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Abstract—It is well-known that there is a strong relation
between class definition precision and classification
accuracy in pattern classification applications. In
hyperspectral data analysis, usually classes of interest
contain one or more components and may not be well
represented by a single Gaussian density function. In this
paper, a model based mixture classifier, which uses
mixture models to characterize class densities, is discussed.
However, a key outstanding problem of this approach is
how to choose the number of components and determine
their parameters for such models in practice, and to do so
in the face of limited training sets where estimation error
becomes a significant factor. The proposed classifier
estimates the number of subclasses and class statistics
simultaneously by choosing the best model. The structure
of class covariances is also addressed through a model-
based covariance estimation technique introduced in this
paper.

Index Terms—Gaussian mixtures, Expectation-maximi-
zation, Covariance estimator

I. INTRODUCTION
In hyperspectral analysis, materials of practical in-

terest, such as agricultural crops, forest plantations,
natural vegetation, minerals, and fields of interest in
urban areas exist in a number of states and are observed
in a number of conditions of illumination. It is thus
necessary to characterize them not with a single average
or typical spectral response, but with a family of
responses.

One of the most powerful and versatile means for
representing such a family of responses quantitatively is
to model each as a multivariate probability density
function, as this makes possible classification by
assigning the class to a sample based on likelihood.
Maximum likelihood methods have long been used in
the field of digital communication systems and have
made possible communication in very noisy and
complex environments. To use these methods for
multispectral data classification, one must determine the
probabilistic density function that correctly models each
class of a data set. Most commonly this is done by
estimating at least the first two orders of statistics, the
mean vector and the covariance matrix, for each class.

Quantifying higher order statistics of each class
rather than just mean and covariance to better fit the
data into a parametric class density function might seem
desirable at first sight. Indeed, it is well established that,
in theory a complete description of an arbitrary
distribution can be made by the use of statistics of all

orders, as in an infinite series. The reason it is
customary to use no more than two orders of statistics,
the mean vector and the covariance matrix, arises from
the practical problem of estimating these two statistics
from the available set of labeled data. If one were to
estimate higher order statistics one would definitely
need more labeled samples to arrive at an adequately
precise estimate. Usually the number of these samples is
very limited since the labeling of such samples is one of
the most onerous and time-consuming aspects of
designing a classifier. Indeed, there often is not much
information available about the scene to use in labeling
the samples. Thus it is not practical to use statistics
beyond the second order [1].

Another solution might be to use nonparametric
class density estimations. A nonparametric classifier
does not rely on any assumption about the structure of
the underlying density function. The classifier may
become the Bayes classifier and the resulting error,
Bayes error, the smallest achievable error, if the density
estimates converge to the true densities, which is only
achieved when an infinite number of labeled samples
are used.  When the densities are estimated non-
parametrically with limited number of samples, the
estimate is far less reliable with larger bias and variance
than the parametric counterpart [2].

The normal mixture model, which is the sum of one
or more weighted Gaussian components, combine much
of the flexibility of nonparametric methods with certain
of the analytic advantages of parametric methods. Under
fairly weak conditions and given enough components a
mixture model can approximate a given density
arbitrarily closely allowing great flexibility.

Although, mixture models are widely used in
applied statistics and recently in knowledge discovery
and data mining, they have not attracted much attention
in the remote sensing community. In [3], Hoffbeck and
Landgrebe have introduced a method for using mixture
models to characterize the class densities. Their
approach is to partition the data into a designated
number of clusters, and compare the mixture models
corresponding to each of these partitions by means of a
selection criterion. They used a nearest means clustering
algorithm to partition the data and leave-one-out
likelihood criterion (LOOL) to select the best fit. This
method has two shortcomings. First, statistics
estimation, which is done through maximum likelihood,
does not address the ill-conditioned cluster covariance
case. This is almost unavoidable when clustering the
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data of limited size to several subclusters in
hyperdimensional space. Second, nearest mean
clustering alone does not provide an efficient model fit.

