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Abstract—We propose a general statistical inference data gives the analyst the ability to illegitimately infer
framework to capture the privacy threat incurred by a private information. The tension between the privacy
user that releases data to a passive but curious adversary, raqyirements of the user and the utility expectations of
given utility constraints. We show that applying this general . . ) o
framework to the setting where the adversary uses the the analyst gIves rise to the pro_blems of privacy-utility
self-information cost function naturally leads to a non- trade-off modeling, and the design of release schemes
asymptotic information-theoretic approach for characteriz- minimizing the privacy risks incurred by the user, while

ing the best achievable privacy subject to utility constraints. satisfying the utility constraints of the analyst.
Based on these results we introduce two privacy metrics,

namely average information leakage and maximum infor- B. Contributions

mation leakage. We prove that under both metrics the o )

resulting design problem of finding the optimal mapping Our contributions are three-fold. First, we propose a
from the user's data to a privacy-preserving output can general statistical inference framework to capture the pri

be cast as a modified rate-distortion problem which, in vacy threat incurred by a user who releases information
turn, can be formulated as a convex program. Finally, we  given certain utility constraints. The privacy risk is mod-
compare our framework with differential privacy. . . . )
eled as an inference cost gain by a passive but curious
I. INTRODUCTION adversary upon observing the information released by
the user. In broad terms, this cost gain represents the
“amount of knowledge” learned by an adversary about
Increasing volumes of user data are being collectélde private data after observing the user’'s output. The
over wired and wireless networks, by a large number aesign problem of finding the optimal mapping from
companies who mine this data to provide personalizédde user’s information to a privacy-preserving output
services or targeted advertising to users. As a conse-formulated as an optimization problem where the
guence, privacy is gaining ground as a major topic icost gain of the adversary is minimized for a given set
the social, legal, and business realms. This trend hefs utility constraints. This formulation is general and
spurred recent research in the area of theoretical modgigen in terms of minimizing both the average and the
for privacy, and their application to the design of privacymaximum cost gain, being applicable to different cost
preserving services. Most privacy-preserving technigudanctions.
such as anonymization, k-anonymity [1] and differential Second, we apply this general framework to the
privacy [2], are based on some form of perturbation afase when the adversary uses the self-information cost
the data, either before or after the data is used in sofumction. We show how this naturally leads to a non-
computation. These perturbation techniques provide pesymptotic information-theoretic framework to charac-
vacy guarantees at the expense of a loss of accuracyténze the information leakage subject to utility con-
the computation result, which leads to a privacy-accurasyraints. Based on these results we introduce two privacy
trade-off. metrics, namelyaverage information leakagend maxi-
In this paper, we consider the general setting whereum information leakagéNe also demonstrate that the
a user wishes to release a set of measurements topaoblem of designing a privacy preserving mechanism
analyst who provides a service (e.g. a recommendatitimat achieves the optimal privacy-accuracy tradeoff both
system), while keeping data that are correlated with thefer the average and maximum information leakage can
measurements private. On one hand, the analyst ish@ cast as modified rate-distortion problems. We then
legitimate receiver for these measurements, from whighove that these problems, in turn, can be expressed as
he expects to derive some utility. On the other hand, tle®nvex programs. As a consequence, the privacy pre-
correlation of these measurements with the user’s privaterving mapping that achieves the optimal privacy-utility

A. Motivation



tradeoff can be efficiently found using convex minimizainformation theoretic framework modeling the privacy
tion algorithms or widely available convex solvers.  risk in terms of information leakage. This framework, in
Finally, we compare the average information leakagern, can be used to design practical privacy preserving
and maximum information leakage metrics with differenmappings. Finally, we would like to point out that the
tial privacy. We show that differential privacy does noformulation in [4], differs from previously mentioned
provide in generakny privacy guarantees in terms ofinformation theoretic models, and addresses a particular
average or maximum information leakage. Furthermorease of the general framework introduced in this paper.
we introduce the definition ahformation privacy and The paper is organized as follows. We describe the
prove that information privacy implies both differentialset-up and the threat model in Section 1l, and formulate
privacy and privacy in terms of (average or maximumte privacy-accuracy trade-off in Section Ill. Our main
information leakage. results and their proofs are presented in Section IV.
C. Related Work Finally, in Section V we draw a comparison between the

privacy notion proposed in this paper, and other existing

In the privacy r.esear'ch commqnity, a preyalent anlivacy models, leading to the concluding remarks in
strong notion of privacy is that of differential privacy [2] gection VI.

