
Coordination in Situated Systems
Engineering MAS Environment in TuCSoN

Stefano Mariani, Andrea Omicini
{s.mariani, andrea.omicini}@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum—Università di Bologna, Italy

Talk @ IDCS 2014
International Conference on

Internet and Distributed Computing Systems
Amantea, CS, Calabria, Italy
22nd-24th September 2014

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 1 / 36

Premises

Outline

1 Premises

2 TuCSoN Architecture

3 Engineering Situated MAS with TuCSoN

4 Conclusion

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 2 / 36

Premises

Context

Multi-agent systems (MAS) are an expressive paradigm for the
engineering of distributed systems [Jennings, 2001, Jennings, 2000]

Agents are not the only fundamental bricks for multi-agent systems
(MAS) [Omicini et al., 2008]

Environment too is an essential abstraction for MAS modelling and
engineering [Weyns et al., 2007]

This means that in MAS things happen not just as a result of agent
actions, but also because of environment change

These are the two sources of events and dependencies for a MAS

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 3 / 36

Premises

Motivation

Both agent-agent (social) and agent-environment (situated)
dependencies are sources of complexity in MAS

Since coordination aims at managing dependencies
[Malone and Crowston, 1994], it could be used to deal with both
social and situated dependencies

Till now, coordination artefacts have been mostly devoted to handle
social interaction—however, as a form of environment-based
coordination [Omicini et al., 2004]

It is then quite natural to see coordination artefacts handling both
social and situated interaction in a uniform way
[Omicini and Mariani, 2013]

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 4 / 36

Premises

Goals

We focus on the TuCSoN coordination middleware
[Omicini and Zambonelli, 1999], and show how it supports
environment engineering in MAS by providing coordination artefacts
[Omicini et al., 2004] to handle situated interaction

We focus on situatedness by describing the steps a MAS designer
should follow to effectively engineer computational/physical
environments supporting agent situated action in TuCSoN

The contribution is meant to be on both the architecture and the
method sides

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 5 / 36

TuCSoN Architecture

Outline

1 Premises

2 TuCSoN Architecture

3 Engineering Situated MAS with TuCSoN

4 Conclusion

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 6 / 36

TuCSoN Architecture

What is TuCSoN?

TuCSoN [Omicini and Zambonelli, 1999] is a tuple-based
coordination model [Gelernter and Carriero, 1992] for open,
distributed MAS, providing ReSpecT tuple centres
[Omicini and Denti, 2001] as its coordination artefacts, which means
that

a TuCSoN-coordinated MAS is made by agents interacting by
exchanging tuples via tuple centres, which are programmable tuple
spaces [Denti et al., 1997]
TuCSoN tuple centres contain the policies for MAS coordination
written in the ReSpecT language

The TuCSoN model is provided as a Java-based middleware for MAS
engineering at

http://tucson.unibo.it

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 7 / 36

http://tucson.unibo.it

TuCSoN Architecture

TuCSoN Architecture for Situatedness I

Artefacts

According to the A&A meta-model [Omicini et al., 2008], a MAS is
made of agents and artefacts

where artefacts are the reactive entities embodying the functions of
the MAS

Inspired by the A&A meta-model, the TuCSoN architecture provides
two sorts of artefacts

boundary artefacts — to handle both agent activity and environment
change within the MAS

coordination artefacts — to govern both agent-agent and
agent-environment interaction

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 8 / 36

TuCSoN Architecture

TuCSoN Architecture for Situatedness II

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 9 / 36

TuCSoN Architecture

TuCSoN Architecture for Situatedness III

agents — Any computational entity willing to exploit TuCSoN
coordination services. Agents should request and obtain an
ACC from the TuCSoN node. Any action from any agent
towards the MAS – either social or situated – is then
mediated by its associated ACC.

