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Abstract— This survey focuses on discrete expression classi-
fication and facial action unit recognition performed using 3D
face data, possibly including a corresponding 2D texture image.
Research trends to date are summarized and the limitations
of current methods are discussed. The challenges towards
the development of more accurate and automated 3D facial
expression recognition methods are identified. We also call for
standardized experimental protocols in order to draw fair and
meaningful comparisons between different systems.

I. INTRODUCTION
Facial expression analysis/recognition1 has interested

many researchers due to its various purposes and appli-
cations. It plays a key role in emotion recognition and
thus contributes to the development of human-computer
interaction systems. It can also reinforce face recognition
systems by providing prior knowledge on the facial motions
and facial feature deformations. This is particularly intriguing
considering that the mouth area contains significant amount
of discriminative information [1], yet it is where most of the
facial deformations take place. Other applications include but
are not limited to psychological studies, tiredness detection,
facial animation, robotics as well as virtual reality.

Facial expressions are generated by facial muscle con-
tractions which result in temporary facial deformations in
both facial geometry and texture. In the past, the main focus
of expression analysis has been the 2D domain due to the
prevalence of data in the relevant modalities (i.e., images and
videos). Comprehensive surveys in this area include those by
Fasel and Luettin [2], Pantic et al. [3] and Zeng et al. [4].
While these 2D facial expression recognition (FER) systems
have achieved remarkable performance, existing challenges
in 2D face recognition still present themselves in 2D expres-
sion analysis (i.e., illumination and pose variations). Three-
dimensional data, on the other hand, are invariant to such
changes and are information-rich by nature. Recent successes
in 3D face recognition ([5], [6]) can naturally be exploited
for expression recognition. To the best of our knowledge, no
survey has been performed on the topic of 3D FER. This
area of research has drawn much attention since the BU-
3DFE database [7] was made publicly available in 2006, and
we can thus expect more effort in that direction. Therefore,
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1We use the term expression analysis and expression recognition inter-
changeably in the rest of the paper.

it would be beneficial to summarize past work and provide
potential future directions.

This paper is structured as follows: Section II contains
background information in expression recognition. Previous
work in 3D FER is presented in categories and research
directions are identified in Sections III and IV, respectively.
The survey is then concluded in Section V.

II. BACKGROUND
A. Basic Emotions vs. Action Units

The two main streams of facial expression analysis have
been message-based approaches and sign-based approaches
[8]. The message-based approaches focus on interpretation
of specific facial patterns and classify expressions into a
predefined number of discrete categories, in which the most
commonly used are the six basic emotions (anger, disgust,
fear, happiness, sadness and surprise) [9]. The sign-based
approaches, on the other hand, provide descriptions for facial
deformations at an abstract level in an objective manner
and defer the decision making process to other high-level
algorithms or human experts. To completely describe all per-
ceptible changes, the Facial Action Coding System (FACS)
has been proposed by Ekman and Friesen [10].

The prototypical emotion categories and their characteris-
tic facial expressions have been proved to be perceived by
humans in the same way regardless of cultural differences.
Hence, most of the studies on vision-based facial expression
analysis rely on this categorization of expressions. However,
they fall short in covering the whole range of emotions that
people may experience in everyday lives, when more subtle
emotions (e.g., anxiety) and combination of emotions often
occur. Action units (AUs) of the FACS, on the other hand,
are independent of interpretation and thus can be used as
the input to decision making processes based on high-level
rules or interpretations, such as Emotional FACS (EMFACS)
[11] and FACS Affect Interpretation Database (FACSAID)
[12]. Furthermore, AUs are more flexible as thousands of
anatomically possible facial expressions can be described
by combinations of merely 27 basic AUs and a number of
AU descriptors. Hence, they are more suitable for describing
spontaneous facial behaviors [4].

