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Abstract—We propose a general statistical inference
framework to capture the privacy threat incurred by a
user that releases data to a passive but curious adversary,
given utility constraints. We show that applying this general
framework to the setting where the adversary uses the
self-information cost function naturally leads to a non-
asymptotic information-theoretic approach for characteriz-
ing the best achievable privacy subject to utility constraints.
Based on these results we introduce two privacy metrics,
namely average information leakage and maximum infor-
mation leakage. We prove that under both metrics the
resulting design problem of finding the optimal mapping
from the user’s data to a privacy-preserving output can
be cast as a modified rate-distortion problem which, in
turn, can be formulated as a convex program. Finally, we
compare our framework with differential privacy.

I. I NTRODUCTION

A. Motivation

Increasing volumes of user data are being collected
over wired and wireless networks, by a large number of
companies who mine this data to provide personalized
services or targeted advertising to users. As a conse-
quence, privacy is gaining ground as a major topic in
the social, legal, and business realms. This trend has
spurred recent research in the area of theoretical models
for privacy, and their application to the design of privacy-
preserving services. Most privacy-preserving techniques,
such as anonymization, k-anonymity [1] and differential
privacy [2], are based on some form of perturbation of
the data, either before or after the data is used in some
computation. These perturbation techniques provide pri-
vacy guarantees at the expense of a loss of accuracy in
the computation result, which leads to a privacy-accuracy
trade-off.

In this paper, we consider the general setting where
a user wishes to release a set of measurements to an
analyst who provides a service (e.g. a recommendation
system), while keeping data that are correlated with these
measurements private. On one hand, the analyst is a
legitimate receiver for these measurements, from which
he expects to derive some utility. On the other hand, the
correlation of these measurements with the user’s private

data gives the analyst the ability to illegitimately infer
private information. The tension between the privacy
requirements of the user and the utility expectations of
the analyst gives rise to the problems of privacy-utility
trade-off modeling, and the design of release schemes
minimizing the privacy risks incurred by the user, while
satisfying the utility constraints of the analyst.

B. Contributions

Our contributions are three-fold. First, we propose a
general statistical inference framework to capture the pri-
vacy threat incurred by a user who releases information
given certain utility constraints. The privacy risk is mod-
eled as an inference cost gain by a passive but curious
adversary upon observing the information released by
the user. In broad terms, this cost gain represents the
“amount of knowledge” learned by an adversary about
the private data after observing the user’s output. The
design problem of finding the optimal mapping from
the user’s information to a privacy-preserving output
is formulated as an optimization problem where the
cost gain of the adversary is minimized for a given set
of utility constraints. This formulation is general and
given in terms of minimizing both the average and the
maximum cost gain, being applicable to different cost
functions.

Second, we apply this general framework to the
case when the adversary uses the self-information cost
function. We show how this naturally leads to a non-
asymptotic information-theoretic framework to charac-
terize the information leakage subject to utility con-
straints. Based on these results we introduce two privacy
metrics, namelyaverage information leakageandmaxi-
mum information leakage. We also demonstrate that the
problem of designing a privacy preserving mechanism
that achieves the optimal privacy-accuracy tradeoff both
for the average and maximum information leakage can
be cast as modified rate-distortion problems. We then
prove that these problems, in turn, can be expressed as
convex programs. As a consequence, the privacy pre-
serving mapping that achieves the optimal privacy-utility



tradeoff can be efficiently found using convex minimiza-
tion algorithms or widely available convex solvers.

Finally, we compare the average information leakage
and maximum information leakage metrics with differen-
tial privacy. We show that differential privacy does not
provide in generalany privacy guarantees in terms of
average or maximum information leakage. Furthermore,
we introduce the definition ofinformation privacy, and
prove that information privacy implies both differential
privacy and privacy in terms of (average or maximum)
information leakage.