ACC — Agent coordination contexts [Omicini, 2002] are TuCSoN
boundary artefacts devoted to agents. ACC both enable and
constraint agents interactions: in particular, ACCs map every
agent operation into events asynchronously dispatched to
tuple centres. ACCs thus decouple agents from MAS in
control, reference, space, and time.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 10 / 36

TuCSoN Architecture

TuCSoN Architecture for Situatedness IV

probes — Environmental resources in TuCSoN are called probes.
They are dealt with as sources of perceptions (aka sensors)
or makers of actions (aka actuators) in a uniform way.
Probes do not directly interact with the MAS, but through
mediation of their associated transducer.

transducers — TuCSoN transducers [Casadei and Omicini, 2009] are the
boundary artefacts devoted to probes. Each probe is
assigned to a transducer, which is specialised to handle
events from that probe, and to act on probes through
situation operations. Transducers thus decouple in control,
reference, space and time probes from tuple centres.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 11 / 36

TuCSoN Architecture

TuCSoN Architecture for Situatedness V

events — TuCSoN adopts and generalises the ReSpecT event
model. Events are the run-time data structure representing
both activities and change in a uniform way. ACC and
transducers translate external events (activities and change)
into internal events (operations and situations) that tuple
centres can handle to implement the policies required for
MAS coordination

tuple centres — TuCSoN architectural component implementing
coordination artefacts, thus in charge of managing
dependencies. As such, they are meant to govern both social
and situated interactions [Omicini and Mariani, 2013]. By
adopting ReSpecT tuple centres, TuCSoN relies on (i) the
ReSpecT language to program coordination laws, and (ii) the
ReSpecT situated event model to implement events

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 12 / 36

TuCSoN Architecture

TuCSoN Event Model I

〈Event〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈Evaluation〉
〈StartCause〉 , 〈Cause〉 ::= 〈Activity〉 | 〈Change〉 , 〈Source〉 , 〈Target〉 , 〈Time〉 , 〈Space:Place〉

〈Source〉 , 〈Target〉 ::= 〈AgentId〉 | 〈CoordArtefactId〉 | 〈EnvResId〉 | ⊥
〈Evaluation〉 ::= ⊥ | {〈Result〉}

Table: ReSpecT situated event model.

〈Activity〉 ::= 〈Operation〉 | 〈Situation〉
〈Operation〉 ::= out(〈Tuple〉) | (in | rd | no | inp | rdp | nop) (〈Template〉 [, 〈Term〉])
〈Situation〉 ::= getEnv(〈Key〉 , 〈Value〉) | setEnv(〈Key〉 , 〈Value〉)
〈Change〉 ::= env(〈Key〉 , 〈Value〉) | time(〈Time〉) |

from(〈Space〉 , 〈Place〉) | to(〈Space〉 , 〈Place〉)

Table: ReSpecT triggering events.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 13 / 36

TuCSoN Architecture

TuCSoN Event Model II

Summing up

In a TuCSoN-coordinated MAS

ACCs and transducers represent agents and environment, respectively,
in the MAS, by translating activities and changes in a common event
model

Tuple centres deals with both social and situated dependencies by
making it possible to program the coordination of all sort of event in
a uniform way

In essence, this means that we need both a technology and a methodology
to coherently exploit event-driven programming within an agent-oriented
programming framework

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 14 / 36

TuCSoN Architecture

TuCSoN Event Model III

Figure: In TuCSoN, both social (agent-agent) and situated (agent-environment) interactions

are mediated by ReSpecT tuple centres.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 15 / 36

Engineering Situated MAS with TuCSoN

Outline

1 Premises

2 TuCSoN Architecture

3 Engineering Situated MAS with TuCSoN

4 Conclusion

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 16 / 36

Engineering Situated MAS with TuCSoN

General Method for Environment Engineering

1 Implement probes—sensors and actuators. Typically, this does not
require implementing, e.g., software drivers for the probe: designers
can simply wrap existing drivers in a Java class implementing the
ISimpleProbe interface, then interact with TuCSoN transducers