Albeit an increasing number of studies are based on
automatic AU recognition, basic emotion classification still
remains the most popular research topic. This trend is also
reflected in the 3D domain, where the majority of existing
works attempt to classify the basic emotions ([13], [14], [15],
[16], [17], [18], [19], [20]) while only a few try to recognize
AUs ([21], [22], [23]). One reason behind this is the lack of



FACS-coded databases. Sun et al. [21] manually labeled 8
AUs in the BU-4DFE database [24] for their work in partial
AU recognition but the annotations are not publicly available.
The Bosphorus database [25] has enabled the community to
investigate AU recognition in 3D and it remains the only 3D
database that provides facial action coding.

B. Static vs. Dynamic

In vision-based expression analysis, it is suggested that
the dynamics of facial expressions provide important cues
about the underlying emotions that are not available in static
images [24]. This is especially true concerning spontaneous
affective behaviors. Schmidt and Cohn [26] have shown that
spontaneous smiles reach onsets faster than posed smiles
and can have multiple rises of the mouth corners. Moreover,
they are accompanied by other muscle activities that appear
either simultaneously with mouth corner rises or follow them
within 1 s. Generally an expression process can be segmented
into four steps: neutral, onset, apex, and offset. The duration
of typical muscle activities varies from 250 ms to 5 s.
Thus, taking into consideration the temporal dynamics is of
importance when evaluating expression intensity level and
categorizing facial expressions or muscle activities.

Nevertheless, while most of the works in 2D FER use
video as input, only a few attempts have been made to
analyze facial behaviors in 3D videos ([27], [14], [21], [28]).
This is partly because only relatively recently has a database
of 3D dynamic sequences been made publicly available (i.e.,
the BU-4DFE database [24]). Chang et al. [27] have created
an expression database of 3D videos using an acquisition
system based on a camera-projector pair and active stereo,
but it was never publicly released. Furthermore, Yin et al.
[13] used key-frame interpolation to obtain intermediate
frames between the expression models of four different
intensities in the BU-3DFE database, in order to incorporate
temporal information when classifying expressions.

C. Expression Databases

To date, there are three publicly available 3D databases
designed specifically for expression analysis (i.e., the BU-
3DFE, the BU-4DFE and the Bosphorus databases). A sum-
mary of these databases is given in Table I. Note that we con-
sider a database dedicated to expression analysis only when
it contains datasets displaying 6 basic emotions or different
AUs of the FACS. Other databases such as FRGC v2 [29]
and GavabDB [30] are rarely used for expression analysis
purposes although they contain expression variations, due to
an incomplete expression set and/or an irregular distribution
of these variations.

Most of the existing 3D FER systems were evaluated on
the BU-3DFE database [7], not only because it was the first
one to become publicly available but also because of the
manually annotated dense landmark set provided with the
release. Among the 100 subjects, 56 are female and 44 are
male. Using 3D sensors from 3dMD [31], each subject was
captured performing the expressions corresponding to the six
basic emotions at four different intensity levels along with a
neutral expression. The database contains the raw 3D scans

TABLE I
3D FACIAL EXPRESSION DATABASES

Name Datasetsa Exp.b Lmk.c Elicited?d

BU-3DFE [7] 2,500 (100) 6 83 N
BU-4DFE [24] 606 videos (101) 6 N/A N
Bosphorus [25] 4,652 (105) 6/28 AUs 24 N

a) All 3D data have associated 2D textures (number of subjects in parentheses); b) expression types and action
units based on the provided labels; c) manually labeled landmarks as the ground truth; d) denotes whether
the expressions were genuinely elicited or posed as instructed.

with associated texture images as well as the face models that
are cropped from the original scans, which greatly facilitate
research in human face analysis. In the BU-4DFE database
[24], 3D videos were captured using the Di3D (Dimensional
Imaging [32]) dynamic face capturing system. Each of the six
universal expressions was performed gradually from neutral,
onset, apex, offset and then back to neutral in approximately
four seconds. There are 58 female and 43 male subjects,
with a variety of ethnicities. The datasets are distributed
in individual frames, as a result there are roughly 60,600
3D models with associated texture images in total. The
Bosphorus database [25] contains 4,652 face scans, captured
using a structured-light based 3D digitizer device [33]. Each
scan has been manually labeled with 24 facial landmarks.
There are 45 female and 60 male subjects, among which
27 are professional actors/actresses. Apart from containing
many samples of the six universal facial expressions, it is
also the only publicly available database to date that has
dedicated scans for AUs in 3D. There are also 3D face scans
with different poses, realistic occlusions (e.g., glasses, hands
around mouth and eye rubbing) and facial hair (mustache
and beard).
D. An Ideal FER System