C. Related Work

In the privacy research community, a prevalent and
strong notion of privacy is that of differential privacy [2],
[3]. Differential privacy bounds the variation of the dis-
tribution of the released output given the input database,
when the input database varies slightly, e.g. by a single
entry. Intuitively, released outputs satisfying differential
privacy render the distinction between ”neighboring”
databases difficult. distinguish between. However, dif-
ferential privacy neither provides guarantees, nor an
intuition, on the amount of information leaked when a
differentially private release occurs. Moreover, user data
usually presents correlations. Differential privacy does
not factor in correlations in user data, as the distribution
of user data is not taken into account in this model. A
natural question is how the notion of privacy proposed
in this paper compares to that of differential privacy. We
cover this question in more details in Section V.

Several approaches rely on information-theoretic tools
to model privacy-accuracy trade-offs, such as [4]–[7].
Indeed, information theory, and more specifically rate-
distortion theory, appear as natural frameworks to an-
alyze the privacy-accuracy trade-off resulting from the
distortion of correlated data. Although the approach we
introduce in this paper involves information theoretic
metrics, it is fundamentally different from previous in-
formation theoretic privacy models. Indeed, traditional
information theoretic privacy models, such as [5], [7],
focus on collective privacy for all or subsets of the entries
of a database, and provide asymptotic guarantees on the
average remaining uncertainty per database entry – or
equivocation per input variable – after the output release.
More precisely, the average equivocation per entry is
modeled as the conditional entropy of the input variables
given the released output, normalized by the number
of input variables. In contrast, the general framework
introduced in this paper provides privacy guarantees in
terms of bounds on the inference cost gain that an
adversary achieves by observing the released output. The
use of a self-information cost yields a non-asymptotic

information theoretic framework modeling the privacy
risk in terms of information leakage. This framework, in
turn, can be used to design practical privacy preserving
mappings. Finally, we would like to point out that the
formulation in [4], differs from previously mentioned
information theoretic models, and addresses a particular
case of the general framework introduced in this paper.

The paper is organized as follows. We describe the
set-up and the threat model in Section II, and formulate
the privacy-accuracy trade-off in Section III. Our main
results and their proofs are presented in Section IV.
Finally, in Section V we draw a comparison between the
privacy notion proposed in this paper, and other existing
privacy models, leading to the concluding remarks in
Section VI.

II. GENERAL SETUP AND THREAT MODEL

In this section we outline the general setup considered
in this paper and the corresponding threat model.

A. General setup

We assume that there are two parties that communicate
over a noiseless channel, namely Alice and Bob. Alice
has access to a set of measurement points, represented
by the variableY ∈ Y, that she wishes to transmit
to Bob. At the same time, Alice requires that a set
of variablesS ∈ S should remain private, whereS is
jointly distributed withY according to the distribution
(Y, S) ∼ pY,S(y, s), (y, s) ∈ Y × S. Depending on the
considered setting, the variableS can be either directly
accessible to Alice or inferred fromY . If no privacy
mechanism was in place, Alice would simply transmit
Y to Bob.

Bob has a utility requirement for the information sent
by Alice. Furthermore, Bob is honest but curious, and
will try to learn S from Alice’s transmission. Alice’s
goal is to find and transmit a distorted version ofY ,
denoted byU ∈ U , such thatU satisfies a target utility
constraint for Bob, but “protects” (in a sense made more
precise later) the private variableS. We assume that Bob
is passive but computationally unbounded, and will try
to infer S based onU .

We consider, without loss of generality, thatS →
Y → U . Note that this model can capture the case
whereS is directly accessible by Alice by appropriately
adjusting the alphabetY. For example, this can be done
by representingS → Y as an injective mapping or
allowingS ⊂ Y. In other words, even though the privacy
mechanism is designed as a mapping fromY to U , it is
not limited to an output perturbation, and it encompasses
input perturbation settings.
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Definition 1. A privacy preserving mapping is a proba-
bilistic mappingg : Y → U characterized by a transition
probability pU |Y (u|y), y ∈ Y, u ∈ U .

Since the framework developed here results in formu-
lations that are similar to the ones found in rate-distortion
theory, we will use the term distortion to indicate a mea-
sure of utility. Furthermore, we will use the terms utility
and accuracy interchangeably throughout the paper.

