
Int. J. Embedded Systems, Vol. 2, Nos. 1/2, 2006 73

Copyright © 2006 Inderscience Enterprises Ltd.

Dynamically configurable security for SRAM FPGA
bitstreams

Lilian Bossuet* and Guy Gogniat
LESTER laboratory of Université de Bretagne Sud,
56321 Lorient, France
Fax: 332 97 87 45 27 E-mail: bossuet@ixl.fr
E-mail: guy.gogniat@univ-ubs.fr
*Corresponding author

Wayne Burleson
Electrical and Computer Engineering Department,
University of Massachusetts, Amherst, MA 01003, USA
Fax: 413-545-1993 E-mail: burleson@ecs.umass.edu

Abstract: FPGAs are becoming increasingly attractive – thanks to the improvement of their
capacities and their performances. Today, FPGAs represent an efficient design solution for
numerous systems. Moreover, since FPGAs are important for the electronics industry, it becomes
necessary to improve their security, particularly for SRAM FPGAs, since they are more
vulnerable than other FPGA technologies. This paper proposes a solution to improve the
security of SRAM FPGAs through flexible bitstream encryption. This proposition is distinct from
other works because it uses the latest capabilities of SRAM FPGAs like partial dynamic
reconfiguration and self-reconfiguration. It does not need an external battery to store the secret
key. It opens a new way of application partitioning oriented by the security policy.

Keywords: field programmable gate arrays; design security; bitstream encryption; partial
reconfiguration and self-reconfiguration; reconfigurable architecture.

Reference to this paper should be made as follows: Bossuet, L., Gogniat, G. and Burleson, W.
(2006) ‘Dynamically configurable security for SRAM FPGA bitstreams’, Int. J. Embedded
Systems, Vol. 2, Nos. 1/2, pp.73–85.

Biographical notes: Lilian Bossuet is a PhD student in Electrical Engineering in LESTER
laboratory of the Université de Bretagne Sud, Lorient France, where he has been since 2001.
He has a BSEE from the ENSEA Cergy-Pontoise, France. He has a MSEE from the
INSA-Université de Rennes, France. He has succeeded an Electrical Engineering competitive
examination for teacher training from ENS Cachan. He has worked as a Tool Engineer for
Autoliv Electronics. He was a Visitor (summer 2003) at the University of Massachusetts Amherst
USA. His researches are in reconfigurable computing and particularly design space exploration
for coarse-grained reconfigurable architecture. He also conducts research in high methodology
and tools for SoC, FPGA utilisation and performances estimation, FPGA security.

Guy Gogniat is an Associate Professor of Electrical and Computer Science at the University of
Bretagne Sud, Lorient, France, where he has been since 1998. He has a BSEE from the FIUPSO
Orsay, France and a MSEE from the University of Paris Sud Orsay and a PhD in ECE from the
University of Nice-Sophia Antipolis France. His researches are in the general area of CAD and
reconfigurable computing, including codesign methodologies and software radio platform
exploration with funding from national research projects (AS, RNTL, RNRT) and national and
international companies and organisations (CNRS, CEA, THALES, MITSUBISHI …). He also
conducts research in high-level methodologies and tools for FPGA utilisation, performance
estimation and FPGA security.

Wayne Burleson is an Associate Professor of Electrical and Computer Engineering at the
University of Massachusetts Amherst where he has been since 1990. He has a BSEE and MSEE
from MIT and a PhD in ECE from the University of Colorado. His research is in the general area
of VLSI and Signal Processing, including circuits for low-power, long interconnects, clocking
and mixed signals with funding from NSF, SRC, Compaq/HP and Intel. He also conducts
research in reconfigurable computing, content-adaptive signal processing, smart cards and
multimedia instructional technologies. He is a member of the ACM, ASEE, Sigma Xi, a senior
member of the IEEE Society.

74 L. Bossuet, G. Gogniat and W. Burleson

1 Introduction

The FPGA (Field Programmable Gate Array) concept was
born during the 1980s, when the configuration point size
(transistors or fuses) was too large in comparison with the
chip size to have an interesting FPGA density. Therefore,
these devices were just used to do prototyping or glue logic.
For a long time, the FPGAs have not taken benefit from the
best deep-submicronic technology, today the more advanced
FPGAs use 90 nanometre technology with copper
metallisation (best actual accessible technology). With the
improvement of technological processes and since the
FPGAs structure is very regular, it is possible to build some
FPGAs with more than one million transistors. Thanks to
these evolutions, FPGAs are increasingly attractive for
numerous systems and to build efficient SoC (System on a
Chip). The FPGAs market continues to increase and FPGAs
are capturing the classical market share of ASIC
(Application Specific Integrated Circuit) market. The cost
crossover point, which permits to know the necessary
number of systems built to choose an efficient ASIC
solution, is increasingly far (Tredennick and Shimamoto,
2003). It is possible even for a large number of systems built
to choose an economically efficient FPGA solution.

Since FPGAs are becoming so important for the
electronic industry, it is necessary to think about the security
of FPGA-based systems. It is possible to consider the
FPGA-based systems’ security problem in three ways.

1.1 Security system using FPGA

In this case, FPGA is used as a part of the security system.
The FPGA dynamic reconfiguration improves the security
system’s flexibility. Therefore, it is possible to change the
classical software update by hardware update in order to
prevent attacks evolutions.

For example, internet-connected hosts are now
frequently attacked by malicious machines located around
the world. Hosts can be protected from remote machines
by filtering the traffic through a firewall. Use of an
FPGA can be very efficient for such application in
order to build less static system. In Lockwood et al. (2003) a
System-On-Programmable-Chip (SOPC), internet firewall
has been implemented that protects high-speed networks
from present and future threats. The high level of flexibility
and extensibility required by such systems is guaranteed by
the use of an FPGA (in Lockwood et al. (2003) authors use
a Xilinx Virtex FPGA).

In the same way, in Dandalis and Prasanna (2000), the
authors use Xilinx FPGA to develop an Adaptive
Cryptographic Engine (ACE) for Internet Protocol Security
(IPSec) architectures. Several FPGA configurations of
cryptographic algorithms are stored in a memory in
the form of cryptographic library. The FPGA is configured
on-demand based on the cryptographic library and then
performs the required encryption/decryption tasks.

We think that it is also possible to use the FPGA
concept (e.g., reconfiguration, hardware update) for smart
cards system or PAY-TV, for example. However, today,
there is no published work on these applications.

1.2 Protecting FPGA data

In this case, it is necessary to protect the application that
runs on FPGA. The data inside the circuit and the data
transferred to/from the peripheral circuits during the
communication must be protected. The main solution is to
integrate data encryption scheme inside the FPGA. These
circuits are attractive for executing the actual cryptographic
algorithms and are of particular importance from security
point of view. There has been a large amount of work
done dealing with the algorithmic and computer
architecture aspects of cryptographic schemes implemented
on FPGA over the last five years. According to
Wollinger et al. (2004) and Wollinger and Paar (2003), we
can list the potential advantages of FPGA in cryptographic
applications.