Pantic et al. [3] listed the general properties of an ideal
facial expression analyzer. Such an ideal system will benefit
from solutions to multiple computer vision problems (e.g.,
face detection, landmark localization and illumination nor-
malization). Moreover, depending on the modality of the
input, the approaches as well as associated challenges to
achieve these goals may be different. For instance, with
3D data it becomes possible not only to deal with a large
extent of rigid head motions, but also to extract geometri-
cally invariant features (thus bypassing the problem of pose
estimation). Three-dimensional data are also illumination
invariant by nature. Hence, a module designated to deal with
variations in lighting is no longer necessary. Nevertheless,
when a fully automatic FER system is desired, one should
choose the appropriate module or provide fusion schemes for
these tasks when more than one modality is available (i.e.,
3D data with corresponding texture).

As will be discussed in Section III, many of the ex-
isting works only tackle the core problems of 3D FER
(i.e., feature computation and expression classification) rather
than developing a full-fledged automatic system. A possible
explanation is that the BU-3DFE database on which the
approaches were evaluated offers cropped 3D models (so
that no face detection needs to be done) and manually
annotated facial landmarks (based on which the features will
be extracted, and thus skipping one extra step). Nevertheless,
there have been a few attempts to also provide automatic



landmark localization in their FER systems ([19], [17], [20])
and some model-based approaches ([17]) have the potential
to extract the face region of the input data.

III. CURRENT APPROACHES

Existing approaches in 3D FER and their key properties
are summarized in Table II. They can be broadly divided
into two categories: feature-based and model-based. Feature-
based 3D FER methods focus on the extraction of facial
features directly from the input scan while model-based
approaches usually involve a generic face model as an
intermediate to bring input scans into correspondence by
means of registration and/or deformation.
A. Feature-based Methods

Wang et al. [34] used cubic-order polynomial functions
to approximate the continuous surface at each vertex of the
input mesh [48]. The estimated coefficients of the polynomial
function at a particular vertex v then form the Weingarten
matrix for the local surface patch. The eigenvalues and eigen-
vectors of this matrix, along with the gradient magnitude that
can be derived by the normal direction at v, form a feature
set that is used to assign to v a unique primitive 3D surface
label based on a set of classification rules. To overcome
the lack of correspondence between the meshes, the authors
define seven facial regions using the 64 facial landmarks. The
histograms of surface labels are computed for each region
and normalized by the number of vertices in the region.
This treatment introduces a sense of correspondence that
facilitates the subsequent classification step, where the best
performance is obtained using Linear Discriminant Analysis
(LDA). Note that due to the geometrical invariance of
curvature-based features, no rigid transformation is required
to achieve this correspondence.

Soyel and Demirel [15] selected six distance measures
among a pool of landmarks that maximize the differences of
facial expressions to form the feature vectors. The intuition
behind this selection comes from the definition of the fun-
damental facial expressions by the MPEG-4 facial animation
parameters (FAPs) [49]. The authors argued that among all
84 feature points specified by MPEG-4, only a small set
are not static due to the contraction and expansion of facial
muscles when one of the universal expressions is displayed.
However, the authors did not specify how to identify this
set of feature points. By utilizing facial symmetry, they are
able to trim down the number of facial features to merely
11 points, from which the six characteristic distances are
extracted. One of the distances, which is essentially the width
of the face contour, is used to normalize other distances as an
attempt to make the feature scale-invariant. Subsequently, a
neural network trained using a backpropagation algorithm is
used to classify the expressions. Note that this distance-based
feature is also invariant against rigid transformations. In a
follow-up work [38], the authors used a similar framework
but this time based on the FACS, the set of feature points
are different and the distances are computed using several
feature points instead of just two, which in the authors’ view
can cancel out individual variations. That work has been