2 Implement transducers associated to probes by extending the
TuCSoN AbstractTransducer class

3 Configure the transducer manager, responsible for probes and
transducers association and lifecycle management

4 Program tuple centres using ReSpecT implementing the coordination
policies that, along with TuCSoN agents, embed the application logic

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 17 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

Scenario

A situated intelligent thermostat is in charge of keeping a room
temperature between 18 and 22 degrees

To this end, it interacts with a sensor and an actuator: the former is
queried by the thermostat to perceive the temperature, whereas the
latter is prompted to change the temperature upon need

Both the sensor and the actuator, as probes, interface with the MAS
through one transducer each

To promote distribution of the application logic, transducers and
thermostat are associated each with their own tuple centre, suitably
programmed through ReSpecT reactions handling their specific
interactions with the MAS

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 18 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

1) Implement Probes

Implement the ISimpleProbe interface:

getIdentifier — retrieving probe ID
getTransducer — retrieving associated transducer
setTransducer — associating an existing transducer to the probe
readValue — to perceive the probe—mandatory for sensors

writeValue — to act on the probe—mandatory for actuators

In particular, methods readValue and writeValue should implement
the logic required to interact with the actual probe—either a
computational environmental resource or a physical object

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 19 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

2) Implement Transducers I

An abstract Java class is provided for extension:
AbstractTransducer, implementing
TransducerStandardInterface

getEnv — to sense an environmental property change—usually,
implemented by transducers assigned to sensors

setEnv — to effect an environmental property change—usually,

implemented by transducers assigned to actuators

Such methods should actually dispatch to probes the request to either
sense/effect an environmental property change

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 20 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

2) Implement Transducers II

Middleware support

Both methods are automatically called by TuCSoN middleware whenever

an event generated by an environmental property change is raised by the
associated probe—notifyEnvEvent method in
TransducerStandardInterface, to be called by MAS programmers

an event generated by an environmental property change is raised by the

associated tuple centre—notifyOutput method in

TransducerStandardInterfacea

aAutomatically called by TuCSoN middleware in response to ReSpecT situation
activities—see 〈Situation〉 in Table 2.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 21 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

3) Configure the Transducer Manager I

Once both probes and transducers are implemented, MAS designers
should exploit TuCSoN TransducersManager services to register
such components and to associate them:

createTransducer — to create a new transducer associated to the given
probe and bound to the given tuple centre

addProbe — to attach a probe to a given transducer

removeProbe — to detach a probe from its transducer

getTransducer — to retrieve a transducer’s reference given its id

stopTransducer — to destroy a given transducer

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 22 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

3) Configure the Transducer Manager II

Run-time adaptiveness

Notice to enable dynamic and distributed addition/removal of
transducers and probes, as well as run-time change of their
associations, all the transducer manager services are also available via
TuCSoN coordination operations.

In particular, TuCSoN agents may (remotely) emit special tuples in
the built-in ‘$ENV’ tuple centre, available in any TuCSoN node

Syntax of such tuples can be found in TuCSoN official guide

http://www.slideshare.net/andreaomicini/

the-tucson-coordination-model-technology-a-guide

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 23 / 36

http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide
http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide

Engineering Situated MAS with TuCSoN The Thermostat Case Study

4) Program Tuple Centres I

Agents and probes (environment) are connected via ReSpecT tuple
centres, programmed via the ReSpecT language

In fact, agents and probes – or better, ACCs and transducers – do not
directly interact: all the interactions happen through coordination
operations provided by the TuCSoN middleware

Therefore, whenever agents need to interact with a probe, they
perform a coordination operation on the tuple centre bound to the
transducer responsible for that probe

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 24 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

4) Program Tuple Centres II

1 reaction(

2 in(sense(temp(T))), // agent request

3 (operation, invocation),

4 sensor@localhost :20504 ? getEnv(temp, T) // perception request

5).

6 reaction(

7 getEnv(temp, T), // perception reply

8 (from_env, completion), // environment filter

9 out(sense(temp(T)))

10).