In this work, we will address these issues by
proposing a method based on model-based expectation-
maximization (EM). When EM is used, data is better fit
into the model and hence more reliable measures of fit
are obtained. EM requires an initialization, which is
done by initial partitioning of the data through a nearest
mean clustering algorithm. The model based approach,
which utilizes the common and sample covariance
matrices as well as their trace and diagonal forms not
only helps us to identify the underlying class structure
providing better characterization but also produces
robust estimates of component covariance matrices
when the number of labeled samples in each cluster is
less than the dimensionality.

The measures of fit are computed through an
approximate Bayes factor, which is known as the
Bayesian Information Criterion (BIC) [8].

The design of the proposed mixture classifier
involves three core stages. These are:

1) Initialization and clustering
2) Expectation-maximization
3) Model selection

This paper is organized as follows. In the first
section, we give the necessary background in
expectation-maximization (EM) for mixture models. In
the second section, a model based approach for
identifying mixtures is introduced. In the third section
experiments with real aerial data are performed to test
the proposed classifier.

II. EM FOR FINITE MIXTURE MODELS
The mixture model approach assumes that the data

Χ = { ,..., }x x1 n  in dR  (a d-dimensional feature
space) arises from a linear combination of component
density functions resulting in a mixture probability
density function of the form:

f X f Xk k k k
k

K
( ) ( | , )=

=
∑ τ µ Σ

1

 (1)

where K  is the number of mixture components, the

τk ’s are the mixing proportions with τk
k

K

=
=

∑ 1
1

,

0 1≤ ≤τk , 1≤ ≤k K  and  f Xk k k( | , )µ Σ  denotes the

conditional density of class k given mean vector µk
 and

covariance matrix Σk .
There are two commonly used approaches in

mixture analysis, the mixture approach and the
classification approach. In short, the mixture approach
aims to maximize the likelihood over the mixture
parameters, whereas the classification approach aims to
maximize the likelihood over the mixture parameters

and the identifying labels of the mixture components for
each sample.

In the mixture approach there is no direct interest in
the discrete labeling of the samples. More specifically,
the parameter set is chosen to maximize the log-
likelihood.

L X fk k i k k
k

K
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n
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In the classification approach, the indicator vectors,
z i ikz k K= =( , ,..., )1 with zik =1 or 0 identifies the

mixture component, according as x i  ( )1 ≤ ≤i n  has

been drawn from the thk  component or from another
one and they are treated as unknown parameters.

Our main concern is to identify the origin of each
sample within a class; therefore we will adopt the
classification log-likelihood approach in this paper. In
what follows EM equations for the classification log-
likelihood will be derived.

In EM for mixture models, the complete  data are
considered to be X Y Z= ( , ) where Y = { ,..., }y y1 n

is observable (i.e., labeled samples) and
Z = { ,..., }z z1 n  constitutes the "missing data" (i.e.,
unlabeled samples). In other words there exists a finite
set of k  states, and that each y i  is associated with an

indicator vector z i  of length k  whose components are
all zero except for one indicating the unobserved state
associated with y i .

Let z i i iKz z= { ,..., }1  with zik = 1 if y i  belongs

to component k and zik = 0  otherwise and each z i  be
independent and identically distributed according to a
multinomial distribution of one draw on K categories
with probabilities τ τ1,..., K  and y i  given z i  be
independent and identically distributed. Then assuming
z i  is associated with y i  and y i  belongs to component

j, the probability of z i  becomes

f i j j j K j( )
!

!... ! ! !... !
... ...z = =− +

1
0 0 1 0 0 1

0
1

0 1
1

0 0τ τ τ τ τ τ (3)

and the probability of  iy  given iz  becomes

f fi i j i j j( | ) ( | , )y z = y µ Σ (4)

Combining (3) and (4) to obtain f i( )x  yields

f fi j i j j j( ) ( | , )x = y µ τΣ (5)

Suppose j is unknown, since zik = 1 if y i  belongs

to component k and zik = 0  otherwise (5) can be
generalized as,

f fi k i k k k
z

k

K
ik( ) [ ( | , ) ]x y=

=
∏ µ τΣ

1

(6)

For all i=1, ,n (6) can be written as,
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The initial partitioning of the data has a crucial
importance on the output of the EM stage, as EM will
converge to a local maximum, which will be in the
neighborhood of the starting point.