extended further in [16] and [41], where an automatic feature
selection mechanism was introduced. Distances between all
possible pairs of the 83 manual annotations of the BU-3DFE
database are enumerated and normalized. Principal Compo-
nent Analysis (PCA) is performed on this feature space to
reduce its dimensionality and then LDA is applied to find
the optimal subspace that preserves the most discriminant
information. Realizing that some expression classes are close
to each other in the subspace, the authors proposed to re-
group these classes into clusters and perform the subspace
projection followed by neural network classification in a
hierarchical manner. Under the same framework, but without
the coarse-to-fine scheme, Tekgüç et al. [42] adopted the
Non-dominated Sorted Genetic Algorithm II for feature
selection and obtained a slightly lower recognition rate.

Tang and Huang [39] explored similar distance features.
They proposed an automatic feature selection method based
on maximizing the average relative entropy of marginalized
class-conditional feature distributions. Less than 30 “best”
features were automatically selected using this method from
the pool of all possible line segments between the 83
landmarks. Regularized AdaBoost algorithm with three weak
classifiers (i.e., Nearest Neighbor (NN), Naive Bayes (NB)
and LDA) was used for classification. As a preprocessing
step, the feature distances on the neutral scan of a subject
are subtracted from the features of his/her expressive scan. In
another work [40] they took a manual approach and carefully
devised a set of 96 discriminative features that includes
not only the normalized distances but also the slopes of
the line segments connecting a subset of the 83 landmarks.
The distances were normalized by the corresponding facial
animation parameter units (FAPUs), which are used to scale
the FAPs according to the MPEG-4 standard [49], and were
defined as fractions of distances between certain feature
points on a face model in its neutral state. This also implies
the availability of the neutral scan of the input subject.
In addition, the slope features are also normalized to unit
vectors. A multi-class Support Vector Machine (SVM) using
the one-against-one scheme is selected for classification.

In their automatic pipeline, Gong et al. [18] assume
that an expressive 3D face scan is an approximate sum
of the expressional shape component (ESC) and the basic
facial shape component (BFSC). The BFSC is estimated
from a group of aligned neutral scans as well as the input
expressive scan. The alignment is done by using local shape
difference boosting [50] and then depth images are obtained
by sampling the projection of the 3D shapes. Estimation of
BFSC is essentially an eigen decomposition and projection
process. Based on [51], the authors state that facial expres-
sions are represented orthogonal to the eigenvectors so that,
by projecting the expressive scan onto the subspace, the
corresponding neutral scan (i.e., BFSC) can be estimated.
Then, an expression descriptor is computed by taking the
difference between the depth maps of the original scan and
its BFSC at selected regions, which eventually becomes the
input to an SVM classifier.

Berretti et al. [44] compute SIFT features at selected



TABLE II
METHODS FOR 3D FACIAL EXPRESSION ANALYSIS

Reference Category 2D Used?a Dynamic?b Landmarks Subject
Independent?c Databased Expression Types Reported

Performance (%)e

Chang [27] Model N Y 22 semi-auto Y Private 6 N/A
Wang [34] Feature N N 64 manual Y BU-3DFE 6 83.6
Yin [13] Model Y Y 64 semi-auto Y BU-3DFE 6 80.2
Ramanathan [35] Mode Y N Not used Y Private 4 97.0
Soyel [15] Feature N N 11 manual Y BU-3DFE 7 91.3
Wang [36] Feature Y N 58 auto Y Private 4 83.0
Sun [21] Model Y Y 83 auto Y BU-4DFE 6/8 AUs 80.9/87.1
Sun [14] Model Y Y 83 auto Y BU-4DFE 6 90.4
Mpiperis [17], [37] Model N N auto Y BU-3DFE 6 90.5, 92.3
Soyel [38] Feature N N 23 manual Y BU-3DFE 7 87.8
Tang [39], [40] Feature N N 83 manual N BU-3DFE 6 95.1, 87.1