• Algorithm agility. This term refers to the cryptographic
algorithms switching during operation of the targeted
application. While algorithm agility is costly with
traditional hardware, FPGA can be reprogrammed on
the fly.

• Algorithm upload. It is perceivable that fielded
devices are upgraded with a new encryption algorithm.
FPGA-equipped encryption devices can upload the new
configuration code.

• Architecture efficiency. In certain cases hardware
architecture can be much more efficient if it is designed
for a specific set of parameters. An example for the
parameters for cryptographic algorithms can be the key.
FPGA allows this type of devices and optimisations
with a specific parameter set. Owing to the nature of
FPGA, the application can be changed totally or
partially.

• Resource efficiency. The majority of security protocols
are hybrid protocols that need several algorithms.
As they are not used simultaneously, the same FPGA
device can be used for both through run-time
reconfiguration.

• Algorithm modification. There are applications that
require modification of standardised cryptographic
algorithms.

• Throughput. General-purpose microprocessors are not
optimised for fast execution. Although, typically
slower than ASIC implementations, FPGA
implementations have the potential of running
substantially faster than software implementations
(as with a processor).

 Dynamically configurable security for SRAM FPGA bitstreams 75

• Cost efficiency. There are two cost factors, which have
to be taken into consideration when analysing the cost
efficiency of FPGAs: cost of development and unit
price. The costs to develop an FPGA implementation of
a given algorithm are much lower than that for an ASIC
implementation. The unit prices are not significant
when compared with the developmental costs.
However, for high-volume applications (more than one
million of circuit build) ASIC solution usually becomes
the more cost-efficient choice.

1.3 FPGA design security

In this last case, the protection concerns the design against
cloning and reverse engineering. It is custom intellectual
property protection. Concerning the SRAM FPGAs, the
design security corresponds to the way to protect the
bitstream or the FPGA configuration.

This paper focuses on the latter case dealing with FPGA
design security. If the FPGA design itself is not secure, the
other security problems cannot be efficiently treated. Using
an unsecured device embedded in a security system is not
security-efficient. Many works already proposed solutions
to protect the bitstream. However, the contribution of this
paper relies on the utilisation of the latest improvements of
SRAM FPGAs configuration techniques to answer the
security problem.

This paper is organised as follows. Section 2 describes
some aspects of the design security problem such as the
classical hardware devices security level. Section 3 presents
several works dealing with the protection of SRAM FPGA
configuration. Section 4 describes the new capability of
SRAM FPGA self-reconfiguration. In Section 5 a new
SRAM FPGA bitstream protection solution is proposed.
The drawbacks and advantages of the proposed solutions are
given in Section 6. Section 7 compares the different
solutions of design security for FPGA. Finally, Section 5
concludes this paper and exposes several future
directions.

2 Design security

It is interesting, before investigating the different solutions
to secure the configuration of SRAM FPGAs, to list what
are the different attacks against an integrated circuit today,
what is the protection level of some current circuits and why
do they have this level of protection?

2.1 Need for design security

The problem of design security is simple; the designer does
not want a competitor to be able to pirate his design.
There are two sorts of piracy.

• Cloning. When a competitor makes an exact copy of a
design including the board layout and chip, and when
he is able to create a copy of the pirated system.

• Reverse engineering. When a competitor copies a
design by reconstructing a ‘schematic’ or net list level
representation. In this process, he analyses and
understands how the design works and how to improve
it, or to modify it with malicious intents. Reverse
engineering generally consists of the following stages:
• analysis of the product
• generation of an intermediate level product

description
• human analysis of the product description to

produce a specification
• generation of a new product using the

specification.

Therefore, reverse engineering is more serious than cloning.
These two aspects correspond to different attacks, and the
design security must protect the system against both attacks.
To perform cloning or reverse engineering, two types of
attack can be considered; the non-invasive and the invasive
attacks.

The non-invasive attacks gather all the methods that use
external means. For example, the attackers can use all
the possibilities of the circuit inputs in order to obtain
all the different outputs and draw the system truth table; this
method is called ‘Black Box Attack’.

In the case of SRAM FPGA, a simple attack method is
intercepting the bitstream between the root ROM and the
FPGA when the system power is switched on. More
complex attacks can be brought into play; time, power and
electromagnetic changes and measures like the simple or
differential power analysis – interested readers can refer to
the works on power analysis of FPGA in Standaert et al.
(2003, 2004) and Örs et al. (2003).

The invasive attacks (or physical attacks) are
characterised by the necessity to destroy the integrated
circuit (component package) to study the chip (design inside
the component) with some complex methods. For example,
it is possible to use laser cutter microscope in order to split
the chip in several slices and understand the chip layout.
These attacks can use sophisticated tools like optical
microscope, mechanical probes and even Focused Ion Beam
(FIB). As these attacks use the weakness of the silicon
technology, when they are possible, it is very hard to secure
the system against them.

The paper Anderson and Kuhn (1996, 1997) give some
information about these different attacks. It is possible to
classify the integrated circuits according to their protection
against the different types of attacks. The next section
presents an example of security level classification.

2.2 Protection level of some circuits

The level of protection offered by actual integrated circuits
is an interesting metric to identify works that must be
carried out to improve the security level of one particular
type of integrated circuit. In the IBM Systems Journal, a
paper Abraham et al. (1991) defines the various security

76 L. Bossuet, G. Gogniat and W. Burleson

levels for modern electronic systems and the corresponding
taxonomy of attackers.
• Level 0 (ZERO). No special security features added to

the system. It is easy to comprise the system with low
cost tools.

• Level 1 (LOW). Some security features in place. They
are relatively easily defeated with common laboratory
or shop tools.

• Level 2 (MODLOW). The system has some security
against non-invasive attacks; it is protected for some
invasive attacks. More expensive tools are required, as
well as specialised knowledge.

• Level 3 (MOD). The system has some security
against non-invasive and invasive attacks. Special tools
and equipment are required, as well as some special
skills and knowledge. The attack may become
time-consuming but will eventually be successful.

• Level 4 (MODH). The system has strong security
against attacks. Equipment is available but is expensive
to buy and operate. Special skills and knowledge are
required to use the equipment for an attack. More than
one operation may be required so that several
adversaries with complementary skills would have to
work on the attack sequence. The attack could be
unsuccessful.

• Level 5 (HIGH). The security features are very strong.
All known attacks have been unsuccessful. Some
research by a team of specialists is necessary. Highly
specialised equipment is necessary, some of which
might have to be designed and built. The success of the
attack is uncertain.