The discrete partitioning algorithms by which the
initialization is done can be grouped into two types: The
hierarchical and nonhierarchical approaches. The fact
that initialization is not required makes the hierarchical
methods very appealing at first sight. Some hierarchical
methods even guarantee global optimality. The Branch
and Bound algorithm [4] is of this type. Both the global
optimality and a good initialization is what we are
looking for. However, there is a major drawback of
hierarchical methods, which makes them very
impractical to use in some cases. That is, the time
required for the algorithm to converge increases rapidly
with the number of samples and the dimensionality of
the data.

The scattering of the data is another negative factor
on the performance of some of the hierarchical
algorithms. Although some efficient implementation
techniques have recently been developed, hierarchical
algorithms are still far from accommodating a few
thousand samples in hyperdimensional space.
Hyperdimensionality is an inherent characteristic of
hyperspectral data analysis, and an efficient
identification of subclasses usually requires a
considerable number of training samples. For this
reason, a hierarchical approach is not adopted in this
work.

f X f yk i k k k
i

n z

k

K ik

( ) ( | , )= [ ]
==

∏∏ µ τΣ
11

(7)

Finally, the resulting complete-data log likelihood
is

L Z X( , | ) [log ( | , )]Θ Σ=
==
∑∑ z fik k k i k k
i

n

k

K

τ µx
11

(8)

The quantity zik  (i=1, ,n and k=1, ,K) for
equation (8) can be estimated as the conditional
expectation of zik  given the observation x i  and the
parameter set Θ.

The EM algorithm iterates between an E-step in
which values of zik  are estimated from the data with the

current parameter estimates as ẑik , and an M-step in

which the complete-data log likelihood (8), with zik

replaced by its current conditional expectation ẑik , is
maximized with respect to the parameters. The outline
of the algorithm is given in Fig. 1. Under fairly weak
regularity conditions [11], the method can be shown to
converge to a local maximum of the classification
likelihood.
We use nearest mean clustering to initialize the EM
algorithm. Compared to hierarchical methods, nearest-

mean clustering is very efficient in computational time
but does not guarantee a convergence to a global
optimum point or a convergence at all and requires an
initialization for itself. The initialization method we use
is data dependent, which consists of initializing the
centers of each cluster using principal components. For
well-separated data, a shift in the initial cluster centers
will not affect the result of the algorithm. However as
the number of samples increases and the data becomes
more scattered the algorithm is likely to produce a
different output when started with a different set of
cluster centers.

III. MODEL BASED MIXTURE IDENTIFICATION
As stated earlier, in hyperspectral analysis the

performance of the classifier is highly restricted by the
number of training samples available and due to the
high dimensional nature of the data. Not surprisingly,
this restriction is more severe in the mixture classifier
than in any simple quadratic classifier. By partitioning
the already small set of training data into multiple
clusters and then estimating the cluster statistics, one
ends up with a mixture model whose component
statistics and thus overall statistics are ill-conditioned
unless each cluster has at least d+1 samples, where d is
the number of dimensions. Assuming each class of data
is to be partitioned into a designated number of clusters
K, we should have at least K(d+1) training samples for
each class and these samples should be partitioned
evenly among clusters when a clustering algorithm is
run. This is practically hard to achieve, let alone having
K(d+1) training samples for each class. Therefore the
EM equations derived in the previous section based on
the unconstrained covariance model is by itself not
efficient.