Rosato [28] Model Y Y 22 auto Y BU-3DFE
BU-4DFE 7/6 80.1/85.9

Venkatesh [19] Feature Y N 68 auto Y BU-3DFE 6 81.7
Soyel [16], [41] Feature N N 83 manual Y BU-3DFE 7 93.7
Gong [18] Feature N N auto Y BU-3DFE 6 76.2
Tekgüç [42] Feature N N 83 manual Y BU-3DFE 7 88.2
Savran [43] Model N N auto Y Bosphorus 22 AUs 91.4
Zhao [23] Feature Y N 19 manual Y Bosphorus 7 AUs/16 AUs 94.2/85.6
Savran [22] Feature Y N auto Y Bosphorus 25 AUs 97.1
Berretti [44] Feature N N 27 manual Y BU-3DFE 6 77.5
Zhao [20] Feature Y N 19 auto Y BU-3DFE 6 82.3
Maalej [45] Feature N N 24 manual Y BU-3DFE 6 N/A
Venkatesh [46] Feature Y N Not used Y BU-3DFE 6 85.6
Tsalakanidou [47] Model Y Y 81 auto N Private 5/11 AUs 85.0/83.6

a) Denotes whether the method makes use of the 2D texture associated with the 3D data; b) denotes whether the method uses temporal information from a sequence of 3D data; c) denotes whether the method requires a neutral scan
or the identity of the subject; d) may be a subset of the listed database; e) the average recognition rates are listed only for reference not for comparison due to different experiment settings.

locations on the depth images, which are generated from
sampling the 3D data. Feature selection is performed using
the minimal-redundancy maximal-relevance model [52] and
FER is accomplished using six one-vs-all SVM. Maaleg
et al. [45] proposed a curve-based representation of face
patches. The length of the geodesic path is used as a measure
for the similarity between any two closed curves [53].
Consequently, the similarities between the corresponding
level curves of two face patches are accumulated to indicate
the similarity between them. The similarity scores from all
patches form the final descriptor to the binary classifiers
using SVM or AdaBoost.

Some of the feature-based approaches also make use of
the 2D texture image associated with the 3D data. Wang
et al. [36] demonstrated an application of FER in diagnos-
ing Schizophrenia. They quantify the abnormality in facial
expressions by combining 2D and 3D features. More specif-
ically, AdaBoost is used for face detection [54] followed
by Active Appearance Model (AAM) [55] to automatically
locate the fiducial landmarks on the 2D images. From these
landmarks, a set of 2D geometric features are extracted. On
the 3D surface, Gaussian and mean curvatures are estimated
from fitting a continuous surface similar to [34], but the
authors follow the HK classification [56] instead to assign
the four shape labels. To incorporate texture information,
they compute moment invariants by the Gabor wavelets. A
series of normalizations are performed to remove individual
scale and topological differences as well as the influences
of lighting and skin colors. Note that the subjects’ neutral
face is used when normalizing the geometric features. PCA
is applied to reduce the feature dimensionality, followed by
LDA to maximize separation between classes. A probabilistic
K-NN method [57] is used for classification.

Savran et al. [22] evaluated AU recognition performance

when using only 3D or 2D modality as well as the fusion of
the two. To detect AUs from 2D images the authors deployed
the method proposed by Barlett et al. [58]. Gabor wavelets
are computed from the images. Subsequently, AdaBoost is
used for feature selection and SVM is used for classification.
For a fair comparison, the 3D data first undergo a series of
preprocessing steps and then the mean curvature values are
estimated from the smoothed surface. These curvature values
are resampled in the 2D domain via orthographic projection
and thus can be directly compared with texture images as an
input to the same AU recognition pipeline. Fusion is achieved
by concatenating the features selected by AdaBoost in both
modalities.

Venkatesh et al. [19] used texture images associated with
the 3D data for automatic feature point extraction. First
the texture image is segmented into six regions (eyebrows,
eyes, nose and mouth) [59]. Within each bounding box an
active contour algorithm is used to find a contour, which
is sampled uniformly to obtain the relevant interest points.
A shape matrix is formed by retrieving the 3D positions
of these points on the texture image. The so-called flow
matrix is then generated by subtracting the matrix of a
neutral scan from that of a expressive scan of a particular
subject. A modified PCA method is performed on training
sets of different expressions and six matrix templates are
formed by the projected coefficient. During classification, a
test scan is projected onto the subspaces and is assigned
to the expression that yields the minimal difference in
matrix norm between the its coefficients and the template.
In another work [46], they proposed a resampling approach
to establish a correspondence among the 3D scans. They
choose the nose tip as the origin and recenter the 3D data,
which are then uniformly sampled using the Qhull algorithm
[60]. The color information from the associated texture is



interpolated accordingly. This results in a matrix with six
channels of color and geometry information. The flow matrix
is computed and the final feature vector is a concatenation of
the Fourier components of the flow matrix reduced to 1/4 of
its original size. Finally K-means clustering and NN schemes
are employed for classification.