According to this classification, it is possible to give a
general security level for the current integrated circuits.
Of course, these different levels are not fixed and depend of
the factory and the type of circuit (in the same factory there
are several families and some of them can be especially
security-efficient like some military families). The authors
have tried to give one level by classical integrated circuit
and explain the reason of their choices. The security level of
the classical integrated circuits is given in Table 1.

Table 1 Security level of classical integrated circuits

Integrated circuit Security level
Conventional SRAM FPGA 0
ASIC gate array 3
Cell-based ASIC 3
SRAM FPGA with bitstream encryption 3
Flash FPGA 4
Antifuse FPGA 4

Conventional SRAM FPGAs have the lowest security level.
These circuits need a bitstream transfer from the root ROM
at power up (because the memory of configuration is a
SRAM volatile memory). Therefore, it is easy for the pirate
to read with a simple probe the bitstream during the transfer.

The conventional SRAM FPGAs are inefficient for safe
design. However, with a bitstream encryption it is possible
to clearly improve the security level since the security
weakness is secure. SRAM FPGAs have a good resistance
against some attacks like power analysis (Standaert
et al., 2003). Today few works present the results of
attacks against SRAM FPGA (Örs et al., 2003 and Standaert
et al., 2004).

Often considered like a secure technology, ASICs are
actually relatively easy to reverse engineer. Because, unlike
FPGAs, ASICs do not have switch. Therefore, it is possible
to strip the chip to copy with certitude the complete layout
in order to understand how it works. Methods to reverse
engineer ASIC exist. The cost of reverse engineering is high
since the tools required are expensive and the process is
time consuming. Therefore, it is not a simple process and
therefore the security level is 3 for such devices.

Contrary to the ASICs, the FPGAs, like antifuse or
flash, are actually security-efficient since they are based on
switches. With these FPGAs, no bitstream can be
intercepted in the field (no bitstream transfer, no external
configuration device). In the case of antifuse FPGAs, the
attacker needs a Scanning Electron Microscope (SEM) in
order to know the state of each antifuse. Nevertheless, the
difference between a programming and a non-programming
antifuse is very difficult to see. Moreover, such analysis is
intractable in a device like Actel AX2000 that contains 53
million of antifuses and according to Actel (www.actel.com/
products/rescenter/security/index.html) only 2–5% (average)
of these antifuses are programmed. For flash FPGA, there is
no optical difference after configuration, so the invasive
attacks are very complex. The same advantages are given by
QuickLogic to promote their flash FPGAs with the ViaLink
technology (QuickLogic, 2002).

If the antifuse and the flash FPGAs are very
security-efficient, they are just one time configurable (or
one time programmable), so they are not reconfigurable
devices. The system build with these devices, is not
flexible. If the designer wants a reconfigurable
device, he must target a SRAM FPGA. Moreover,
the capacities of the SRAM FPGAs are the highest for
FPGA devices. Actually, the SRAM FPGAs have a
market share higher than 60% (just with the two leaders
companies Xilinx (http://www.xilinx.com) and Altera
(http://www.altera.com)). Therefore, the research to
improve the security level of such FPGAs and particularly
the improvement of bitstream encryption is necessary today.

Some works give efficient solutions to encrypt the
SRAM FPGA bitstream. Nevertheless, there are some
drawbacks and it is possible to improve them taking
into account the latest innovations of these FPGAs.
The following section presents some works about the
bitstream encryption.

3 Related work

Two approaches are generally possible to address the
design security problem. The first one considers that the

 Dynamically configurable security for SRAM FPGA bitstreams 77

best solutions to protect the devices against piracy are legal
solutions. The definition of efficient laws, the regulation and
the management of intellectual properties are parts of this
solution.

The second one, according to the last section, proposes
to improve the security level of actual SRAM FPGAs by
configuration protection (bitstream encryption). Even if the
two solutions must be complementary, in the following, we
only address the latter approach.

Xilinx proposes a security system (www.xilinx.com)
based on a triple DES encryption scheme to protect the
bitstream of the Virtex-II and Virtex-II Pro family device.

Xilinx CAD software tool encrypts the bitstream using
the powerful Triple Data Encryption (DES) algorithm
before downloading the configuration inside the FPGA.
Triple DES is the standard used by many governments for
safe communication and by banks around the world for
money transfers. This algorithm uses three 56-bits public
keys. The designer can use random keys or choose their
own-keys.

Figure 1 shows the encryption/decryption system used
by Xilinx to protect the configuration of Virtex-II devices.

Figure 1 Xilinx Virtex-II triple DES encryption scheme.
The bitstream is encrypted by the CAD tool during the
EPROM storage. When power is switched on, a DES
decryption circuit embedded in the FPGA decrypts the
configuration. Three 56-bits keys are embedded in the
FPGA and stored in a volatile memory with an external
battery

This system is relatively simple; it is just necessary to
choose one option during the last step of the CAD process,
the bitstream generation. First, a key file that describes the
configuration of the three keys is programmed inside the
FPGA. The customer chooses his own keys. Of course, it is
not necessary to store the key file inside the configuration
memory. It is not possible to encrypt two cores with
different keys loaded into the same FPGA at the same time.
The keys are stored in a dedicated SRAM memory inside
the FPGA that can be backed up with a small battery
(like a watch battery).

Next, the configuration step is performed like a classical
configuration without the bitstream encryption. In fact, the
configuration stored in the external EPROM is encrypted.
The FPGA contains a decryption circuit that automatically
detects when the bitstream is encrypted and it decrypts the
configuration before the SRAM bits are programmed.

Xilinx does not give information about the necessary
extra-time to decrypt the configuration.

The Xilinx bitstream encryption scheme is efficient
because without the correct key it is not possible to
configure other chips with the encrypted bitstream.
Nevertheless, when the device is configured, it is not
possible to use partial reconfiguration or to do read-back
and it is not possible to use bitstream compression.

If the designer does not need security, the device can be
configured with non-encrypted bitstream and the on-chip
keys are simply ignored.

This method has a strong drawback; it uses an external
battery to save the key. It is poor for several reasons.
This solution costs a lot of area on the board and even if the
used battery is small it is necessary to add a socket, and the
board area is a critical issue for embedded system.
Moreover, this solution increases the board cost (2–3$ per
board (Trimberger, 2004)) and reduces the system lifetime
(particularly bad for long-life hardware applied in space
applications, for example).

It is necessary to improve the Xilinx solution by
proposing a solution without the additional battery.

Not long ago, Altera proposed a solution of bitstream
encryption for the new Stratix-II device (Altera Coporation,
2004). Figure 2 shows the encryption/decryption system
used by Altera to protect the configuration of Stratix-II
devices.