Definition 2. Let d : Y ×U → R
+ be a given distortion

metric. We say that a privacy preserving mapping has
distortion∆ if EY,U [d(Y,U)] ≤ ∆.

We make the following assumptions:
1) Alice and Bob know the prior distribution of

pY,S(·). This represents the side information that
an adversary has.

2) Bob has complete knowledge of the privacy pre-
serving mapping, i.e.,g andpU |Y (·) are known.

Note that this represents theworst-casestatistical side
information that an adversary can have about the input.

B. Threat model

We assume that Bob selects a revised distributionq ∈
PS , wherePS is the set of all probability distributions
over S, in order to minimize an expected costC(S, q).
In other words, the adversary choosesq as the solution
of the minimization

c∗0 = min
q∈PS

ES [C(S, q)] (1)

prior to observingU , and

c∗u = min
q∈PS

ES|U [C(S, q)|U = u] (2)

after observing the outputU . Note that this restriction
on Bob models a very broad class of adversaries that
perform statistical inference, capturing how an adversary
acts in order to infer a revised belief distribution over the
private variablesS when observingU . After choosing
this distribution, the adversary can perform an estimate
of the input distribution (e.g. using a MAP estimator).
However, the quality of the inference is inherently tied
to the revised distributionq.

The average cost gain by an adversary after observing
the output is

∆C = c∗0 − EU [c
∗
u]. (3)

The maximum cost gain by an adversary is measured in
terms of the most informative output (i.e. the output that
give the largest gain in cost), given by

∆C∗ = c∗0 −min
u∈U

c∗u. (4)

In the next section we present a formulation for the
privacy-accuracy tradeoff based on this general setting.

III. A GENERAL FORMULATION FOR THE

PRIVACY-ACCURACY TRADEOFF

A. The privacy-accuracy tradeoff as an optimization
problem

Our goal is to design privacy preserving mappings that
minimize ∆C or ∆C∗ for a given distortion level∆,
characterizing the fundamental privacy-utility tradeoff.
More precisely, our focus is to solve optimization prob-
lems overpU |Y ∈ PU |Y of the form

min ∆C or ∆C∗ (5)

s. t. EY,U [d(Y,U)] ≤ ∆ , (6)

where PU |Y is the set of all conditional probability
distributions ofU given Y .

Remark 1. In the remainder of the paper we consider
only one distortion constraint. However, it is straightfor-
ward to generalize the formulation and the subsequent
optimization problems to multiple distinct distortion con-
straintsEY,U [d1(Y,U)] ≤ ∆1, . . . ,EY,U [dn(Y,U)] ≤
∆n. This can be done by simply adding an additional
linear constraint to the convex program.

B. Application examples

We illustrate next how the proposed model can be
cast in terms of privacy preserving queries and hiding
features within data sets.

1) Privacy-preserving queries to a database:The
framework described above can be applied to database
privacy problems, such as those considered in differential
privacy. In this case we denote the private variable as a
vector S = S1, . . . , Sn, whereSj ∈ S, 1 ≤ j ≤ n
and S1, . . . , Sn are discrete entries of a database that
represent, for example, the entries ofn users. A (not
necessarily deterministic) functionf : Sn → Y is
calculated over the database with outputY such that
Y = f(S1, . . . , Sn). The goal of the privacy preserving
mapping is to present a query outputU such that the
individual entriesS1, . . . , Sn are “hidden”, i.e. the esti-
mation cost gain of an adversary is minimized according
to the previous discussion, while still preserving the
utility of the query in terms of the target distortion
constraint. We illustrate this case with the counting
query, which will be a recurring example throughout the
rest of this paper.

Example 1 (Counting query). Let S1, . . . , Sn be entries
in a database, and define:

Y = f(S1, . . . , Sn) =

n
∑

i=1

1A(Si), (7)
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where

1A(x) =

{

1 if x has propertyA,
0 otherwise.

In this case there are two possible approaches: (i) output
perturbation, whereY is distorted directly to produceU ,
and (ii) input perturbation, where each individual entry
Si is distorted directly, resulting in a new query output
U .

