algorithms for Bayesian network 
learning by Delaplace et al. [12]. A query symbol is 
classified by using Bayesian probabilistic inference (on 
encoded joint probability distribution).We have 
selected the features in signature very carefully to best 
suit them to linear graphic symbols and to restrict their 
number to minimum; as Bayesian network algorithms 
are known to perform better for a smaller number of 
nodes. The use of structural signature makes our 
system independent of application domains and it 
could be used for all types of 2D linear graphic 
symbols. Also, relatively basic computations are 
involved for recognizing a query symbol which enables 
our system to respond in real time and it could be used 
for instance as a pre-processing step of a traditional 
symbol recognition method or for indexation and 
browsing of graphic documents. 

 
3. Detailed description 
 

Cordella and Vento [7] have remarked that a 
graphics recognition system can be looked upon as 
working in three phases: representation phase, 
description phase and classification phase. In this 
section we describe our system in light of these phases. 
 
3.1 Representation phase 
 

As we have stated earlier; our method of graphic 
symbol recognition is continuation of work already 
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done and the representation phase of our method is 
exactly same as that of [8]. Figure 1 outlines different 
steps that are involved in representation phase. A 
graphic symbol is vectorized and is represented by a 
set of primitives (quadrilaterals & vectors). Thin parts 
of shape are represented by quadrilaterals and filled 
regions by vectors. Our system deals only with linear 
graphic symbols and hence all our symbols are 
composed of only thin regions which are represented 
by quadrilaterals. The vectorization is followed by 
construction of an attributed relational graph whose 
nodes are graphic primitives (quadrilaterals) and arcs 
show relationships of connectivity between them. 

 
3.2 Description phase 
 

We use the attributed relational graph produced in 
representation phase for computing structural signature 
for symbol. The signature exploits the structural 
information and encodes structural details of a symbol; 
in order to differentiate it from pixel based or statistical 
signatures we call it a structural signature. To best suit 
the feature vector to the type of symbols that we deal 
with, we propose a different set of features than [8]. 
Our signature does not contain features concerned with 
primitive of type ‘vector’. We normalize the relative 
angle between 0° and 90° and use different set of 
length and angle intervals for computing range features 
(Figure 2). The list of 21 features in our signature of 
graphic symbol is given in Figure 3. Quantitative 
features in signature encode details of the size of 
symbol and density of connections at its primitives. 
Symbolic features encode the details about shape of 
symbol and help to discriminate between symbols of 
similar size (number of primitives) but different shape 
(arrangement of primitives). And the range features 
exploit the attributes of the primitives and serve as 
complementary criteria for discriminating between 
different symbol classes. 

Figure 1. Representation phase. 
 

Relative length 
Length1 : 0.00 – 0.19 
Length2 : 0.20 – 0.39 
Length3 : 0.40 – 0.59 
Length4 : 0.60 – 0.79 
Length5 : 0.80 – 1.00 

 

Relative angle 
Angle1 :   0° – 29° 
Angle2 : 30° – 59° 
Angle3 : 60° – 90° 

 

Figure 2. Relative length and angle intervals. 
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  f1 : Number of nodes 
  f2 : Number of Arcs 
  f3 : Number of nodes connected to 1 node 
  f4 : Number of nodes connected to 2 nodes 
  f5 : Number of nodes connected to 3 nodes 
  f6 : Number of nodes connected to 4 nodes 
  f7 : Number of nodes connected to 5 nodes 
  f8 : Number of nodes connected to 6(+)  nodes 
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   f9 : Number of arcs with label ‘L 

  f10 : Number of arcs with label ‘P’ 
  f11 : Number of arcs with label ‘T’ 
  f12 : Number of arcs with label ‘X’ 
  f13 : Number of arcs with label ‘S’ 
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  f14 : Number of nodes in interval ‘Length1’ 
  f15 : Number of nodes in interval ‘Length2’ 
  f16 : Number of nodes in interval ‘Length3’ 
  f17 : Number of nodes in interval ‘Length4’ 
  f18 : Number of nodes in interval ‘Length5’ 
  f19 : Number of arcs in interval ‘Angle1’ 
  f20 : Number of arcs in interval ‘Angle2’ 
  f21 : Number of arcs in interval ‘Angle3’ 

Figure 3. List of features in signature. 
 

3.3 Learning and classification phase 
 

In our system graphic symbols are represented by 
their signatures. We discretize our learning and test 
datasets because the Bayesian network algorithms, 
which we have used, require discrete data. We learn a 
Bayesian network from the discretized learning data 
and use it in a supervised learning context for assigning 
labels to signatures of unknown query symbols (from 
discretized test data). 

 
3.3.1 Discretization. We achieve discretization or 
quantification of datasets by a histogram based 
technique which is available in Bayesian Network 
Structure Learning Package of François and Leray 
[13]. This technique is based on use of Akaike 
Information Criterion (AIC). It starts with an initial m-
bin histogram of data and finds optimal number of bins 
for underlying data. Two adjacent bins are merged 
using an AIC-based cost function as criterion; until the 
difference between AIC-before-merge and AIC-after-
merge becomes negative. Each row of Figure 4 
corresponds to a feature vector (21 feature variables 
plus class variable) and each column can be looked 
upon as probability distribution of a variable. We 
discretize each variable separately and independently 
of other variables. The class labels are chosen 
intelligently in order to avoid the need of any 
discretization for them. 
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Figure 4. A snapshot of learning data containing 
signatures with class labels. 