Figure 2 Altera Stratix-II AES encryption scheme. Like Xilinx
solution, the bitstream is encrypted by the CAD tool
during the EPROM storage. When power is switched
on, an AES decryption circuit embedded in the FPGA
decrypts the configuration. One 128-bits key is
embedded in the FPGA and stored in a non-volatile
memory without an external battery

Design security in Stratix-II device is enabled by
encrypting the configuration bitstream using 128-bit AES
and a non-volatile key. AES is a standard for encryption,
developed to replace the DES standard. The 128-bits AES
key makes it much more secure than DES (56-bits key size)
and triple DES (three 56-bits key). Unlike Xilinx solution,
the non-volatile key retains its information when the power
is off, eliminating the need for a backup battery.

Tom Kean of the Algotronix society proposes an
attractive solution to answer the FPGA security problem
(Kean, 2001; Kean et al., 2001). The first idea of Kean is to
use a secret cryptographic key stored on an FPGA like
Altera solution. He gives some ways to store this key as
using a laser to program a set of links during manufacture.

78 L. Bossuet, G. Gogniat and W. Burleson

As the secret key is only known by the FPGA, it must
contain an encryption and a decryption circuit. However,
contrary to Xilinx and Altera methods, the CAD does not
change and just generates a classical bitstream.

Figure 3 shows the encryption/decryption system used
by Kean to protect the configuration of SRAM FPGA.
Figure 3(a) shows the initial configuration of secure FPGA
and Figure 3(b) shows the normal configuration of secure
FPGA.

Figure 3 Kean proposes encryption/decryption scheme
embedded in the FPGA. (a) shows the initial
configuration to encrypt the bitstream (inside the
FPGA) and stores it in the EPROM and (b) shows the
normal configuration of the FPGA when the power is
switched on, the encrypted bitstream is decrypted
inside the FPGA and configures it

This solution has many advantages; it does not affect system
reliability, requires no additional components and it does
not require support from CAD software. In this system,
nobody (the designer or the CAD tool) needs knowledge of
the key.

If Kean’s and Altera solutions overcome the battery
limitation of the Xilinx solution, all the solutions have the
same important disadvantages. In all the cases, the
decryption circuit is embedded inside the FPGA. These
circuits take FPGA silicon area normally reserved for the
developed application. Therefore, the total application
dedicated-area is reduced by these solutions, particularly
in the case of Algotronix solution, since the encryption and
the decryption circuits are both embedded in the same
FPGA.

Moreover, in all solutions the encryption and the
decryption circuits are fixed, so it is not possible to upgrade
them or to choose the encryption/decryption algorithm and
architecture. It is a lack of flexibility for the system; it will
be impossible to update it with new encryption algorithms,
for example.

In all solutions, the entire design is encrypted with the
same encryption algorithm. However, such approach is very
restrictive since it does not consider any security policy.
Actual designs (owing to the high degree of application
complexity) are based on numerous heterogeneous parts that
do not present the same ‘security sensitivity’. Hence, the
designer may want to partition his application in several
parts and use different encryption/decryption algorithms to

encrypt/decrypt these parts. For example, if the designer
uses some free or very-easy-to-find IPs (Intellectual
Property), it may be not necessary to encrypt these parts of
the application. Other parts like interfaces, for example, do
not need a high security level. On the other hand, the real
designer’s IPs need a high security level.

Finally, the three proposed solutions give only one fixed
answer to the bitstream security problem and lack
flexibility.

Other solutions are proposed; most of them can be found
in recent US Patents for example, Kelen and Burnham.
(2000), Erickson et al. (2001), Mason et al. (2001) and Pang
et al. (2002). Nevertheless, these solutions are not very
different from Xilinx (www.xilinx.com), Altera
(www.altera.com) or Kean (2001; Kean et al., 2001)
solutions.

If existing solutions are not very different one
from another, it is mainly owing to the fact that they
do not use the new features of SRAM FPGAs like
partial reconfiguration, dynamic reconfiguration and
self-reconfiguration.

In the following section, we present the new
self-reconfiguration capabilities of SRAM FPGA.

4 New self-reconfiguration technique for SRAM
FPGA

According to previous sections, actual solutions to
secure the SRAM FPGA bitstream are efficient, but lack
flexibility. However flexibility, given by the reconfiguration
capabilities, is the main advantage of the reconfigurable
devices like SRAM FPGAs (particularly in comparison with
other FPGAs or ASIC). This advantage is increasingly
important with the new capabilities of SRAM FPGAs
like partial reconfiguration, dynamical reconfiguration or
self-reconfiguration.

In Blodget et al. (2003) and Blodget and McMillan
(2003) Xilinx presents a Self-Reconfiguring Platform (SRP)
for Xilinx Virtex-II and Xilinx Virtex-II Pro devices.
Self-reconfiguration extends the concept of dynamic
reconfiguration. It assumes that dedicated circuits within
the FPGA are used to control the configuration of
the other parts of the FPGA. In this case, the FPGA
is able to dynamically reconfigure itself under the
control of an embedded microprocessor or controller. This
microprocessor can be a soft-core like Xilinx Micro
Blaze (32-bit RISC) or a hard-core like IBM PowerPC
(32-bit RISC) embedded on the Xilinx Virtex-II
Pro. To perform the dynamical reconfiguration, the
microprocessor or the controller use a specific interface
called ICAD (Internal Configuration Access Port). When
the bitstream is stored within the FPGA, the FPGA
embedded RAM (called BlockRAM in Xilinx Virtex
devices) are used like small configuration cache. Figure 4
presents a schematic view of the self-reconfigurable
platform.

 Dynamically configurable security for SRAM FPGA bitstreams 79

Figure 4 Schematic view of the self-reconfigurable platform
SRP. The ICAP port is directly connected to the
configuration array. It can partial reconfigure the
different frame of configuration. The configuration
controller can be a MicroBlaze soft core. The bitstream
file can be provided from outside or inside the circuit.
The BlockRAM can be used like configuration
memory

The Virtex ICAP is a version of the Xilinx Select Map
programming port that is internally accessible to the
configure FPGA logic. According to Fong et al. (2003)
the ICAP, interface is fairly simple, consisting of separate
eight-bit datapaths for reads and writes, write and chip
enables, a busy signal and a clock input. The ICAP interface
is physically located in the lower right corner of the
Virtex-II FPGA, and can be seen using the Xilinx FPGA
editor tool. When using the Select Map express
configuration mode (data available every clock cycle),
ICAP can be loaded with data without the need for
handshaking. The ICAP throughput is limited to 50 Mbit/s.

Xilinx proposes a tool to manage these new
FPGA capabilities called XPART for Xilinx Partial
Reconfiguration Toolkit.

Some applications of self-reconfiguration have been
done in Fong et al. (2003), Ulmann et al. (2004) and Hübner
et al. (2004). In Ulmann et al. (2004), self-reconfiguration is
used for CAN-bus management, and in Hübner et al. (2004)
the same authors use self-reconfiguration and bitstream
compression.