2) Hiding dataset features:Another important partic-
ularization of the proposed framework is the obfuscation
of a set of featuresS by distorting the entries of a data
set Y . In this case|S| ≪ |Y|, andS represents a set
of features that might be inferred from the dataY , such
as age group or salary. The distortion can be defined
according to the the utility of a given statistical learning
algorithm (e.g. a recommendation system) used by Bob.

IV. PRIVACY-ACCURACY TRADEOFF RESULTS

The formulation introduced in the previous section is
general and can be applied to different cost functions.
In this section we particularize the formulation to the
case where the adversary uses the self-information cost
function, as discussed below.

A. The self-information cost function

The self information (or log-loss) cost function is
given by

C(S, q) = − log q(S). (8)

There are several motivations for using such a cost
function. For an overview of the central role of the
self-information cost function in prediction, we refer the
reader to [8]. Briefly, the self-information cost function
is the only local, proper and smooth cost function for
an alphabet of size at least three. Furthermore, since the
minimum self-information loss probability assignments
are essentially ML estimates, this cost function is consis-
tent with a “rational” adversary. In addition, the average
cost-gain when using the self-information cost can be
related to the cost gain when using any other bounded
cost function [8]. Finally, as we will see below, this
minimization implies a “closeness” constraint between
the prior and a posteriori probability distributions in
terms of KL-divergence. In Section V we compare the
resulting privacy measure with that of differential privacy
and information-privacy.

In the next sections we show how the cost minimiza-
tion problems in (5) used with the self-information cost
function can be cast as convex programs and, therefore,
can be efficiently solved using interior point methods or
widely available convex solvers.

B. Average information leakage

It is straightforward to show that for the log-loss func-
tion c∗0 = H(S) and, consequently,c∗u = H(S|U = u),
and, therefore

∆C = I(S;U) = EU [D(pS|U ||pS)], (9)

whereD(·||·) is the KL-divergence. The minimization
(5) can the be rewritten according to the following
definition.

Definition 3. The average information leakageof a set
of featuresS given a privacy preserving outputU is
given byI(S;U). A privacy-preserving mappingpU |Y (·)
is said to provide theminimum average information
leakagefor a distortion constraint∆ if it is the solution
of the minimization

min
pU|Y

I(S;U) (10)

s.t. EY,U [d(Y,U)] ≤ ∆ . (11)

Observe that finding the mappingpU |Y (u|y) that
provides the minimum information leakage is a modified
rate-distortion problem. Alternatively, we can rewrite this
optimization as

min
pU|Y

EU [D(pS|U ||pS)] (12)

s.t. EY,U [d(Y,U)] ≤ ∆ . (13)

The minimization (12) has an interesting and intuitive
interpretation. If we consider KL-divergence as a metric
for the distance between two distributions, (12) states
that the revised distribution after observingU should be
as close as possible to the a priori distribution in terms
of KL-divergence.

The following theorem shows how the the optimiza-
tion in the previous definition can be expressed as a
convex optimization problem. We note that this optimiza-
tion is solved in terms of the unknownspU |Y (·|·) and
pU |S(·|·), which are coupled together through a linear
equality constraint.

Theorem 1. GivenpS,Y (·, ·), a distortion functiond(·, ·)
and a distortion constraint∆, the mappingpU |Y (·|·) that
minimizes the average information leakage can be found
by solving the following convex optimization (assuming
the usual simplex constraints on the probability distri-
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butions):

min
pU|Y ,pU|S

∑

u∈U

∑

s∈S

pU |S(u|s)pS(s) log
pU |S(u|s)

pU (u)
(14)

s.t.
∑

u∈U

∑

y∈Y

pU |Y (u|y)pY (y)d(u, y) ≤ ∆, (15)

∑

y∈Y

pY |S(y|s)pU |Y (u|y) = pU |S(u|s) ∀u, s,

(16)
∑

s∈S

pU |S(u|s)pS(s) = pU (u) ∀u. (17)