[3]. Differential privacy bounds the variation of the dis-
tribution of the released output given the input database, ||. GENERAL SETUP AND THREAT MODEL
when the input database varies slightly, e.g. by a single
entry. Intuitively, released outputs satisfying diffetiah
privacy render the distinction between "neighboring
databases difficult. distinguish between. However, dif:
ferential privacy neither provides guarantees, nor éAﬁ‘ General setup
intuition, on the amount of information leaked when a We assume that there are two parties that communicate
differentially private release occurs. Moreover, useadaover a noiseless channel, namely Alice and Bob. Alice
usually presents correlations. Differential privacy dodsas access to a set of measurement points, represented
not factor in correlations in user data, as the distributidpy the variableY € Y, that she wishes to transmit
of user data is not taken into account in this model. 20 Bob. At the same time, Alice requires that a set
natural question is how the notion of privacy proposedf variablesS € S should remain private, wherg is
in this paper compares to that of differential privacy. Wipintly distributed withY” according to the distribution
cover this question in more details in Section V. (Y,S) ~ py,s(y,s), (y,s) € Y x S. Depending on the
Several approaches rely on information-theoretic toof®nsidered setting, the variahtecan be either directly
to model privacy-accuracy trade-offs, such as [4]-[7hccessible to Alice or inferred fron. If no privacy
Indeed, information theory, and more specifically ratgnechanism was in place, Alice would simply transmit
distortion theory, appear as natural frameworks to af- to Bob.
alyze the privacy-accuracy trade-off resulting from the Bob has a utility requirement for the information sent
distortion of correlated data. Although the approach wey Alice. Furthermore, Bob is honest but curious, and
introduce in this paper involves information theoretivill try to learn S from Alice’s transmission. Alice’'s
metrics, it is fundamentally different from previous in-goal is to find and transmit a distorted version Yof
formation theoretic privacy models. Indeed, traditionalenoted byU € U, such thatU satisfies a target utility
information theoretic privacy models, such as [5], [7]¢onstraint for Bob, but “protects” (in a sense made more
focus on collective privacy for all or subsets of the entriggrecise later) the private variabte We assume that Bob
of a database, and provide asymptotic guarantees on thgassive but computationally unbounded, and will try
average remaining uncertainty per database entry —torinfer S based onJ.
equivocation per input variable — after the output release.We consider, without loss of generality, that —
More precisely, the average equivocation per entry ¥ — U. Note that this model can capture the case
modeled as the conditional entropy of the input variableghereS is directly accessible by Alice by appropriately
given the released output, normalized by the numbadjusting the alphabél. For example, this can be done
of input variables. In contrast, the general framewory representingS — Y as an injective mapping or
introduced in this paper provides privacy guarantees allowing S C ). In other words, even though the privacy
terms of bounds on the inference cost gain that amechanism is designed as a mapping fridnto U, it is
adversary achieves by observing the released output. Tia limited to an output perturbation, and it encompasses
use of a self-information cost yields a non-asymptotioput perturbation settings.

In this section we outline the general setup considered
in this paper and the corresponding threat model.



Definition 1. A privacy preserving mapping is a proba- I1l. A GENERAL FORMULATION FOR THE
bilistic mappingg :  — U characterized by a transition PRIVACY-ACCURACY TRADEOFF

probability puyy (uly), y € Y, u € U. A. The privacy-accuracy tradeoff as an optimization
Since the framework developed here results in formgproblem

lations that are similar to the ones found in rate-distortio Our goal is to design privacy preserving mappings that
theory, we will use the term distortion to indicate a Medinimize AC or AC* for a given distortion levelA

sure of utility. Furthermore, we will use the terms Ut'l'tycharacterizing the fundamental privacy-utility tradeoff
and accuracy interchangeably throughout the paper. ;oo precisely, our focus is to solve optimization prob-
Definition 2. Letd : ) xU — R* be a given distortion lems overpy |y € Pyy of the form

metric. We say that a privacy preserving mapping has min AC or AC* 5)

distortion A if Ey ¢y [d(Y,U)] < A.
s.t. EyuldY,U)] <A, (6)