One way around this problem is to use regularized
covariance estimators based on leave-one-out likelihood
(LOOL). LOOC introduced in [5], BLOOC introduced
in [6], and MIXED_LOOC [7] are of this type. For a
quadratic classifier, these estimators examine the
sample covariance and the common covariance
estimates, as well as their diagonal (LOOC) or trace
forms (BLOOC), to determine which would be most
appropriate. The same idea can be used in mixture
classifiers by applying these estimators to each
individual class training data. However in mixture
identification, the main emphasis is on model fit. That is
to say, statistics estimation is not the only concern as in
simple quadratic classifiers. Therefore the success of
LOOL based estimators would be very limited in
mixture classifiers unless statistics estimation is
accompanied with EM.
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On the other hand, when working with EM, the
structure of the covariance matrix is needed as a priori
information to avoid possible and unexpected
breakdowns of the algorithm. Unfortunately LOOL
based estimators do not provide this information, as the
covariance matrix obtained this way need not necessarily
be unconstrained. When a diagonal, a trace, or a common
covariance form is favored alone by these estimators, and
equation (12) is used to update the covariance matrices,
the structure of these matrices cannot be preserved. As a
result, the statistics estimation may change substantially
during the EM stage.
In this paper we propose a mixture classifier whose core
component is the model based mixture identification.
The new approach will eliminate the above problems to a
greater extent. In this framework the covariance matrix
of each cluster is assumed to be a weighted mixture of
constrained and unconstrained covariance matrices.  The
proposed covariance estimator has the following form:

Cjk jk jk jk jk j( ) ( )α α α= − +1 Σ Ψ (14)

where 0 1≤ <α jk , 1≤ ≤j N , 1≤ ≤k mj, Σ jk  is the

unconstrained covariance of cluster k in class j, jkα  is

the corresponding mixing parameter, 
jm  is the number

of clusters  in class j, and N is the total number of

classes. Note that, 
jm  can vary from one up to a

designated number K. In the above formulation, Ψj is

the unknown covariance structure of class j, which is to
be chosen among six possible covariance models through
a process involving clustering, EM, and model selection.

In what follows, EM equations for the six
covariance models considered in this paper will be
derived. Note that a change in the covariance model only
affects the update equation for the covariance matrix.
The rest of the equations in Figure 1 remain the same.
Before passing into the derivations, two additional
matrices will be defined. These are the within class
scatter matrix Wj estimated by,

ˆ ˆ ( ˆ )( ˆ )Wj = − −
==
∑∑ zik
i

n

k

m

i jk i jk
T

jj

11

x xµ µ (15)

initialize ẑik  (This is done through the output of nearest-mean clustering)
repeat

M-step: maximize (8) given ẑik  ( f( | , )x µ Σ  is a Gaussian density)

ˆ ˆn zk ik
i

n

=
=
∑

1
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ˆ
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kn

n
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ˆ
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ˆ
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ik
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n

i
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n
= =
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1
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ˆ ( ˆ )( ˆ )

ˆ
Σk
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i

n

i k i k
T

k

z

n
=

− −
−
∑

1

x xµ µ (12)

E-step: compute ikz  given the parameter estimates from the M-step.

ˆ
ˆ ( | ˆ , ˆ )

ˆ ( | ˆ , ˆ )
z

f

f
ik

k k i k k

j j i j j
j

K=

=
∑
τ µ

τ µ

x

x

Σ

Σ
1

(13)

until convergence criterion is satisfied

Figure 1. The EM algorithm for Gaussian mixture models. The indicator variables are initialized through the output
of nearest-mean clustering and the algorithm is terminated when the relative difference between successive values
of classification log likelihood falls below a threshold or the designated maximum number of iterations is
exceeded.
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and the within cluster scatter matrix Wjk estimated by,

ˆ ˆ ( ˆ )( ˆ )Wjk = − −
=
∑zik i jk i jk

T

i

n j

x xµ µ
1

(16)

where nj is the number of samples, mj is the number of
clusters in class j, and ẑik , µ̂ jk  are estimated through

update formulas in Fig. 1. For a multivariate quadratic
case, equation (8) can be expanded as follows:
L X

z tr c

j j jm

ik jk i jk
i

n

k

m

i jk
T

jk

j

jj

( , , | )

ˆ (log | | [( ˆ )( ˆ ) ] )

Σ Σ

Σ Σ

1

11

1

K

= − + − − +
==

−∑∑ x xµ µ
(17)

where c is a constant with respect to Σk  and tr(.) is the

trace operator. After substituting Ŵjk  and ˆ ˆz nik jk
i

n j

=
=
∑

1

into (17), we end up with the following equation.