Proof: Clearly the previous optimization is the same
as (10). To prove the convexity of the objective function,
note that h(x, a) = ax log x is convex for a fixed
a ≥ 0 and x ≥ 0, and, therefore, the perspective of
g1(x, z, a) = ax log(x/z) is also convex inx andz for
z > 0, a ≥ 0 [9]. Since the objective function (14) can
be written as

∑

u∈U

∑

s∈S

g(pU |S(u|s), pU (u), pS(s)),

it follows the optimization is convex. In addition, since
p(u) → 0 ⇔ p(u|s) → 0 ∀u, the minimization is well
defined over the probability simplex.

Remark 2. Note that the previous optimization can also
be solved using a dual minimization procedure analogous
to the Arimoto-Blahut algorithm [10] by starting at a
fixed marginal probabilitypU (u), solving a convex min-
imization at each step (with an added linear constraint
compared to the original algorithm) and updating the
marginal distribution. However, the above formulation
allows the use of efficient algorithms for solving convex
problems, such as interior-point methods. In fact, the
previous minimization can be simplified to formulate
the traditional rate-distortion problem as a single convex
program, not requiring the use of the Arimoto-Blahut
algorithm.

Remark 3. The formulation in Theorem 1 can be easily
extended to the case whenU is determined directly from
S, i.e. when Alice has access toS and the privacy
preserving mapping is given bypU |S(·|·) directly. For
this, constraint (16) should be substituted by
∑

y∈Y

pY |S(y|s)pU |Y,S(u|y, s) = pU |S(u|s) ∀u, s, (18)

and the following linear constraint added
∑

s∈S

pS|Y (s|y)pU |Y,S(u|y, s) = pU |Y (u|y) ∀u, y, (19)

with the minimization being performed over the variables
pU |Y,S(u|y, s), pU |Y (u|y) andpU |S(u|s), with the usual
simplex constraints on the probabilities.

We now particularize the previous result for the case
whereY is a deterministic function ofS.

Corollary 1. If Y is a deterministic function ofS and
S → Y → U then the minimization in(10) can be
simplified to a rate-distortion problem:

min
pU|Y

I(Y ;U) (20)

s. t. EY,U [d(Y,U)] ≤ D . (21)

Furthermore, by restrictingU = Y + Z and d(Y,U) =
d(Y − U), the optimization reduces to

max
pZ

H(Z) (22)

s. t. EZ [d(Z)] ≤ ∆ . (23)

Proof: SinceY s a deterministic function ofS and
S → Y → U , then

I(S;U) = I(S, Y ;U)− I(Y ;U |S) (24)

= I(Y ;U) + I(S;U |Y )− I(Y ;U |S) (25)

= I(Y ;U), (26)

where (26) follows from the fact thatY is a deterministic
function of S (I(Y ;U |S) = 0) and S → Y → U
(I(S;U |Y ) = 0). For the additive noise case, the result
follows by observing thatH(Y |U) = H(Z).

C. Maximum information leakage

The minimum over all possible maximum cost gains
of an adversary that uses a log-loss function in (4) is
given by

C∗ = max
u∈U

H(S)−H(S|U = u).

The previous expression motivates the definition ofmax-
imum information leakage, presented below.

Definition 4. The maximum information leakageof a
set of featuresS is defined as the maximum cost gain,
given in terms of the log-loss function, that an adversary
obtains by observing a single output, and is given by
maxu∈U H(S) − H(S|U = u). A privacy-preserving
mappingpU |Y (·) is said to achieve theminmax infor-
mation leakagefor a distortion constraint∆ if it is a
solution of the minimization

min
pU|Y

max
u∈U

H(S)−H(S|U = u) (27)

s. t.E[d(U, Y )] ≤ ∆ (28)
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The following theorem demonstrates how the mapping
that achieves the minmax information leakage can be
determined as the solution of a related convex program
that finds the minimum distortion given a constraint on
the maximum information leakage.