We make the following assumptions:
1) Alice and Bob know the prior distribution of where Py is the set of all conditional probability
py,s(-). This represents the side information thatiistributions ofU givenY’.
an adversary has.
2) Bob has complete knowledge of the privacy pr
serving mapping, i.eg andpy |y () are known.
Note that this represents therst-casestatistical side
information that an adversary can have about the inpuS

eRemark 1. In the remainder of the paper we consider

only one distortion constraint. However, it is straightfor

ward to generalize the formulation and the subsequent

ptimization problems to multiple distinct distortion con

raints EY,U[dl (K U)] < Ah Ce ,EY’U[CZ”(YY, U)] <

B. Threat model A,. This can be done by simply adding an additional
We assume that Bob selects a revised distribugian linear constraint to the convex program.

Ps, wherePg is the set of all probability distributions o

over S, in order to minimize an expected cas{(S,¢). B- Application examples

In other words, the adversary choosgeas the solution  \We illustrate next how the proposed model can be

of the minimization cast in terms of privacy preserving queries and hiding
¢t = min Es[C(S, )] 1) features_ within data sets.
9€Ps 1) Privacy-preserving queries to a databas&he
prior to observing/, and framework described above can be applied to database
¢t = min Egy[C(S, )|U = u] @) prrvacy problgms, such as those considered in Qifferential
s privacy. In this case we denote the private variable as a
after observing the output/. Note that this restriction vector S = Si,...,5,, whereS; € §,1 < j < n
on Bob models a very broad class of adversaries thend S1,...,S, are discrete entries of a database that

perform statistical inference, capturing how an adversargpresent, for example, the entries ofusers. A (not
acts in order to infer a revised belief distribution over theecessarily deterministic) functioff : S — Y is
private variablesS when observing. After choosing calculated over the database with outpatsuch that
this distribution, the adversary can perform an estimalé = f(S1,...,S,). The goal of the privacy preserving
of the input distribution (e.g. using a MAP estimator)mapping is to present a query outplit such that the
However, the quality of the inference is inherently tiedhdividual entriesSy, ..., S, are “hidden”, i.e. the esti-
to the revised distribution. mation cost gain of an adversary is minimized according
The average cost gain by an adversary after observitgy the previous discussion, while still preserving the
the output is utility of the query in terms of the target distortion
AC = ¢5 — Eylc]. (3) constraint. We illustrate this case with the counting
yery, which will be a recurring example throughout the

The maximum cost gain by an adversary is measured{ .
st of this paper.

terms of the most informative output (i.e. the output thdf

give the largest gain in cost), given by Example 1 (Counting query) Let Sy, ..., S, be entries
AC* = ¢ —minc* 4) in a database, and define:
uel w n
In the next section we present a formulation for the Y = f(S1,...,5,) = Z 14(S;), (7)
privacy-accuracy tradeoff based on this general setting. =



where B. Average information leakage

la(z) = { (1) I(:trferr]v?/issg roperty, It is straightforward to show that for the log-loss func-

' tion ¢ = H(S) and, consequently;’ = H(S|U = u),

In this case there are two possible approaches: (i) outpifd, therefore
perturbation, wheré” is distorted directly to produc¥,
and (ii) input perturbation, where each individual entry
S; is distorted directly, resulting in a new query output
U.

AC =1(S;U) = Ey[D(psivllps)]; )

where D(:||-) is the KL-divergence. The minimization
5) can the be rewritten according to the following
efinition.

2) Hiding dataset featuresAnother important partic-
ularization of the proposed framework is the obfuscatio
of a set of features§' by distorting the entries of a data
setY. In this case|S| < |V|, and S represents a set Definition 3. The average information leakagef a set
of features that might be inferred from the datasuch of featuresS given a privacy preserving outpdf is
as age group or salary. The distortion can be definggen byI(S;U). A privacy-preserving mapping;y (-)
according to the the utility of a given statistical learnings said to provide theminimum average information
algorithm (e.g. a recommendation system) used by Bgbakagefor a distortion constrain\ if it is the solution

of the minimization
IV. PRIVACY-ACCURACY TRADEOFF RESULTS

The formulation introduced in the previous section is

general and can be applied to different cost functions. ,I)Elfyl 1(S;U) (10)
In this section we particularize the formulation to the st Eyp[d(Y,U)] <A . (11)

case where the adversary uses the self-information cost
function, as discussed below.
) ) . Observe that finding the mappingy |y (uly) that
A. The self-information cost function provides the minimum information leakage is a modified
The self information (or log-losg cost function is rate-distortion problem. Alternatively, we can rewritésth
given by optimization as
C(S,q) = —logq(9). 8