Zhao et al. [20] recognized six basic emotions using the
statistical facial feature model (SFAM) and the Bayesian
Belief Network (BBN). With local texture and geometry
information as well as the support from the global landmark
configuration, 19 landmarks can be automatically localized
by SFAM. During training, templates of different expressions
are built for each of the nine features computed from
landmark topology, facial texture and geometry. The BBN
then outputs the expression state with the highest belief ac-
cumulated from matching each feature with its template. The
authors also performed AU recognition using an extended
SFAM and an extended feature set [23]. Similarly, templates
are created for each AU during training. The final matching
score is a weighted sum of the correlation response between
the feature set and its template. The input scan is recognized
to contain the AU that yields the highest score.

B. Model-based Methods

Yin et al. [13] extended the work in [34] by introducing
a tracking model for estimating motion trajectories, which
are used to construct a spatial-temporal descriptor. A facial
expression label map (FELM) based tracking approach is
proposed. The tracking model is first aligned to the 3D
face scan, and then deformed to fit the target scan by
minimizing an energy function. To create the sequential
models from the BU-3DFE database, 40 intermediate frames
are generated using the key-frame interpolation and synthesis
approach based on the four models corresponding to the four
intensity levels. The FELM vector and the motion vector are
concatenated to form the descriptor, which becomes the input
to an LDA classifier.

Mpiperis et al. [37] followed a similar deformable model
approach as Kakadiaris et al. [5] to bring 3D face scans
into correspondence. The feature is essentially the geometry
(i.e., vertex positions) of the fitted model. PCA and LDA
are applied sequentially to reduce the feature dimension and
find the optimal subspace. Then particle swarm optimization
(PSO) [61] is used to discover a set of rules for FER. In [17],
the authors also established the deformation subspace with
PCA, together with an automatic mouth boundary detection,
an input 3D scan can be represented as a linear combination
of the principal modes of this subspace. An asymmetric
bilinear model is built with the fitted models and incorporated
in a maximum-likelihood classification framework for FER.

Savran and Sankur [43] first generate mean curvature maps
by parameterizing the 3D scans with least squares conformal
mapping [62]. The curvature maps are brought into corre-
spondence via a multi-resolution elastic registration. Based
on the log-likelihood ratio test, a binary decision is made
for a particular AU given the observed curvature features at
the interior of a manually defined region and the likelihood

estimated from the training samples.
Ramanathan et al. [35] adapted Shelton’s algorithm [63] to

obtain correspondence between textured 3D meshes. A Mor-
phable Expression Model (MEM) was then created which
incorporates expression-dependent face variations in terms of
morphing vectors. An input scan can be represented in the
subspace of MEM and the FER is based on the Euclidean
distance between the morphing vector of each expression and
that of the input scan.

Furthermore, there are also a few FER systems that can
process 3D dynamic sequences (sometimes referred to as
3D videos or 4D data). Chang et al. [27] built a coarse
mesh model and fit it manually to the initial frame of the
range data. A 2D tracker was then employed and the model’s
projection was warped by the 22 tracked feature points. The
depth of the vertex was recovered by minimizing the distance
between the model and the range data. The generalized
expression manifold was built on the facial deformations of
the training frames w.r.t. a standard model using Lipschitz
embedding [64]. FER was formulated as the estimation of
the posterior probability for each expression category.