Theorem 2. GivenpS,Y (·, ·), a distortion functiond(·, ·)
and a constraintǫ on the maximum information leakage,
the minimum achievable distortion and the mapping that
achieves the minmax information leakage can be found
by solving the following convex optimization (assuming
the implicit simplex constraints on the probability distri-
butions):

min
pU|Y ,pU|S

∑

u∈U

∑

s∈S

pU |Y (u|y)pY (y)d(u, y) (29)

s.t.
∑

y∈Y

pY |S(y|s)pU |Y (u|y) = pU |S(u|s) ∀u, s,

(30)
∑

s∈S

pU |S(u|s)pS(s) = pU (u) ∀u, (31)

δpU (u) +
∑

s∈S

pU,S(u, s) log
pU,S(u, s)

pU (u)
≤ 0 ∀u, (32)

where δ = H(S) − ǫ. Therefore, for a given value of
∆, the optimization problem in(27) can be efficiently
solved with arbitrarily large precision by performing a
line-search overǫ ∈ [0, H(S)] and solving the previous
convex program at each step of the search.

Proof: The convex program in (27) can be refor-
mulated to return the minimum distortion for a given
constraintǫ on the minmax information leakage as

min
pU|Y

E[d(U, Y )] (33)

s.t.H(S|U = u) ≥ δ . (34)

It is straightforward to verify that constraint (32) can be
written as (34). Following the same steps as the proof
of Theorem 1 and noting that the functiong2(x, z, a) =
ax log(ax/z) is convex fora, x ≥ 0, z > 0, it follows
that (34) and, consequently, (32), is a convex constraint.
Finally, since the optimal distortion value in the previous
program is a decreasing function ofǫ, it follows that the
solution of (27) can be found through a line-search inǫ.

Remark 4. Analogously to the average information
leakage case, the convex program presented in Theorem
(2) can be extended to the setting where the privacy
preserving mapping is given bypU |S(·|·) directly. This
can be done by substituting (31) by (18) and adding the
linear constraint (19).

Even though the convex program presented in Theo-
rem 2 holds in general, it does not provide much insight
on the structure of the privacy mapping that minimizes
the maximum information leakage for a given distortion
constraint. In order to shed light on the nature of the
optimal solution, we present the following result for the
particular case whenY is a deterministic function ofS
andS → Y → U .

Corollary 2. For Y = f(S), wheref : S → Y is a
deterministic function,S → Y → U and a fixed prior
pY,S(·, ·), the privacy preserving mapping that minimizes
the maximum information leakage is given by

p∗U |Y = arg min
pU|Y

max
u∈U

D(pY |U ||ζ) (35)

s.t.E[d(U, Y )] ≤ ∆,

whereζ(y) = 2H(S|Y =y)
∑

y′∈Y 2H(S|Y =y′) .

Proof: Under the assumptions of the corollary, note
that for a givenu ∈ U (and assuming that the logarithms
are in base 2)

H(S|U = u) =

−
∑

s∈S

pS|U (s|u) log pS|U (s|u)

= −
∑

s∈S





∑

y∈Y

pS|Y (s|y)pY |U (y|u)





×



log
∑

y′∈Y

pS|Y (s|y
′)pY |U (y

′|u)





= −
∑

s∈S

pS|Y (s|f(s))pY |U (f(s)|u)

× log pS|Y (s|f(s))pY |U (f(s)|u) (36)

= −
∑

s∈S,y∈Y

pS|Y (s|y)pY |U (y|u) log pS|Y (s|y)pY |U (y|u)

(37)

= H(Y |U = u) +
∑

y∈Y

pY |U (y|u)H(S|Y = y) (38)

=
∑

y∈Y

pY |U (y|u) log
2H(S|Y=y)

pY |U (y|u)
(39)

= −D(pY |U ||ζ) + log





∑

y∈Y

2H(S|Y=y)



 , (40)

where (36) and (37) follows by noting thatpS|Y (s|y) =
0 if y 6= f(s). The result follows directly by substituting
(40) in (27).