Figure: Stripped-down version of the code from sensorSpec.rsp in package

alice.tucson.examples.situatedness within current TuCSoN distribution

(TuCSoN-1.10.7.0208). ’sensor’ is the probe ID of the probe target of the situation operation

request: the id of its transducers is automatically retrieved by TuCSoN middleware at run-time,

hence transducer mediation is transparent to the ReSpecT programmer.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 25 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

4) Program Tuple Centres III

ReSpecT pattern essentially valid for any situated interaction:

reaction 1 − 5 maps agents coordination operations requests (external
events) into situation operations commands (internal events)
reaction 6 − 10 maps situation operation replies (from probes, external
events) into coordination operations outcomes (internal events)

Supporting situatedness

MAS designers explicitly exploit ReSpecT situated event model to support
situatedness of interactions, binding together events coming from the
agent through its ACC with events going toward the environment through
its transducer—and, dually, from the environment toward the agents.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 26 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

The Whole Picture I

1 /* Start perception -reason -action loop */

2 LogicTuple template;

3 ITucsonOperation op;

4 int temp;

5 LogicTuple action = null;

6 for (int i = 0; i < Thermostat.ITERS; i++) {

7 /* Perception */

8 template = LogicTuple.parse("sense(temp(_))");

9 op = acc.in(sensorTc , template , null); // see line 2 in Figure 2

10 if (op.isResultSuccess ()) {

11 temp = op.getLogicTupleResult (). getArg (0). getArg (0). intValue ();

12 /* Reason */

13 if ((temp >= Thermostat.LOW) && (temp <= Thermostat.HIGH)) {

14 continue;

15 } else if (temp < Thermostat.LOW) {

16 action = LogicTuple.parse("act(temp(" + ++temp + "))");

17 } else if (temp > Thermostat.HIGH) {

18 action = LogicTuple.parse("act(temp(" + --temp + "))");

19 }

20 /* Action */

21 // ’act’ ReSpecT reactions are similar to those in Figure 2

22 acc.out(actuatorTc , action , null);

23 }

24 }

Figure: Stripped-down version of the code from Thermostat.java. Notice the thermostat

interacts solely with TuCSoN tuple centres, being transducers (thus probes) interactions

transparently delegated to the TuCSoN middleware—through the ReSpecT reactions in Figure 2.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 27 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

The Whole Picture II

The last code snippet in Figure 3 is meant to show how the
application logic – the thermostat – is linked to the “situatedness
machinery”

In particular, line 9 shows TuCSoN coordination operation invocation
causing ReSpecT reactions in Figure 2 to trigger, stimulating the
sensor probe through its transducer—transparently to the designer of
the application logic

Same sort of transparency is provided to ReSpecT programmers, as
they need not to know the internal machinery of probes but just
transducer API, as well as to probes programmers, since they only
deal with ISimpleProbe and TransducerStandardInterface API.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 28 / 36

Engineering Situated MAS with TuCSoN The Thermostat Case Study

The Whole Picture III

Separation of concerns

This promotes and supports a clear separation of concerns between
specialised programmers, such that

application logic (agent) programmers

coordination (ReSpecT) programmers

environment (probes and transducers) programmers

each may focus on their task, just relying on the fact that all programmers
will use the same TuCSoN API.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 29 / 36

Conclusion

Outline

1 Premises

2 TuCSoN Architecture

3 Engineering Situated MAS with TuCSoN

4 Conclusion

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 30 / 36

Conclusion

Conclusion

Agent-oriented frameworks can be effective in the engineering of
complex distributed systems by providing a coherent framework for
event-driven programming—in particular when dealing with
environment engineering in situated systems

Agent coordination models, typically exploited for governing social
interaction, could extend their reach to deal with situated interaction,
by providing suitable abstractions to handle all sources of change in a
MAS – agents and environment – through a uniform event model

In this paper

we describe the architectural approach to situatedness adopted by the
TuCSoN coordination middleware
we discuss the basic steps of a methodology allowing agent-oriented
engineering and event-driven programming to fruitfully coexist in the
engineering of situated MAS

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 31 / 36

References

References I

Casadei, M. and Omicini, A. (2009).
Situated tuple centres in ReSpecT.
In Shin, S. Y., Ossowski, S., Menezes, R., and Viroli, M., editors, 24th Annual ACM
Symposium on Applied Computing (SAC 2009), volume III, pages 1361–1368, Honolulu,
Hawai’i, USA. ACM.