L tr cj j jm j jk jk jk
k

m

j

j

( , , | ) ( ˆ log | | [ ˆ ] )Σ Σ Χ Σ Σ1
1

1

K = − + +−

=
∑ n Wjk

(18)

Covariance models:
1) Unconstrained case: No restriction is placed on the
covariance matrices Σ jk . The update equation for this

case is already given in (12). Maximizing (18) leads to
the minimization of

L tr cj j jm j jk jk jk
k

m

j

j

( , , | ) ( ˆ log | | [ ˆ ] )Σ Σ Χ Σ Σ1
1

1

K = + +−

=
∑ n Wjk

 (19)

and the covariance matrices Σ jk  are estimated by

ˆ
ˆ

ˆΣ jk
jk

jkn
= 1

W (20)

2) Σ jk j= σ I : All the clusters have the same spherical

covariance matrix. In this situation, maximizing (18)
leads to the minimization of

L X n d tr W cj j j j j
j

j( | ) log( ) [ ˆ ]σ σ
σ

= + +1  (21)

and we get

σ j
j

j

tr W

n d
=

[ ˆ ]
 (22)

3) Σ jk jk= σ I : Clusters are spherical with different

volumes. In this situation maximizing (18) leads to the
minimization of

L d tr cj j jm j jk jk
jkk

m

k

m

j

jj

( , , | ) ˆ log( ) [ ˆ ]σ σ σ
σ1

11

1
K Χ = + +

==
∑∑n Wjk

 (23)

and we get

σ jk
jk

jk

tr W

n d
=

[ ˆ ] (24)

4) Σ jk j= D : All the clusters have the same diagonal

covariance matrix. In this situation maximizing (18)
leads to the minimization of

L D X n D tr W D cj j j j j j j( | ) log(| |) [ ˆ ]= + +−1 (25)

and we get

D
diag W

nj
j

j

=
( ˆ ) (26)

5) Σ jk jkD= : All the clusters have different diagonal

covariance matrices. In this situation maximizing (18)
leads to the minimization of

L D D X n D tr W D cj j jm j jk jk jk jk
k

m

j

j

( , , | ) ( ˆ log(| |) [ ˆ ] )1
1

1

K = + +−

=
∑ (27)

and we get

D
diag W

njk
jk

jk

=
( ˆ ) (28)

6) Σ Σjk j= : All the clusters have the same covariance

matrix. In this situation maximizing (18) leads to the
minimization of

L X n tr W cj j j j j j j( | ) ˆ log(| |) [ ˆ ]Σ Σ Σ= + +−1 (29)

and we get

Σ j
j

j

W

n
=

ˆ (30)

For a fixed number of clusters k, the training data
for each class is fit into each of the six models through
clustering and EM. Then, corresponding to each model, a
measure of fit is computed and the model with the
highest measure of fit is chosen as Ψj . Once the

structure of the mixture is determined, the next step is to
estimate the mixing proportions, α jk  which can be done

by maximizing the LOOL for each cluster. This process
is repeated by incrementing the number of clusters, k by
one up to a designated number K, and a measure of fit is
computed at each stage. Finally the mixture model with
the highest measure of fit is chosen as the best fit.

Computing a measure of fit for a few thousand
samples in a hyperdimensional space is computationally
very challenging if not impossible. For the practicality it
provides in this study, we adopt the Bayesian
Information Criterion (BIC) [8] to compute the measures
of fit. Although regularity conditions for the BIC do not
hold for mixture models, there is considerable theoretical
and practical support for its use in this context [14], [15].
The closed form expression for BIC is given below.

2L d nM k Mk k
( , ˆ ) log( )Χ Θ − (31)

where LM kk
( , ˆ )Χ Θ  is the logarithm of the maximized

mixture likelihood for the model and dM k
 is the number

of independent parameters to be estimated in the model.
The term on the right in (31) is known as the
penalization term. It penalizes the complexity of the
model and this allows us to compare models with
differing parameterizations, differing number of
components or both. This is not possible by the log-
likelihood alone, which increases as more terms are
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added to the model.  A standard convention for
interpreting BIC differences is given in Table 1 and the
number of independent parameters for the six models
considered in the previous section is given in Table 2.