There are several motivations for using such a cost g{ljl‘lyl Eu[D(psiullps)] (12)
function. For an overview of the central role of the

self-information cost function in prediction, we refer the st EyyldY,U)] <A . (13)
reader to [8]. Briefly, the self-information cost function
is the only local, proper and smooth cost function for The minimization (12) has an interesting and intuitive
an alphabet of size at least three. Furthermore, since {Rgerpretation. If we consider KL-divergence as a metric
minimum self-information loss probability assignmentgor the distance between two distributions, (12) states
are essentially ML estimates, this cost function is consighat the revised distribution after observifigshould be
tent with a “rational” adversary. In addition, the averag@s close as possible to the a priori distribution in terms
cost-gain when using the self-information cost can hsf KL-divergence.

related to _the cost gain when using any other boun_ded-l—he following theorem shows how the the optimiza-
cost function [8]. Finally, as we will see below, thisijon in the previous definition can be expressed as a
minimization implies a “closeness” constraint betweeggnyex optimization problem. We note that this optimiza-
the prior and a posteriori probability distributions N5, is solved in terms of the unknowns; y (-|-) and

terms_ of KI__-divergence. In_Section V_We compare th 5(|-), which are coupled together through a linear
resulting privacy measure with that of differential priyac equality constraint.

and information-privacy

In the next sections we show how the cost minimizarheorem 1. Givenps y (-, -), a distortion functior(-, -)
tion problems in (5) used with the self-information cosand a distortion constrainfy, the mappingyy (-|-) that
function can be cast as convex programs and, therefonginimizes the average information leakage can be found
can be efficiently solved using interior point methods dvy solving the following convex optimization (assuming
widely available convex solvers. the usual simplex constraints on the probability distri-



butions): with the minimization being performed over the variables
(uls) puly,s(uly, s), pujy (uly) andpy s (uls), with the usual
min Z ZPU\S(U|S)pS(3) log pu|stuls) (14) simplex constraints on the probabilities.
u

|s
Pu|Yy,PU|S well ses pU( ) . . .

We now particularize the previous result for the case

s.t. Z mey(uly)py(y)d(u,y) <A, (15) whereY is a deterministic function of.

cu yey . e .
= Corollary 1. If Y is a deterministic function of and

ZPYIS(?J‘S)?U\Y(“W) =puis(uls) Yu,s, g,y 5 {7 then the minimization in10) can be

yey (16) simplified to a rate-distortion problem:
> puis(uls)ps(s) = puw) Vu. (A7) min 1(Y;U) (20)
s€S s.t. Eyy[dY,U)] <D . (21)

Proof: Clearly the previous optimization is the sam

as (10). To prove the convexity of the objective functio urthermore, by restrictind/ = Y + Z andd(Y,U) =

d(Y — U), the optimization reduces to

note thath(x,a) = axlogz is convex for a fixed

a > 0 andz > 0, and, therefore, the perspective of max H(Z) (22)
g1(z, z,a) = axlog(x/z) is also convex in: and z for Pz

z > 0,a > 0 [9]. Since the objective function (14) can s.t. Ez[d(Z)] <A (23)

be written as . L .
Proof: SinceY s a deterministic function of and

SN alvuis(uls), pu(u), ps(s)), § =Y = U, then

ueU s€S I(S;U) = I(S,Y;U) — I(Y;U|S) (24)
it follows the optimization is convex. In adgitiqn, since =I(Y;U)+ I(S;U|Y) - I(Y;U|S) (25)
p(u) = 0 < p(uls) — 0 Vu, the minimization is well — 1Y) (26)
defined over the probability simplex. [ ] B e