 

3.3.2 Learning step. We learn the Bayesian network 
in two stages; namely structure learning stage and 
parameter learning stage. Goal of structure learning 
stage is to find the best network structure from 
underlying data which contains all possible 
dependency relationships between all variable pairs. 
This is achieved by genetic algorithms of Delaplace et 
al. [12]. Figure 5 shows one of the learned structures 
from our experiments (each node corresponds to a 
feature variable). The parameters of network are 
conditional probability distributions which are 
associated with its nodes and they specify conditional 
probability of the node given probabilities of its 
parents. The network parameters are obtained by 
maximum likelihood estimation (MLE); which is a 
robust parameter estimation technique and assigns the 
most likely parameter values to best describe a given 
distribution of data. We make use of Dirichlet priors 
with MLE to avoid null probabilities. The learned 
Bayesian network encodes joint probability 
distribution of symbol signatures in learning dataset. 
 

Figure 5. A Bayesian network structure after learning 
step; each node corresponds to a feature variable. 

 

3.3.3 Classification step. Bayesian probabilistic 
inference on encoded joint probability distribution is 
deployed for assigning a class label to signature of 
query symbol.  The idea behind this is to compute the 
list of probabilities with which each class label can be 
assigned to a query symbol. Probabilistic inference is 
achieved by using junction tree inference engine which 
is the most popular exact inference engine for Bayesian 
network probabilistic inference and is available in [13]. 
The inference engine propagates the evidence 
(signature of query symbol) in network and computes 
posterior probability for each class label. This in fact 
refers to Bayes rule which is given below by Eq. (1).  
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Eq. (1) states that posterior probability or 
probability of class ‘ci’ given an evidence ‘e’ is 
computed from likelihood (probability of evidence 
given class ‘ci’), prior probability of class ‘ci’ and 
marginal likelihood (prior probability of evidence). 
After computing posterior probabilities for all class 
labels, we assign query signature to class which 
maximizes posterior probability i.e. which has highest 
posterior probability. 

 
4. Experimental results 
 

We have experimented with synthetically generated 
2D symbols of models collected from databases of 
GREC symbol recognition contest [14]. There are a 
total of 150 models in GREC databases. In order to get 
a true picture of the performance of the proposed 
method on this database, we have randomly selected 
subsets with 100, 75, 50 and 20 different classes and 
generated our learning and test sets for each of these 
subsets. For each class the perfect symbol along with 
its 36 rotated and 12 scaled examples was used for 
learning; as the features have already been shown 
invariant to scaling and rotation [8] and because of the 
fact that generally Bayesian network learning 
algorithms perform better on datasets that contain quite 
a good number of examples. The system has been 
tested for its scalability on clean symbols 
(rotated/scaled), various levels of vectorial 
deformations (Figure 7) and binary degradations 
(Figure 6) of GREC symbol recognition context. Each 
test dataset contained 10 query symbols per class.  

 
Model  

GREC’05 Degrade-1 
Figure 6. Model of degradation used to simulate 
photocopying / printing / scanning; applied using 

ImageMagick1 and QGar package2. 
 

Level-1 
 

Level-2 Level-3 

Figure 7. Models of deformation used for simulating 
hand-drawn symbols; applied using project Epéires3. 

                                                           
1 http://www.imagemagick.org/ 
2 http://www.qgar.org/ 
3 http://www.epeires.loria.fr/ 

1328



 

Table 1. Symbol recognition experimental results. 

Number of classes 20 50 75 100 
Clean symbols 100% 100% 100% 100% 
Hand-drawn 
deformation 

Level-1 99% 96% 93% 92% 
Level-2 98% 94% 92% 91% 
Level-3 91% 77% 71% 69% 

Binary degrade 98% 95% 93% 92% 
 

 

Table 1 summarizes the experimental results. A 
100% recognition rate for clean symbols illustrates the 
invariance of our method to rotation and scaling. The 
recognition rates decrease with level of deformation 
and drop drastically for high binary degradations 
because of irregularities produced in symbol signature; 
which is a direct outcome of the noise sensitivity of 
vectorization step. We have not used any sophisticated 
de-noising or pretreatment and our method derives its 
ability to resist against noise, directly from underlying 
vectorization technique. Figure 8 gives a comparison 
of recognition rates. The system proposed in [8] 
presents recognition rates only for 20 models. 
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Clean Level-1 Leve l-2 Le vel-3

Test for 20 models
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P ro po s e d s ys tem

Figure 8. Comparison of recognition rates. 
 

5. Conclusion 
 

We have presented an original adaptation of 
Bayesian network learning for the problem of graphic 
symbol recognition. Our signature exploits the 
structural details of symbols. We represent symbols by 
signatures and encode their joint probability 
distribution by a Bayesian network. We then use 
Bayesian probabilistic inference on this network to 
classify query symbols. Experimental results of our 
method shows an improvement in recognition rates 
obtained by system in [8] and shows the scalability of 
the proposed system. Our system does not use any 
sophisticated de-noising/pretreatment and it drives its 
power to resist against deformations and degradations, 
directly from representation phase. The features in 
signature are affected by the small quadrilaterals that 
are produced during vectorization (in case of noisy 
symbols) and produces irregularities in signature. The 
use of Bayesian networks and Bayesian probabilistic 
inference gives our system a certain level of resistance 
against these irregularities.  Our initial experiments 
have produced encouraging results and we have found 

that the system is scalable to sufficiently large number 
of models (classes) but with moderate levels of 
deformation and degradation. We believe that the 
recognition rates will be improved for real learning sets 
which include deformed and degraded examples as 
well. The system is extensible to new models and it has 
the ability to work for 2D linear graphic symbols from 
any domain. Offline learning and use of lightweight 
signature makes our system suitable for applications 
which involve indexation, retrieval and browsing of 
graphic documents. In future we plan to take this work 
forward to increase robustness of our signature against 
noise and deformations by introducing fuzzy intervals 
for computing quantitative features and range features.  
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