In the following section, we present how the new
solution to address the bitstream security problem
takes advantage of the dynamic SRAM FPGA
self-reconfiguration.

5 A new solution to protect the SRAM FPGA
bitstream

5.1 Introduction

This solution takes benefit of the new possibilities of
reconfiguration of SRAM FPGAs to improve their security
level without the drawbacks highlighted previously.

The encryption and the decryption circuit must leave all
the silicon area free for the developed application.

The solution must use an embedded key in order
to work without an extra battery; to store the key, a
model close to Kean’s solution (Abraham et al., 1991;
www.actel.com/products/rescenter/security/index.html) can
be chosen. It is possible to use laser to engrave the key or
use some antifuse elements to do a non-volatile key
programming.

A very important feature is also to give the designer the
opportunity to choose the encryption/decryption algorithms
and architectures. In this way, it is possible to adapt the
encryption/decryption scheme according to the requested
security level for the developed application. Furthermore,
this feature enables to easily upgrade the system if a new
efficient encryption/decryption algorithm is available.

Finally, we address the security-sensitivity policy
problem by allowing the designer to use different encryption
algorithms for a single application. The Security-Critical
Parts (SCP) of the application will only be encrypted.

For test, we use a Xilinx Virtex-II Pro XCV2VP20
FF1152 proto-board.

5.2 Application security policy

As the encryption/decryption scheme is costly owing to
time, power consumption and takes silicon area, it is very
interesting to adapt it according to the required security
level of the application parts.

All the solutions presented in Section 3 use a complete
bitstream encryption with a single encryption algorithm.
Nevertheless, a security application analysis can show that
some parts of the application do not need protection
whereas other parts need strong protection. These last parts
can be security-sensitive part (global system security) or
they can be the custom intellectual properties with high
development cost, for example. We call these application
parts Security-Critical Parts (SCP) and the other parts, like
some communication protocol IPs or easy-to-find IPs, the
No-Critical Parts (NCP).

The designer must partition his application in
function of the security level of the different parts. It is a
security-oriented partitioning. He must choose the suitable
encryption/decryption algorithm and architecture for the
protection of the SCP bitstreams. The designer can choose

80 L. Bossuet, G. Gogniat and W. Burleson

different encryption/decryption algorithms and architectures
for several SCPs or he can choose the same for all. We think
that it could be more security-efficient to choose different
security features for the different SCPs.

To understand our approach, in the following, two
examples are given; process during the initial configuration
step and process during the normal configuration step of the
FPGA. In the examples, the application is partitioned into
three different parts; two SCPs that need high security
level (they are encrypted with two different encryption
algorithms) and one NCP that does not need encryption.
For the examples, each SCP bitstream is encrypted with a
different algorithm but a solution with a same algorithm can
be considered. The case with two SCPs is just an example
and other configurations can be considered.

5.3 Key management

One feature is very important in our solution; the key
management. It is mandatory that a pirate cannot access the
keys used by the different decryption/encryption circuits. To
prevent spy configuration, we use bitstream authentication
with checksum. The circuit used to control the bitstream
authentication is embedded in the FPGA on the JTAG port.

Moreover, since in this solution, the decryption/
encryption algorithm is not fixed, it is necessary to store a
large key. Indeed different algorithms do not use the same
key size (for example the AES algorithm uses a 128-bits
key, and the triple DES uses three 56-bits keys). In fact,
among the n-key bits, the encryption/decryption circuits
select m necessary bits. Since only the designer knows the
position in the large key of the m chosen bits, it is a
supplementary security barrier. With the large key
knowledge necessary, the pirate must investigate to identify
the effective key bits for the suitable algorithm.

5.4 Security configuration controller

Our solution uses the partial configuration and the dynamic
self-reconfiguration of the FPGA. The management of
such configuration process is complex, particularly for the
self-reconfiguration. Moreover, several bitstreams are used
while the application runs. In our system, there are three
types of bitstream,

• encrypted bitstream of a SCP

• no-encrypted bitstream of a decryption circuit

• no-encrypted bitstream of a NCP.

The controller must be able to detect the different
bitstreams. A bitstream signature (ID) gives the controller
the bitstream characteristics (encrypted or not for example).
These characteristics are used like processor instructions
by the controller. According to the characteristics, the
controller partial-configures directly the FPGA with the
selected NCP bitstream or it partial-configures the FPGA
with first the decryption circuit bitstream associated with an
encrypted SCP bitstream before using self-reconfiguration
to configure the FPGA with the decrypted SCP bitstream.

The security configuration controller is based on a finite
state machine to perform the configuration management.
To handle the configuration sequence, the controller needs
the external EPROM memory partitioning (the memory
mapping). We can notice that this mapping can be complex
in order improve the system security. For example the
designer can interleave the data stored in the memory and
mix the several encrypted and no-encrypted configurations.
A configuration address register stores the memory
mapping.

The security configuration controller can be external
like a dedicated CPLD or a microprocessor. However, it is
also possible that this controller is embedded inside the
FPGA, like in the case of Xilinx self-configuration system
(Fong et al., 2003). In this last case, the configuration
controller can be a soft-core microprocessor (like Xilinx
MicroBlaze) or a hard-core microprocessor (like IBM
PowerPC for Xilinx VirtexII-Pro devices).

5.5 Initial FPGA configuration

The initial FPGA configuration is performed in the
laboratory or manufactory in order to store all the different
bitstreams in the EPROM memory. The CAD tool performs
the initial configuration. If there are SCPs in the application,
the bitstreams of each encryption circuits are generated to
use these circuits to encrypt the SCPs bitstreams. In the
same way, the bitstreams of the decryption circuits are
generated to use these circuits to decrypt the encrypted
SCPs bitstreams.

Figure 5 presents the encryption system when the FPGA
is initially configured and the root configuration memory is
programmed (initial configuration).

Figure 5 Encryption scheme during the initial FPGA
configuration. The bitstreams are stored in the
EPROM from the CAD tool through the FPGA JTAG
port. For the SCPs bitstreams, the FPGA is configured
with encryption circuits to encrypt the bitstreams
before being stored it in the EPROM. The NCP
bitstream are not encrypted.

 Dynamically configurable security for SRAM FPGA bitstreams 81

During the initial FPGA configuration, the first step consists
of programming the root configuration memory with the
non-encrypted parts. First, the NCP bitstreams are stored; in
the example shown in Figure 5, there is only one NCP.
For the same example, two decryption circuits will be used
to decrypt the encrypted SCPs bitstreams. Therefore, the
bitstreams of the two decryption circuits are stored in the
EPROM. In Figure 5, after the first step there are three
no-encrypted bitstreams stored in the EPROM; the NCP
bitstream, the decryption circuit 1 bitstream (associated
with the SCP 1) and the decryption circuit 2 bitstream
(associated with the SCP 2).