Table 1. Indication of evidence for different BIC
values [8].

≈)(log2 10Be BIC difference Evidence

0-2 Weak
2-6 Positive

6-10 Strong
>10 Decisive

Table 2. Number of independent parameters (A=kd+k-1,
B=d(d+1)/2 ).

Model Symbol Number of parameters
Σ jk

U A+kB

Σ jk jI= σ TE A+1

Σ jk jk= σ I TV A+k

Σ jk j= D DE A+d

Σ jk jkD= DV A+kd

Σ Σjk j= E A+B

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, several experiments are conducted to
test the performance of the proposed mixture classifier
(MC) and compare it with that of a simple quadratic
classifier (SQC). To make a consistent comparison
between these two classifiers both are designed similarly.
In fact, the only difference is the maximum number of
clusters (K) considered. Unlike the mixture classifier, K
is always one for the simple quadratic classifier.

A. Experiment 1: Purdue Flightline
This data set is a flightline over the Purdue

University West Lafayette Campus. The hyperspectral
data used was collected on September 30, 1999 with the
airborne HYMAP system [12], providing image data in
126 spectral bands in the visible and IR regions (0.4 µm
— 2.4 µm). The system was flown at an altitude such that
the pixel size is about 5 meters. The list of classes and
number of labeled samples for each class is given in
Table 3.

This data set is very challenging to analyze in many
respects. First it is difficult to define a set of efficient
informative classes. There are three parking garages and
many parking lots throughout the campus, and they all
show similar spectral behavior in the image data due to
the presence of large numbers of cars. It is very hard to
distinguish between these two unless another class is
assigned for cars. Second, some of the parking lots are
graveled, and they differ from others, which are made of
asphalt. Third, rooftops are made of a great variety of
materials including glass (garden frame). Fourth, paths
are spectrally very similar to some rooftops and streets.
Fifth, basketball fields, tennis courts, tracking fields, all
of which may show different spectral behavior, are all
grouped into the same class.

After defining the classes desired, the next step is to
perform a feature extraction and choose the best set of
features. At this point we avoid using parametric feature
extraction techniques, as feature information relevant to
mixture analysis may be lost when the class densities are
assumed as Gaussian and a feature extraction is
performed based on this assumption. We use the
Nonparametric Weighted Feature Extraction (NWFE)
technique recently introduced by Kuo and Landgrebe [9].
We randomly choose a portion (r) of the labeled samples
for each class as training samples and perform a feature
extraction using NWFE. Then the best 10, 20 and 30
features are selected respectively, and for each case a
classification is performed. The classifiers are then tested
using the remaining portion of the labeled samples. For
r=0.2, d=30 the mixture classifier takes around 20
minutes to complete the entire job on a Pentium based
computer with a clock frequency of 1.2 gigahertz.
Results of these classifications are shown in Fig. 2, and
the number of subclasses identified in each class is given
in Table 3. A Purdue campus map is provided in Fig. 3a
to designate some landmark structures. Note that this
map is older than the aerial scene, it is slightly miss-
scaled, and only the university facilities are shown.
Based on the ground truth data a test field map is
provided in Fig. 3b and thematic maps for the simple
quadratic and mixture classifications are given in Fig. 3c
and 3d for r=0.2.
The results reveal an interesting fact. For the simple
quadratic classifier increasing the number of training
samples doesn t lead to a better classifier performance
especially when d is small. This is observed in Fig 2. for
d=10 and d=20. For d=30 this effect is somewhat
mitigated. In the mixture classifier case, we have
observed that more training samples lead to better
classifier performance. This difference in performance
can more clearly be seen by comparing Fig. 3c and Fig.
3d for r=0.2 (see parts of the images taken inside the
rectangles)
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Table 3. List of classes and number of labeled samples in each class for experiment 2.