Rosato et al. [28] took an alternative approach to Yin
et al. [13] for feature tracking with a generic model by
automatically establishing vertex correspondences across in-
put scans or dynamic sequences. A deformable template
approach [65] was applied to extract 22 feature points on
the 2D face texture. The 3D meshes were parameterized
in a 2D plane by the circle pattern approach [66]. The
proposed coarse-to-fine model adaptation approach between
the planar representations was used and the correspondences
are extrapolated back to the 3D meshes. The composition of
the descriptor and the classifier are the same as in Yin et
al. [13]. The FER performance was evaluated on both the
BU-3DFE [7] and the BU-4DFE database [24].

Also working with the BU-4DFE database, Sun et al.
[21] used an AAM to track feature points in the 2D texture
frames and retrieve their 3D positions. Influence of rigid
head motion was eliminated by registering each 3D frame
to the initial neutral scan and displacement of the tracked
points between the two was used as the feature vector. The
statistical information and the temporal dynamics of the
training data were learned by HMMs [67] and the Bayesian
decision rule was used to classify query sequences given
the trained models for either the AUs or the prototypical
expressions. This approach was taken one step further in
[14]. After the 3D positions of the feature points were
identified, radial basis function (RBF) based interpolation
was used to adapt the generic model to these feature points.
Similar to [34], geometric surface label maps were generated
from the adapted models. LDA was used to achieve optimal
feature space transformation and the performance of various
HMM-based classifiers are evaluated.

Tsalakanidou and Malassiotis [47] presented a fully au-
tomatic FER system which is capable of operating at 4-
10 frames per second utilizing both 2D and 3D data ac-
quired from a real-time 3D scanner. They build a Active
Shape Model (ASM) [68] which is a PDM learned from



81 manually annotated 3D landmarks accompanied by a
2D gradient profile for each landmark. Given a new 2D-
3D image pair they fit the ASM to the data using the
gradient information in the neighborhood of each landmark.
The feature vectors combine geometric information of the
landmarks and the statistics on the density of edges and
curvature around the landmarks. For classification, a specific
set of rules is defined for each expression and each action
unit based on the variation of each component of the feature
vector w.r.t. a base feature vector computed from the data of a
particular subject with neutral expression. Despite its subject-
dependent nature, this is the first fully automatic, real-time
2D-3D FER system reported in the literature.

IV. RESEARCH DIRECTIONS
A. Database Challenges

As stated by Zeng et al. [4], context is very important
for the interpretation of facial expressions. This is a virtu-
ally unexplored area in 3D FER, since most of the work
either classifies the six basic emotions or recognize AUs
based on certain manifestation of the face. However, to
make these FER systems really useful in practical situations
complex emotions must be taken into consideration. The
context of an expression (e.g., location and current task
of the expresser, relationship between the expresser and
the receiver) goes a long way toward detecting the true
affect state of the expresser at that moment. Nonetheless, the
study of context dependency in 3D FER is hindered because
there is no publicly available database that contains 3D dy-
namic sequences with the elicited (spontaneous) rather than
posed expressions [69]. Furthermore, AUs are more flexible
than the six prototypic facial expressions that thousands of
anatomically possible facial expressions can be described
by a small number of AUs and AU descriptors. If these
promises are to be investigated in the 3D domain, there is a
need for new databases of 3D dynamic sequences displaying
spontaneous facial behaviors, along with the FACS coding
done by certified annotators.

However, it is inherently difficult to acquire such kind
of data in 3D due to limitations of the sensors. Yin et al.
[7] have discussed the concerns regarding the elicitation
of authentic expressions. Current 3D acquisition systems
cannot be hidden as well as 2D cameras and inevitably
influence the authenticity of the elicited expressions. In other
words, the subjects may be aware of the capturing process
and subconsciously pose the expression that they think the
operators are expecting. Moreover, acquisition accessories
such as high wattage lights and infrared projectors may
distract the subject. Bowyer et al. [70] have pointed out
current limitations of the 3D sensing technologies. They
stated that while 3D shape per se is illumination independent,
the sensing of 3D shape is not. Variations of the illumination
in an acquisition setting can greatly affect the shape captured
by the 3D sensor. While sensors that capture static 3D
scans can provide their own illumination (i.e., flash) to
overpower the ambient light, for dynamic sequences where
only constant illumination can be used, conspicuous high

wattage lighting equipment is usually a necessity. To date,
there is yet no technology that can make 3D captures without
drawing undesirable attention.
B. Algorithm Improvement