Remark 2. Note that the previous optimization can als(yvher_e (26) follows from the fact that is a deterministic
be solved using a dual minimization procedure analogoﬁg'cyon of 5 (I(Y;U]5) = _Q) and_S -V =2 U

to the Arimoto-Blahut algorithm [10] by starting at agl(lS’Uf) :bO)' For tr;]e additive noise case, the result
fixed marginal probability (u), solving a convex min- ollows by observing that! (Y |U) = H(Z). u
imization at each stgp (with an added linear co.nstrai@t' Maximum information leakage

compared to the original algorithm) and updating the o ] ) i
marginal distribution. However, the above formulation '"€ minimum over all possible maximum cost gains
allows the use of efficient algorithms for solving conve®! an adversary that uses a log-loss function in (4) is
problems, such as interior-point methods. In fact, tHven by

previous minimization can be simplified to formulate C* = max H(S) — H(S|U = u)

the traditional rate-distortion problem as a single convex ueU '

program, not requiring the use of the Arimoto-Blahuirhe previous expression motivates the definitiomaix-
algorithm. imum information leakagepresented below.

Remark 3. The formulation in Theorem 1 can be easilyhefinition 4. The maximum information leakagef a

extended to the case whéhis determined directly from get of featuresS is defined as the maximum cost gain,

S, i.e. when Alice has access t§ and the privacy given in terms of the log-loss function, that an adversary

preserving mapping is given by s(-[-) directly. For optains by observing a single output, and is given by

this, constraint (16) should be substituted by max,ey H(S) — H(S|U = u). A privacy-preserving
mappingpy|y () is said to achieve theninmax infor-

> pyvisWls)puiy.s(uly, s) = pus(uls) Vu,s, (18) mation leakagefor a distortion constraint\ if it is a

vey solution of the minimization
and the following linear constraint added min max H(S) — H(S|U = u) 27)
PU|y u€
ZPS\Y(5|3J)PU|Y,S(U|ZJ75) = puyy (uly) Yu,y, (19) s. LE[d(U,Y)] < A (28)

seS



The following theorem demonstrates how the mapping Even though the convex program presented in Theo-
that achieves the minmax information leakage can lem 2 holds in general, it does not provide much insight
determined as the solution of a related convex prograom the structure of the privacy mapping that minimizes
that finds the minimum distortion given a constraint othe maximum information leakage for a given distortion
the maximum information leakage. constraint. In order to shed light on the nature of the
Theorem 2. Givenps y (-, -), a distortion function(-, - optimal solution, we pr_esent the f(_)II_OV\_/ing res_ult for the

. : . . X particular case whelr is a deterministic function of
and a constraint on the maximum information leakage, ndS — Y — U
the minimum achievable distortion and the mapping thgt '
achieves the minmax information leakage can be foulbrollary 2. For Y = f(S), wheref : S — Y is a
by solving the following convex optimization (assumingeterministic functionS — Y — U and a fixed prior

the implicit simplex constraints on the probability distri py,s(-, -), the privacy preserving mapping that minimizes

butions): the maximum information leakage is given by
o z;{z;py.ﬂuw)py@)d(u?w (29) Py = argnin max D(pyplc) — (35)
uel se
stE[dU,Y)] <A,
S.t. ZPY\S(y|S)pU|Y(U\Z/) = pu|s(uls) Yu, s, S 1Y )
(30) Ey’ey ’
Proof: Under the assumptions of the corollary, note
> puis(uls)ps(s) = pu(u) Vu, (31) that for a giveru € ¢/ (and assuming that the logarithms
s€S (. 5) are in base 2)
pu,s\u,s
0 log =2-"~2 < 0 VYu, (32 N
pu(u) + ;pv,s(u,S) 082 SOV (B2 p(sjU =) =

— s|u) lo s|lu
where§ = H(S) — e. Therefore, for a given value of ;Spsw( ) tog Py (sh)

A, the optimization problem if27) can be efficiently ’
solved with arbitrarily large precision by performing a _ _ Z (
line-search overk € [0, H(S)] and solving the previous

convex program at each step of the search.