For Y a deterministic function ofS, the optimal pri-
vacy preserving mechanism is the one that approximates
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(in terms of KL-divergence) the posterior distribution of
Y givenU to ζ(·). Note that the distributionζ(·) captures
the inherent uncertainty that exists in the functionf for
different outputsy ∈ Y. The purpose of the privacy
preserving mapping is then to augment this uncertainty,
while still satisfying the distortion constraint. In partic-
ular, the larger the uncertaintyH(S|Y = y), the larger
the probability ofpY |U (y|u) for all u. Consequently, the
optimal privacy mapping (exponentially) reinforces the
posterior probability of the values ofy for which there
is a large uncertainty regarding the featuresS. This fact
is illustrated in the next example, where we revisit the
counting query presented in Example 1.

Example 2 (Counting query continued). Assume that
each database inputSi, 1 ≤ i ≤ n satisfiesPr(1A(Si) =
1) = p and are independent and identically distributed.
Then Y is a binomial random variable with parameter
(n, p). It follows that H(S|Y = y) = log

(

n
y

)

. Conse-
quently, the optimal privacy preserving mapping will be
the one that results in a posterior probabilitypY |U (y|u)
that is proportional to the size of the pre-image ofy, i.e.
pY |U (y|u) ∝ |f−1(y)| =

(

n
y

)

.

V. COMPARISON OF PRIVACY METRICS

We now compare average information leakage and
maximum information leakage with differential privacy
and information privacy, the latter being a new metric
introduced in this section. We first recall the definition of
differential privacy, presenting it in terms of the model
discussed in Section II and assuming that the set of
featuresS is a vector given byS = (S1, . . . , Sn), where
Si ∈ S.

Definition 5 ( [3]). A privacy preserving mapping
pU |S(·|·) providesǫ-differential privacy if for all inputs
s1 ands2 differing in at most one entry and allB ⊆ U ,

Pr(U ∈ B|S = s1) ≤ exp(ǫ)× Pr(U ∈ B|S = s2) .
(41)

An alternative (and much stronger) definition of pri-
vacy, related to the one presented in [6] is given below.
We note that this definition is unwieldy, but explicitly
captures the ultimate goal in privacy: the posterior and
prior probabilities of the featuresS do not change
significantly given the output.

Definition 6. A privacy preserving mappingpU |S(·|·)
providesǫ-information privacyif for all s ⊆ Sn:

exp(−ǫ) ≤
pS|U (s|u)

pS(s)
≤ exp(ǫ) ∀u ∈ U : pU (u) > 0.

(42)

Note that ǫ-information privacy implies directly2ǫ-
differential privacy and maximum information leakage
of at mostǫ/ ln 2 bits, as shown below.

Theorem 3. If a privacy preserving mappingpU |S(·|·)
is ǫ-information private for some input distribution such
that supp(pU ) = U , then it is at least2ǫ-differentially
private and leaks at mostǫ/ ln 2 bits on average.

Proof: Note that for a givenB ⊆ U

Pr(U ∈ B|S = s1)

Pr(U ∈ B|S = s2)
=

Pr(S = s1|U ∈ B)Pr(S = s2)

Pr(S = s2|U ∈ B)Pr(S = s1)

≤ exp(2ǫ),

where the last step follows from (41). Clearly ifs1 and
s2 are neighboring vectors (i.e. differ by only one entry),
then2ǫ-differential privacy is satisfied. Furthermore

H(S)−H(S|U = u) =
∑

s∈Sn

pS|U (s|u)pU (u) log
pS|U (s|u)

pS(s)

≤
∑

s∈Sn,u∈U

pS|U (s|u)pU (u)
ǫ

ln 2

=
ǫ

ln 2

We show in the next theorem that differential privacy
does not guaranteeprivacy in terms of average infor-
mation leakagein generaland, consequently in terms of
maximum information leakage and information privacy.
More specifically, guaranteeing that a mechanism isǫ-
differentially privatedoes notprovideany guarantee on
the information leakage.

Theorem 4. For everyǫ > 0 and δ ≥ 0, there exists an
n ∈ Z+, setsSn and U , a prior pS(·) over Sn and a
privacy mappingpU |S(·|·) that is ǫ-differentially private
but leaks at leastδ bits on average.