The second step is the storage of the encrypted
bitstreams of the SCP 1 and SCP 2. First, it is necessary
to configure the FPGA with the encryption circuit 1 in
order to encrypt the bitstream of the SCP 1. Once the SCP 1
bitstream is encrypted, it is stored in the root external
EPROM. Since the SCP 2 needs other encryption circuit, it
is not necessary to keep the encryption circuit 1 in the
device. The FPGA is partial configured with the encryption
circuit 2; the SCP 2 bitstream is encrypted and stored in the
EPROM.

Of course, it is necessary for the CAD to manage partial
reconfiguration like in Xilinx proposition (Blodget and
McMillan, 2003).

At the end of the initial configuration step, the root
configuration memory contains the encrypted bitstreams of
SCP 1 and SCP 2, the no-encrypted bitstream of the NCP
and the no-encrypted bitstreams of the decryption circuits
required to decrypt SCP 1 and SCP 2 (decryption circuit 1
and decryption circuit 2).

5.6 Normal FPGA configuration (when power
is switched on)

When power is switched on, the SRAM FPGA must be
configured since this inside configuration memory is
volatile. Figure 6 shows the decryption-configuration
system when the FPGA is configured from an external
EPROM memory that stores the configuration (normal
configuration). The configuration controller manages the
configuration process.

The FPGA configuration process works as follows:
First, the FPGA is configured with the decryption circuit 1
bitstream. Then the FPGA uses it to decrypt the encrypted
SCP 1 bitstream and self-configures the SCP 1. As we can
see on Figure 6, the SRP (Self-Reconfiguring Platform, see
Section 4) is used to perform self-reconfiguration. Once the
SCP 1 bitstream is decrypted and the FPGA is configured
with the SCP 1 circuit, it is not necessary to keep the
decryption circuit 1. The decryption circuit 2 replaces
(with FPGA partial reconfiguration) it in order to decrypt
the encrypted bitstream of SCP 2. In the same way,
after the decryption and the self-configuration of the
SCP 2 bitstream, it is not necessary to keep the decryption
circuit 2.

Figure 6 Decryption and self-configuration scheme during the
normal FPGA configuration. The FPGA is
partial-configured by the decryption circuit 1 or 2 to
decrypt the encrypted SCP 1 and SCP 2 bitstreams.
The FPGA is self-configured with these decrypted
bitstreams. The self-reconfiguration is performed by
the SRP. At the end of the configuration process, the
FPGA is configured with the NCP bitstream

After this first phase, the FPGA is configured with the
SCP 1 and the SCP 2 circuits. The last step consists in
configuring the FPGA free area with the other application
parts that have not an encrypted configuration; so with the
NCP bitstream.

Finally, the FPGA is configured with all the application
parts; the SCP 1, the SCP 2 and the NCP. There can be
any encryption or decryption circuit configured in the
FPGA.

5.7 Configuration controller finite state machine

As described previously, the configuration controller is
developed with a finite state machine. With the knowledge
of the memory mapping, the configuration management
finite state machine is relatively simple. The configuration
controller is used only for normal FPGA configuration when
power is switched on. The initial configuration is processed
by the CAD tool.

Figure 7 shows the three-global-states used by the
configuration controller. Table 2 describes the actions
associated to the states of the configuration controller.
The first state of this three-states FSM is an idle state.
To change state the configuration controller waits for a start
signal. This signal is the begin-signal of the normal
configuration process.

82 L. Bossuet, G. Gogniat and W. Burleson

Figure 7 Configuration controller finite state machine. It is a
three-global-states machine. The states represent
several actions. The active state depends if the
bitstream is encrypted or not

Table 2 States description of the configuration controller
FSM

State name Actions

Idle Wait start
Configure the FPGA with selected bitstream*
using partial-configuration
Update the configuration address register

Loading

*The selected bitstream can be the no-encrypted
bitstream of a decryption circuit or a NCP
Start the decryption algorithm and load the
corresponding SCP bistream* on the FPGA
Update the configuration address register

Loading and
decrypting

*The selected bitstream is an encrypted bitstream

Once in the second state, the loading state, the configuration
controller changes states according to the type of bitstream.
If the bitstream is not encrypted the current state is the
second state. In this state, the normal configuration
of the FPGA is performed. If the bitstream is encrypted
(so it is a SCP bitstream), the current state is the ‘loading
and decrypting’ state. In this state, the configuration
controller loads first the decryption circuit bitstream inside
the FPGA before loading the encrypted bitstream of a SCP.

The machine returns to the idle state when all the
application is loaded inside the FPGA.

This section has shown the main technological
characteristics of our bitstream protection system for SRAM
FPGA. The following sections give the drawbacks and
advantages of our solution and compare it with the different
solutions (presented in Section 3).

6 Drawbacks and advantages of the proposed
solution

If this method permits to overcome the limitation of other
proposed solutions, it has, however, some drawbacks.

The first drawback is the relative complexity of the
method, since it is necessary to manage the partial
reconfiguration and dynamic self-configuration. Most of the
FPGA manufacturers do not have the technology and the
CAD tools to manage these types of configurations but
Xilinx, which proposes an efficient tool for such needs.

The decryption circuit can have several sizes according
to the algorithm and the implementation. For example,
several works give comparisons of the hardware
performance of the different AES final candidates (MARS,
RC6, Rijndael, Serpent or Twofish for example) using
FPGA (Dandalis et al., 2000; Elbirt et al., 2000; Gaj and
Chodowiec, 2000; Weaver and Wawrzynek, 2000). All
these works use the Xilinx Virtex as the reconfigurable
target. The Tables 3 and 4 compare the results of these
studies for the area requirement (one Virtex slice
corresponds to two four-inputs LUTs, two flip-flops and one
carry chain) and time performance (throughput).

Table 3 Area requirement of FPGA implementations of AES
final candidates

No. of slices of the cryptographic core

Algorithm
Dandalis et al.

(2000)
Elbirt et al.

(2000)
Gaj and Chodowiec

(2000)

Rijndael 4312 5302 2902
Serpent 1250 7964 4438
RC6 1749 3189 1139
Twofish 2809 3053 1076
MARS 4621 – 2737

Table 4 Time performance of FPGA implementations of AES
final candidates

Throughput (Mbit/s)

Algorithm
Dandalis et al.

(2000)
Elbirt et al.

(2000)
Gaj and Chodowiec

(2000)

Rinjdael 353.0 300.1 331.5
Serpent 148.9 444.2 339.4
RC6 112.9 126.5 103.9
Twofish 173.1 119.6 177.3
MARS 101.9 – 39.8

The performances (time and area) showed in the two tables
are different for each work. Because the architectures
chosen, for the different studies, have different structures
(loop unroll, pipeline and sub-pipeline). All these results are
given only for an encryption core without the key-setup
circuit. Nevertheless, this circuit must be considered
because it can take area (slices). The Table 5 shows the
number of slices for key-setup circuit of the five AES final
candidates and the relative area percentage of the total area
requirement (encryption core and key-setup circuits).