Proof: The convex program in (27) can be refor-x | log Z pS\Y(SIy')pyw(y’\u)
mulated to return the minimum distortion for a given yey
constrainte on the minmax information leakage as

ZPS|Y(5|?J)PY|U(Z/U))

seS \yey

= — Zps\y(ﬂf(s))pY\U(f(S)|U)
min E[d(U,Y)] (33) s€S
PUlY x log ps)y (s|f(s))py v (f(s)|u) (36)

SLH(S|U=u) 29 (34) = - Z pS\Y(S\Q)pY\U(yW) IOgPS|Y(5|Z/)PY\U(@/|U)

It is straightforward to verify that constraint (32) can be SES,YeY

written as (34). Following the same steps as the proof (37)
of Theorem 1 and noting that the functign(z, z,a) =  _ HY|U =u) + ZPY\U(?AU)H(SW =) (38)
axlog(ax/z) is convex fora,x > 0, z > 0, it follows vy
that (34) and, consequently, (32), is a convex constraint. QH(S|Y =y)
Finally, since the optimal distortion value in the previous= Z py v (ylu)log ————— (39)
program is a decreasing function gfit follows that the yey pyiu(ylu)
solution of (27) can be found through a line-searcha.in

B = Dpyulle) +log | Y 2= (40)

Remark 4. Analogously to the average information vey

leakage case, the convex program presented in Theoretmere (36) and (37) follows by noting thaty (s|y) =

(2) can be extended to the setting where the privadyif y # f(s). The result follows directly by substituting
preserving mapping is given by s(-|-) directly. This (40) in (27). ]

can be done by substituting (31) by (18) and adding the For Y a deterministic function of, the optimal pri-
linear constraint (19). vacy preserving mechanism is the one that approximates



(in terms of KL-divergence) the posterior distribution of Note thate-information privacy implies directly2e-

Y givenU to ¢(-). Note that the distributiog(-) captures differential privacy and maximum information leakage
the inherent uncertainty that exists in the functipfor of at moste/In 2 bits, as shown below.

different outputsy € ). The purpose of the privacy . . .
preserving mapping is then to augment this uncertainty, o c 1 3. I a privacy preserving mappingy s (:|-)
while still satisfying the distortion constraint. In paxti ' ¢-information private for some input distribution such
ular, the larger the uncertaintsf (S|Y = y), the larger that supfpy) = U , then it is at leaste-differentially
the probability ofpy- |7 (y|u) for all u. Consequently, the private and leaks at mos{/ In2 bits on average.
optimal privacy mapping (exponentially) reinforces the  Proof: Note that for a given3 C U

posterior probability of the values aof for which there

is a large uncertainty regarding the featugesThis fact  Pr(U € B|S =s1) _ Pr(S =s,|U € B)Pr(S = sy)

is illustrated in the next example, where we revisit the Pr(U € B|S =s5)  Pr(S = s,|U € B)Pr(S = s;)
counting query presented in Example 1. < exp(2¢),

Example 2 (Counting query continued)Assume that
each database inpSt, 1 < i < n satisfiePr(14(S;) =

1) = p and are independent and identically distribute
ThenY is a binomial random variable with parameter

where the last step follows from (41). Clearlysif and
o are neighboring vectors (i.e. differ by only one entry),
hen 2e-differential privacy is satisfied. Furthermore

(n,p). It follows that H(S[Y = y) = log (). Conse- psiv(s|u)
quently, the optimal privacy preserving mapping will be?(S) — H(S|U = u) = > psju (s|u)pu (u) log ]Lsi(s)
the one that results in a posterior probability|;; (y|u) sesn
that is proportior;al to the”size of the pre-imageyof.e. < Z pS|U(S|U)pU(u)é
pyju(ylu) o< |fH(y)| = (y) ses™ ueld
€
V. COMPARISON OF PRIVACY METRICS “n2

We now compare average information leakage and |
maximum information leakage with differential privacy Ve show in the next theorem that differential privacy
and information privacy the latter being a new metric d0es not guarantegrivacy in terms of average infor-
introduced in this section. We first recall the definition ofnation leakagen generaland, consequently in terms of
differential privacy, presenting it in terms of the modefMaximum information leakage and information privacy.
discussed in Section Il and assuming that the set More specifically, guaranteeing that a mechanisre-is

featuresS is a vector given bys = (S1,...,S,), where differentially privatedoes notprovide any guarantee on
S; € 8. the information leakage.

Definiton 5 ( [3]). A privacy preserving mapping Theorem 4. For everye > 0 a_nd 0 > 0, there exists an
puis(-|) providese-differential privacy if for all inputs 7 € Z+, SetsS™ and i/, a prior ps(-) over S™ and a

s; ands, differing in at most one entry and a8 C ¢/, Privacy mappingy s (-|-) that is e-differentially private
but leaks at leasb bits on average.