The BU-3DFE database has been the most frequently used
database on which previous work was evaluated. We have to
emphasize the fact that the way this database is presented
to the research community brings great convenience in this
area. More specifically, it provides cropped face regions of
the raw 3D scan as well as a dense set of 83 manually
labeled landmarks. However, it should not stop researchers
from developing automated preprocessing steps to do the
same. Many of the previous 3D FER approaches are semi-
automatic, in the sense that they require more or less manual
annotations to proceed with feature extraction. There has
been some work in localizing landmarks using only 3D
data, but they do not tackle facial expressions directly. For
instance, the landmark set detected by Perakis et al. [71]
lacks some key points for the purpose of FER and Nair and
Cavallaro [72] do not consider the landmarks in the mouth
region at all. In fact, most of the automatic approaches make
use of the associated 2D texture image or video frames for
landmark detection ([36], [19], [20]).

According to Pantic et al. [3] and Wang et al. [73], not
only does each person have his/her own maximal intensity
of displaying a particular facial expression, he/she may also
have a style of displaying the expression that is unique on
some level. This observation suggests that methods which
model simultaneously identity and expression (e.g., bilinear
models used by [17]) may have an inherent advantage.
Other approaches either perform rudimentary normalization
or assume the availability of the subject’s neutral scan and
use it for calibration, in the hope of minimizing the inter-
subject difference. Furthermore, Wang et al. [73] also stated
that the expression manifolds are actually nonlinear and
linear methods will not be able to discover the underlying
manifold. Among the surveyed work, none has investigated
nonlinear embedding of the expression space except the use
of nonlinear classifiers.

From a more general point of view, there are some other
pending investigations in both 2D and 3D domain, which
include but are not limited to the estimation of expression
intensity, the impact of aging on the facial expression patterns
and the interpretation of AU combinations into more complex
human emotions. Computational complexity, although rarely
mentioned, is crucial if 3D data are to be used in typical
HCI scenarios, where real-time response is desired. To date
only the system proposed by Tsalakanidou and Malassiotis
[47] is able to come close in this regard.
C. Standardized Protocols

While the majority of the previous work in 3D FER
has reported performance on the BU-3DFE, the experiment
settings vary from group to group. Hence, a direct compar-
ison of the methods developed in the past five years just
by the claimed performance may not be fair. In order to
develop a common ground for the evaluation of the 3D



FER methods, standardized protocols must be proposed to
define experiments under different scenarios, much like the
Face Recognition Grand Challenge [29]. A collection of
databases (or a new one) with different modalities (i.e., 2D,
3D and 2D/3D over time) need to be made available to
the participants who follow the protocols to evaluate their
work, and it is then upon the participants’ judgement which
modalities to use. The file masks for generating training and
testing cohorts need to be specified and be used consistently.
These masks may present different levels of difficulty. The
protocol must also specify a set of landmarks that is realistic
to detect, should the methods require manual annotations.
Two FER scenarios can be considered, subject-dependent
and subject-independent (based on the assumption of the
availability of the subject’s neutral scan during testing).

V. CONCLUSIONS

In this paper, we surveyed the existing works in 3D FER,
many of which have shown promising results in specific
experimental conditions. However, the majority of the top
performing methods still require manual annotations on the
datasets. The robustness of these methods against landmark
localization error has not yet been investigated. Furthermore,
among the surveyed systems only a handful of them work
with dynamic 3D data and/or the recognition of AUs instead
of six basic emotion categories. We expect that more effort
will be directed to this area now that the corresponding
databases are available ([24], [25]). The fact that none of
the proposed approaches addresses the challenges of spon-
taneous expressions also calls for specialized databases. In
addition, real-time response is usually a favorable feature for
any HCI system. Hence, how to reduce the computational
complexity of 3D FER is yet another intriguing problem.
Lastly, we propose to develop a set of standardized protocols,
so that fair comparisons can be drawn between the experi-
ment results.
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