According to these results, it is significant to consider
the key-setup circuit in the area requirement. Finally,
the three tables show that a same decryption standard
(AES in this example) can be performed with several

 Dynamically configurable security for SRAM FPGA bitstreams 83

algorithms and each algorithm can have different
implementations. Therefore, it is necessary to give all the
possibilities to the designer, and our solution gives this
flexibility. Moreover, the studies Dandalis et al. (2000),
Elbirt et al. (2000), Gaj and Chodowiec (2000) and Weaver
and Wawrzynek (2000) are throughput oriented, therefore,
the area (or the number of used FPGA resources) is
not the main constraint. In our system, the out data
of the decryption circuit are used to self-reconfigure the
FPGA. In the case of Xilinx technology, the ICAP interface
limits the throughput to 50 Mbit/s. This throughput is
widely inferior to most of the Table 4 results. Therefore, it
is possible to develop decryption algorithm with area (used
resources) constraint. Actually, the number of Virtex slices
used for the cryptographic cores given in Table 3 must
be reduced. For example, in our Xilinx proto-board, the
Virtex-II Pro XC2VP20 contains 9280 slices, according to
the Table 3, with such device, the Rijndael implementation
of AES use from 31% to 57%. It is probably necessary to
limit the number of used resources since the FPGA is not
configured only with the decryption algorithm.

Table 5 Area requirement of FPGA implementations of AES
final candidates

No. of slices of the
key-setup circuit Percent of the total area

Algorithm

Dandalis
et al.

(2000)

Weaver and
Wawrzynek

(2000)

Dandalis
et al.

(2000)

Weaver and
Wawrzynek

(2000)
Rijndael 1361 128 24 14
Serpent 1300 2060 51 35
RC6 901 290 34 15
Twofish 6554 1260 70 48
MARS 2275 50 33 3

The configuration controller can be complex. Its complexity
depends on the number of SCPs in the application.
This number is correlated to the application security
partitioning. The costs of a larger root memory and a
complex configuration controller are the hardware overhead
costs of this method but they represent the origin of its
flexibility. The system security has always costs that are
necessary to evaluate in order to choose the best solution
according to the required security level.

Since it is necessary to first configure the decryption
circuit before the real configuration of each SCP, this
method can spend time when the system is powered up.
Nevertheless, today the SRAM FPGA configuration is
increasingly faster (about 10 millisecond for a partial
reconfiguration for a Xilinx Virtex 1000-E device
(Delahaye et al., 2004)).

This method has many very interesting advantages.
First, the encryption/decryption circuits do not take FPGA
application-dedicated resources, since when a decryption
circuit has been used it is removed from the FPGA.
The FPGA resources initially used to perform the
decryption circuit are free for other uses.

We choose, like Kean (2001; Kean et al 2001), to embed
the key inside the FPGA in order to have non-external
extra-battery.

One of the main advantages of this method is the
increase of flexibility. The designer can partition the
application according to the required security level.
Therefore, if just a small part of the application needs a
strong security, the system can be very simple (just one
small SCP). The designer has the possibilities to choose the
suitable algorithms and architectures for the encryption/
decryption circuits. It is possible to adjust the security level
according to the application constraints.

Moreover, the designer can upgrade his application and
the security scheme with the same reconfigurable hardware.
In this way, it is possible to take advantage of the latest
improvements of the security field.

7 Comparison of the different actual solutions

Section 3 of this paper has shown different actual
solutions of FPGA protection against cloning and
reverse engineering. It is interesting to compare these
different solutions with our solution for several aspects;
security level, encryption flexibility, reconfiguration
flexibility and complexity. Table 6 presents the result of
comparisons.

Table 6 Area requirement of FPGA implementations of AES
final candidates

 Security
Encryption
flexibility

Reconfiguration
flexibility Complexity

Actel

Antifuse

High – Any Easy

QuickLogic

Flash

High – Any Easy

Xilinx

Triple DES

Middle Any Low Easy

Altera

AES

Middle Any Low Easy

Algotronix

T. Kean

Middle Any Low Middle

UBS/UMASS

L. Bossuet

Middle+ High High Complex

According to the table, we think that the security
level is higher for antifuse or flash logic, but we think
that it is necessary to better expertise the real security level
of bitstream encryption system. The real advantage
of our solution is the flexibility of encryption and
reconfiguration. Moreover, with a real application security
policy (i.e., security-oriented application partitioning), our
solution proposes a higher security level that the other
solution for SRAM FPGA. Nevertheless, our solution
complexity is higher since it is necessary to manage the
partial and self-reconfiguration.

84 L. Bossuet, G. Gogniat and W. Burleson

8 Conclusion

Since the SRAM FPGAs are increasingly important
for the electronic industry, it is necessary to improve the
security level of such devices. Although some works
have already proposed solutions to improve this security
level, we think that is it possible to investigate more this
domain.

In this paper, we propose a new solution to prevent
piracy against SRAM FPGAs bitstream. Our contribution is
to use the latest developments of configuration technique in
order to improve the security system flexibility. The use of
self-reconfiguration allows using the decryption circuit out
data to configure the decrypted bitstream. Unlike the actual
bitstream encryption scheme (Xilinx or Altera solution), our
solution is flexible; the designer can choose the different
encryption/decryption algorithms and architectures. He can
easily update the system with new security feature.
Moreover, we propose to the designer to apply a true
security policy for the applications, by security-oriented
partitioning.

We think that the security problem is a very important
issue for FPGAs and for the reconfigurable systems on chip.
Probably in the near future, there will be more and more
works done about this subject.

Acknowledgement

Manuscript received June 28, 2004. This work was
supported in part by the French Ministry for Education and
Research.

References
Abraham, D.G., Dolan, G.M., Double, G.P. and Stevens, J.V.

(1991) ‘Transaction security system’, IBM Systems Journal,
Vol. 30, No. 2, pp.206–229.

Altera Coporation (2004) Design Security in Stratix II Devices,
White paper, Available on www.altera.com.

Anderson, R. and Kuhn, M. (1996) ‘Tamper resistance – a
cautionary note’, Proceeding of the Second USENIX
Workshop on Electronic Commerce, November 18–21,
Oakland, California, USA, pp.1–11.

Anderson, R. and Kuhn, M. (1997) ‘Low cost attack on tamper
resistant devices’, Proceeding of the 5th Workshop of Security
Protocols, April 7–9, Paris, France, pp.125–136.

Blodget, B. and McMillan, S. (2003) ‘A lightweight approach for
embedded reconfiguration of FPGAs’, Design, Automation
and Test in Europe Conference and Exhibition, DATE’03,
Mach 3–7, Munich, Germany.