PrU € B|S = < x PrlU € B|S = .
( | 51) < exp(e) ( | 52)(41) Proof: We prove the statement by explicitly con-

structing an example that isdifferentially private, but

An alternative (and much stronger) definition of prian arbitrarily large amount of information can leak on
vacy, related to the one presented in [6] is given belowverage from the system. For this, we return to the
We note that this definition is unwieldy, but explicitlycounting query discussed in examples 1 and 2 with,
captures the ultimate goal in privacy: the posterior antle setsS and)’ being defined accordingly, and letting
prior probabilities of the featuress do not change i/ = ). We do not assume independence of the inputs.
significantly given the output. For the counting query and for any given prior, adding
Laplacian noise to the output providesdifferential
privacy [3]. More precisely, for the output of the query
given in (7), denoted a¥ ~ py(y),0 < y < n, the
mapping

Definition 6. A privacy preserving mappings(-|-)
providese-information privacyif for all s C S™:

pS\U(S|U)

P < exp(e) Yu € U : py(u) > 0.

(42) U=Y +N, N~ Lap(1/e), (43)

exp(—€) <



where the pdf of the additive nois¥ given by Nevertheless, differential privacy does have an oper-
ational advantage since it does not require any prior
information. However, by neglecting the prior and re-
quiring differential privacy, the resulting mapping might
not be de facto private, being suboptimal under the
mod k = 0, and letps(-) be such that information leakage measure. We note that the presented
formulations can be made prior independent maximizing
the minimum information leakage over a set of possible

—L— ify modk =0,
py(y) = { 1+n/k . ; ; ' .
0 priors. This problem is closely related to universal coding

otherwise.
With the goal of lower-bounding the information leak{10]-
age, assume that Bob, after observiingmaps it to the VI. CONCLUSIONS
nearest value ofy such thatpy(y) > 0, i.e. does a |n this paper we presented a general statistical infer-
maximum a posteriori estimation f. The probability ence framework to capture the privacy threat incurred
that Bob makes a correct estimation (and neglecting edgg a user that releases data to a passive but curious
effects), denoted by, ., (¢), is given by: adversary given utility constraints. We demonstrated how
ks under certain assumptions this framework naturally leads
Qg (€) :/ to an information-theoretic approach to privacy. The
=2 design problem of finding privacy-preserving mappings
for minimizing the information leakage from a user’s
Bata with utility constraints was formulated as a con-
vex program. This approach can lead to practical and

pN(r;e) = %exp(—me), (44)

is e-differentially private. Now assume thatis given,
and denoteS = (X1, ..., X,,). Setk andn such thatn

(49)

[SEd

k
%exp(—|:1:|e)d:z: =1—exp <2€> .

(46)
Let £ be a binary random variable that indicates th
event that Bobs makes a wrong estimationYofgiven

U. Then deployable privacy-preserving mechanisms. Finally, we
I(Y;U) > I(E,Y;U) — 1 compared our approach with differential privacy, and
>IY;UIE) -1 showed that the differential privacy requirement does not

> PH{E =0}(Y;U|E=0)—1 necessarily constrain the information leakage from a data

set.

P
_ ke n
= (1 —e 2 ) log (1 + E) -1, REFERENCES

which can be made arbitrarily larger thanby appro- [l

priately choosing the values of and k. SinceY is

a deterministic function oS, I(Y;U) = I(S;U), as

shown in the proof of Corollary 1, and the result follows.
[ ]

The counterexample used in the proof of the previouss]
theorem can be extended to allow the adversary t&]
recoverexactlythe inputs generated the ouplit This
can be done by assuming that the inputs are ordered
and correlated in such a way thet= y if and only if [
S1=1,...,8, = 1. In this case, for, andk sufficiently
large, the adversary can exploit the input correlation tge]
correctly learn the values oy, ..., S, with arbitrarily
high probability.

Differential privacy does not necessarily guaranteg7]
low leakage of information — in fact, an arbitrarily
large amount of information can be leaking from ayg
differentially private system, as shown in Theorem 4.
This is a serious issue when using solely the differentialP]
privacy definition as a privacy metric. In addition, ity
follows as a simple extension of [11, Prop. 4.3] that
I(S;U) < O(en), corroborating that differential privacy (111
does not bound above the average information leakage
whenn is sufficiently large.
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