Denti, E., Natali, A., and Omicini, A. (1997).
Programmable coordination media.
In Garlan, D. and Le Métayer, D., editors, Coordination Languages and Models, volume
1282 of LNCS, pages 274–288. Springer-Verlag.

Gelernter, D. and Carriero, N. (1992).
Coordination languages and their significance.
Communications of the ACM, 35(2):97–107.

Jennings, N. R. (2000).
On agent-based software engineering.
Artificial Intelligence, 117(2):277–296.

Jennings, N. R. (2001).
An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35–41.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 32 / 36

References

References II

Malone, T. W. and Crowston, K. (1994).
The interdisciplinary study of coordination.
ACM Computing Surveys, 26(1):87–119.

Omicini, A. (2002).
Towards a notion of agent coordination context.
In Marinescu, D. C. and Lee, C., editors, Process Coordination and Ubiquitous Computing,
chapter 12, pages 187–200. CRC Press, Boca Raton, FL, USA.

Omicini, A. and Denti, E. (2001).
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294.

Omicini, A. and Mariani, S. (2013).
Coordination for situated MAS: Towards an event-driven architecture.
In Moldt, D. and Rölke, H., editors, International Workshop on Petri Nets and Software
Engineering (PNSE’13), volume 989 of CEUR Workshop Proceedings, pages 17–22. Sun
SITE Central Europe, RWTH Aachen University.

Omicini, A., Ricci, A., and Viroli, M. (2008).
Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 33 / 36

References

References III

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., and Tummolini, L. (2004).
Coordination artifacts: Environment-based coordination for intelligent agents.
In Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors, 3rd international
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004),
volume 1, pages 286–293, New York, USA. ACM.

Omicini, A. and Zambonelli, F. (1999).
Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269.

Weyns, D., Omicini, A., and Odell, J. J. (2007).
Environment as a first-class abstraction in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 34 / 36

Extras

URLs

Slides

On APICe

http://apice.unibo.it/xwiki/bin/view/Talks/SituatedcoordIdcs2014

On SlideShare
http://www.slideshare.net/andreaomicini/

coordination-in-situated-systems-engineering-mas-environment-in-tucson

Article

On APICe

http://apice.unibo.it/xwiki/bin/view/Publications/SituatedcoordIdcs2014

On SpringerLink

http://link.springer.com/10.1007/978-3-319-10422-5 9

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 35 / 36

http://apice.unibo.it/xwiki/bin/view/Talks/SituatedcoordIdcs2014
http://www.slideshare.net/andreaomicini/coordination-in-situated-systems-engineering-mas-environment-in-tucson
http://www.slideshare.net/andreaomicini/coordination-in-situated-systems-engineering-mas-environment-in-tucson
http://apice.unibo.it/xwiki/bin/view/Publications/SituatedcoordIdcs2014
http://link.springer.com/10.1007/978-3-319-10422-5_9

Coordination in Situated Systems
Engineering MAS Environment in TuCSoN

Stefano Mariani, Andrea Omicini
{s.mariani, andrea.omicini}@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum—Università di Bologna, Italy

Talk @ IDCS 2014
International Conference on

Internet and Distributed Computing Systems
Amantea, CS, Calabria, Italy
22nd-24th September 2014

Mariani, Omicini (DISI, UniBO) Situated Coordination IDCS 2014, 23/9/2014 36 / 36

	Premises
	TuCSoN Architecture
	Engineering Situated MAS with TuCSoN
	The Thermostat Case Study

	Conclusion