Class Name Number of Labeled
Samples

Roof 10916
Streets 1779
Shadow 521
Grass 1459
Trees 956
Others 512
Cars 1092
Path 457

Total number of
samples

17692

Table 4. Number of subclasses identified in each class for experiment 2.

d 10 20 30
r 0.01 0.1 0.2 0.01 0.1 0.2 0.01 0.1 0.2
K 5 5 5 5 5 5 5 5 5

Roof 3 5 3 1 3 5 1 3 4
Streets 1 2 3 1 1 2 1 1 1

Shadows 1 2 3 1 1 1 1 1 1
Grass 1 2 2 1 2 2 1 1 2
Trees 1 2 2 1 1 1 1 1 1
Others 2 2 2 1 2 2 1 1 1
Cars 1 1 1 1 1 1 1 1 1
Path 2 1 1 1 1 1 1 1 1
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Figure 2. Comparison of classifier performances for experiment 2.
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Figure 3a. False color image for ground truth data
for Purdue Main Campus [13] (Only university
facilities are shown).Original in color, see [16] for
a color version.

Figure 3b. False color image for test fields used in
experiment 1. Original in color, see [16] for a
color version.

Figure 3c. False color image of the classification
map obtained by the Simple Quadratic Classifier
(d=30,r=0.2, Acc: 87.6 %). Original in color, see
[16] for a color version.

Figure 3d. False color image of the classification
map obtained by the Mixture Classifier
(d=30,r=0.2, Acc: 94.0 %). Original in color, see
[16] for a color version.

The following experiments are performed using AVIRIS [10] data taken in 1992 over two sites:
Cuprite, Nevada and Indian Pine.

B. Experiment 2: Cuprite Site

The Cuprite site covers an interesting geological feature called a hydrothermal alteration zone, which
is exposed due to sparse vegetation. A total of 2744 labeled samples and 191 bands (0.40-1.34, 1.43-1.80,
1.96-2.46 m) are used in the experiment. The classifications are performed using the 10 features extracted
by NWFE. Half of the labeled samples are used as training samples and the other half is used as testing
samples. The numbers of subclasses identified in each class are shown in Table 5, and the classification
results are shown in Fig 4.
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Table 5. Number of subclasses identified in each
class for experiment 2 (K=5).
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Figure 4. Comparison of classifier
performances for experiment 2.

C. Experiment 3: Indian Pine Site

In this experiment, the data taken over the Indian Pine test site is used. This is a mixed
forest/agricultural area in Indiana. A total of 2521 labeled samples and 191 bands (0.40-1.34, 1.43-1.80,
1.96-2.46 m) are used in the experiment. The classifications are performed using the 10 features extracted
by NWFE. Half of the labeled samples are used as training samples and the other half is used as testing
samples. The numbers of subclasses identified in each class are shown in Table 6 and the classification
results are shown in Fig 5.

Table 6. Number of subclasses identified in each class for
experiment 3 (K=5).
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Figure 5. Comparison of classifier
performances for experiment 3.

V. CONCLUSION

Experimental results favoring the proposed mixture
classifier over the simple quadratic classifier in the
majority of the cases show that characterizing class
densities by a mixture density is useful in obtaining
more precise class definitions. However as with most
other classifiers, the success of the mixture classifier is
also limited by the size of the training data set available.
The main difference between a simple quadratic
classifier and a mixture classifier is that the former does
not guarantee a better performance when a larger

training data set is used during the design process but
the latter usually does, given enough components and
separability among classes. In fact the larger the training
data set, the more accurately the densities are estimated
and hence the better the performance of the mixture
classifier.

Apart from the limited training size problem, which
is one of the most basic problems of hyperspectral data
analysis, there are some other stages in the design of the
mixture classifier that requires further attention.

One of these is the model selection stage. BIC
doesn t provide reliable information on covariance
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structure when the number of samples is very small. As
a matter of fact, it will overestimate the number of
components and introduce redundant parameters that
will make estimations less reliable. A possible solution
might be to use a common covariance for all classes and
update EM equations accordingly.

Initial partitioning of the data is another stage that
needs attention, as EM will converge to a local optimum
that is closest to the initial starting point. We use nearest
mean clustering to initialize EM but more efficient
initializations can be found by trying different clustering
algorithms.
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