Proof: We prove the statement by explicitly con-
structing an example that isǫ-differentially private, but
an arbitrarily large amount of information can leak on
average from the system. For this, we return to the
counting query discussed in examples 1 and 2 with,
the setsS andY being defined accordingly, and letting
U = Y. We do not assume independence of the inputs.

For the counting query and for any given prior, adding
Laplacian noise to the output providesǫ-differential
privacy [3]. More precisely, for the output of the query
given in (7), denoted asY ∼ pY (y), 0 ≤ y ≤ n, the
mapping

U = Y +N, N ∼ Lap(1/ǫ), (43)
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where the pdf of the additive noiseN given by

pN (r; ǫ) =
ǫ

2
exp(−|r|ǫ), (44)

is ǫ-differentially private. Now assume thatǫ is given,
and denoteS = (X1, . . . , Xn). Setk andn such thatn
mod k = 0, and letpS(·) be such that

pY (y) =

{ 1
1+n/k if y mod k = 0,

0 otherwise.
(45)

With the goal of lower-bounding the information leak-
age, assume that Bob, after observingU , maps it to the
nearest value ofy such thatpY (y) > 0, i.e. does a
maximum a posteriori estimation ofY . The probability
that Bob makes a correct estimation (and neglecting edge
effects), denoted byαk,n(ǫ), is given by:

αk,n(ǫ) =

∫ k
2

−k
2

ǫ

2
exp(−|x|ǫ)dx = 1− exp

(

−
kǫ

2

)

.

(46)
Let E be a binary random variable that indicates the
event that Bobs makes a wrong estimation ofY given
U . Then

I(Y ;U) ≥ I(E, Y ;U)− 1

≥ I(Y ;U |E)− 1

≥ Pr{E = 0}I(Y ;U |E = 0)− 1

=
(

1− e−
kǫ
2

)

log
(

1 +
n

k

)

− 1,

which can be made arbitrarily larger thanδ by appro-
priately choosing the values ofn and k. Since Y is
a deterministic function ofS, I(Y ;U) = I(S;U), as
shown in the proof of Corollary 1, and the result follows.

The counterexample used in the proof of the previous
theorem can be extended to allow the adversary to
recoverexactly the inputs generated the ouputU . This
can be done by assuming that the inputs are ordered
and correlated in such a way thatY = y if and only if
S1 = 1, . . . , Sy = 1. In this case, forn andk sufficiently
large, the adversary can exploit the input correlation to
correctly learn the values ofS1, . . . , Sn with arbitrarily
high probability.

Differential privacy does not necessarily guarantee
low leakage of information – in fact, an arbitrarily
large amount of information can be leaking from a
differentially private system, as shown in Theorem 4.
This is a serious issue when using solely the differential
privacy definition as a privacy metric. In addition, it
follows as a simple extension of [11, Prop. 4.3] that
I(S;U) ≤ O(ǫn), corroborating that differential privacy
does not bound above the average information leakage
whenn is sufficiently large.

Nevertheless, differential privacy does have an oper-
ational advantage since it does not require any prior
information. However, by neglecting the prior and re-
quiring differential privacy, the resulting mapping might
not be de facto private, being suboptimal under the
information leakage measure. We note that the presented
formulations can be made prior independent maximizing
the minimum information leakage over a set of possible
priors. This problem is closely related to universal coding
[10].

VI. CONCLUSIONS

In this paper we presented a general statistical infer-
ence framework to capture the privacy threat incurred
by a user that releases data to a passive but curious
adversary given utility constraints. We demonstrated how
under certain assumptions this framework naturally leads
to an information-theoretic approach to privacy. The
design problem of finding privacy-preserving mappings
for minimizing the information leakage from a user’s
data with utility constraints was formulated as a con-
vex program. This approach can lead to practical and
deployable privacy-preserving mechanisms. Finally, we
compared our approach with differential privacy, and
showed that the differential privacy requirement does not
necessarily constrain the information leakage from a data
set.
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