Blodget, B., James-Roxby, P., Keller, E., McMillan, S.
and Sundararajan, P. (2003) ‘A self-reconfiguration
platform’, Proceeding of 13th International Conference on
Field-Programmable Logic and Applications, FPL’2003,
September, Lisbon, Portugal, pp.565–574.

Dandalis, A. and Prasanna, V.K. (2000) ‘An adaptive
cryptographic for IPSec architectures’, Proceeding IEEE
Symposium on Field-Programmable Custom Computing
Machines, FCCM’00, April, Napa, USA, pp.132–141.

Dandalis, A., Prasanna, K. and Rolim, J.D.P. (2000) ‘A compartive
study of performances of the AES final candidates
using FPGA’, Workshop on Cryptographic Hardware and
Embedded Systems, August.

Delahaye, J.P., Gogniat, G., Roland, C. and Bomel, P. (2004)
‘Software radio and dynamic reconfiguration on a DSp/FPGA
platform’, in Rykaczewski, P. and Schmidt, M. (Eds.): in
special issue on Software Defined Radio of Frequenz,
May-June, No. 58, pp.152–159.

Elbirt, A.J., Yip, W., Chetwynd, B. and Paar, C. (2000) ‘An FPGA
implementation and performance evaluation of the AES block
cipher candidate algorithm finalists’, Proceeding of the
third Advanced Encryption Standard Candidate Conference,
AES3, April 12–14, New York, USA, pp.12–27.

Erickson, C.R., Tovana, D. and Holen, V.A. (2001) Encryption of
Configuration Stream, US Patent 6 212 639, April 3.

Fong, R., Harper, S. and Athanas, P. (2003) ‘A versatile
framework for FPGA field updates: an application of partial
self-reconfiguration’, Proceeding of 14th IEEE International
Workshop on Rapid System Prototyping, RSP’03, 9–11 June,
San Diego, California, USA, pp.117–123.

Gaj, K. and Chodowiec, P. (2000) ‘Comparison of the hardware
performance of the AES candidates using reconfigurable
hardware’, Proceeding of the third Advanced Encryption
Standard Candidate Conference, AES3, April 12–14,
New York, USA.

Hübner, M., Ulmann, M., Weissel, F. and Becker, J. (2004)
‘Real-time configuration code decompression for dynamic
FPGA self-reconfiguration’, 11th IEEE Reconfigurable
Architectures Workshop, RAW 2004, Santa Fé, New Mexico,
USA, 26–17 April.

Kean, T. (2001) ‘Secure configuration of field programmable
gate array’, Proceedings IEEE Symposium on Field
Programmable Custom Computing Machines (FCCM),
Rohnert Park CA.

Kean, T. (2001) ‘Secure configuration of field programmable
gate arrays’, Proceeding of 11th International Conference
on Field-Programmable Logic and Applications, FPL’2001.
Belfast, UK, pp.142–152.

Kelen, S.H. and Burnham, J.L. (2000) System and Method for PLD
Bitstream Encryption, US Patent 6 118 869, September 12.

Lockwood, J.W., Neely, C., Zuver, C., Moscola, J.,
Dharmapurikar, S. and Lim, D. (2003) ‘An extensible,
system-on-programmable-chip, content-aware internet
firewall’, Proceeding of 13th International Conference on
Field-Programmable Logic and Applications, FPL’2003,
September, Lisbon, Portugal, pp.859–868

Mason, M.T., Kunnari, N.D. and Kuo, H.H. (2001) Secure
Programmable Logic Device, US Patent 6 331 784,
December 18.

Örs, S.B., Oswald, E. and Preneel, B. (2003) ‘Power-analysis
attack on an FPGA – first experimental results’, CHES 2003,
LNCS 2779, pp.35–50.

Pang, R.C., Wong, J., Frake, S.O., Sowards, J.W.,
Kondapalli, V. M., Goetting, F.E., Trimberger, S.M. and
Rao, K.K. (2002) Non Volatile/Battery-Backed Key in PLD,
US Patent 6 336 117, April 2.

QuickLogic (2002) Security in QuickLogic Devices, White Paper,
Available on http://www.quicklogic.com.

Standaert, F.X., Örs, S.B. and Preneel, B. (2004) ‘Power-analysis
on an FPGA implementation of AES’, In Joye, M. and
Quisquarter, J.J. (Eds.): Proceedings of Cryptographic
Hardware and Embedded Systems CHES’2004, Lecture Note
in Computer Science (LNCS), Springer-Verlag, pp.30–44.

 Dynamically configurable security for SRAM FPGA bitstreams 85

Standaert, F.X., van Oldeneel tot Oldenzeel, L., Samyde, D. and
Quisquater, J.J. (2003) ‘Power analysis of FPGAs: how
practical is the attack’, Proceeding of 13th International
Conference on Field-Programmable Logic and Applications,
FPL’2003, September, Lisbon, Portugal, pp.707–711.

Tredennick, N. and Shimamoto, B. (2003) ‘The rise of
reconfigurable systems’, Proceeding of Engineering of
Reconfigurable Systems and Application, ERSA’2003,
June 23–26, Las Vegas, Nevada, USA, pp.3–9.

Trimberger, S. (2004) ‘Virtex encrypted bitstreams’, 2nd
International Workshop on Cryptographic Architectures
Embedded in Reconfigurable Devices, CryptArchi 2004,
Dijon, France, June 16–18.

Ulmann, M., Hübner, M., Grimm, B. and Becker, J. (2004)
‘An FPGA run-time system for dynamical on-demand
reconfiguration’, 11th IEEE Reconfigurable Architectures
Workshop, RAW 2004, Santa Fé, New Mexico, USA,
26–17 April.

Weaver, N. and Wawrzynek, J. (2000) ‘A comparison of
the AES candidates amenability to FPGA implementation’,
Proceeding of the third Advanced Encryption Standard
Candidate Conference, AES3, April 12–14, New York, USA.

Wollinger, T. and Paar, C. (2003) ‘How secure are FPGAs in
cryptographic applications’, Proceeding of 13th International
Conference on Field-Programmable Logic and Applications,
FPL’2003, September, Lisbon, Portugal, pp.707–711.

Wollinger, T., Guajardo, J. and Paar, C. (2004) ‘Security on
FPGAs, state of the art implementations and attacks’, ACM
Transactions in Embedded Computing Systems (TECS),
Vol. 3, No. 3, pp.534–574.

Websites
Actel Coporation, Resource Center: Security, Available on

www.actel.com/products/rescenter/security/index.html.
Altera Coporation, http://www.altera.com.
Xilinx Coporation, http://www.xilinx.com.
Xilinx Coporation, Virtex-II platform FPGA Handbook, Technical

Documentation, Available on www.xilinx.com.

