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ABSTRACT

This paper discusses robust classification of hyperspectral images. Both methods for dimensionality reduction
and robust estimation of classifier parameters in full dimension are presented. A new approach to dimensionality
reduction that uses piecewise constant function approximation of the spectral curve is compared to conven-
tional dimensionality reduction methods like principal components, feature selection, and decision boundary
feature extraction. Computing robust estimates of the decision boundary in full dimension is an alternative to
dimensionality reduction. Two recently proposed techniques for covariance estimation based on the eigenvec-
tor decomposition and the Cholesky decomposition are compared to Support Vector Machine classifiers, simple
regularized estimates, and regular quadratic classifiers. The experimental results on four different hyperspectral
data sets demonstrate the importance of using simple, sparse models. The sparse model using Cholesky decom-
position in full dimension performed slightly better than dimensionality reduction. However, if speed is an issue,
the piecewise constant function approximation method for dimensionality reduction could be used.
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1. INTRODUCTION

Hyperspectral imaging involves detailed sampling of the reflected sunlight in wavelengths typically from 0.4 to 3
µm. Hyperspectral sensors record the sunlight in 50 to several hundred narrow spectral bands. The number of
bands produced by available sensors range from 30 to several hundreds, however there is no universally agreed
upon minimum number of bands or bandwidth dimension required for a dataset to be considered hyperspectral.

Classification of pixels in hyperspectral images is a complex problem. We usually have few samples available
for training the classifier, and the ratio between available ground truth samples and dimensionality of the
input vector is low. When using parametric methods, such as the Gaussian maximum-likelihood approach,
the parameter estimates (in particular the estimated covariance matrix) will become increasingly unstable when
the number of training samples is low.

The conventional approaches to dealing with problems of dimensionality when training data is sparse, are
dimensionality reduction, improving the ratio of training data to dimensionality, and/or some sort of stabilization
of parameter estimates. Stabilization of parameter estimates can be done directly by assuming some simpler
parameter structure or biasing the estimates toward simpler and more stable estimates, or indirectly by increasing
the training sample size.

Consider a classification problem with K classes, assuming class conditional distributions to be Gaussian
with mean µk and class-wise covariance matrices Σk. It is well known that this reduces to comparing the K
quadratic discriminant functions gk(x) = − 1

2
log |Σk| −

1
2
(x− µk)Σ−1

k (x− µk) + log πk, where k ∈ {1, ..., K} and
πk is the a priori probability for class k. The parameters of these distributions are usually calculated from the
maximum likelihood estimates and plugged into the above rule. This decision rule is commonly referred to as
a Gaussian Maximum Likelihood (GML) classifier. The common problem with the GML classifier is that the
number of parameters to estimate grows quadratically with the dimensionality d of the feature space, since Σk

has d(d + 1)/2 parameters.

The number of free parameters of the classifier must be restriced to produce a robust classifier. There are
several ways of doing this. The most common approach is to apply dimensionality reduction in terms of either
feature selection or transformation. An alternative is to use robust methods for parameter sparsing in full
dimensionality, allowing mean differences between spectral bands to be retained. In this paper, we apply both
strategies using state-of-the art algorithms for dimensionality reduction and sparse estimation in full dimension.
We compare the performance of the different approaches on several different hyperspectral images.
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2. DIMENSIONALITY REDUCTION

Both classical feature reduction techniques from the pattern recognition literature and techniques developed with
hyperspectral imagery in mind can be applied to reduce the dimensionality of hyperspectral images. The classical
techniques include sequential forward selection, forward-backwards selection, floating search algorithms, and the
recent approach for fast feature reduction proposed in.1, 2 A drawback of using feature selection is that class
mean differences in the features not selected are ignored. For the transform methods, all the original spectral
bands are used, but they often require a scatter or covariance estimate in full dimension.

Linear transformations like principal component analysis and Fisher’s linear discriminant are well known. The
decision boundary feature extraction approach (DBFE)3 is commonly used in the literature on hyperspectral
data. The general idea behind DBFE is to find a set of normal vectors to the intersection points between between
the decision boundary and samples from different classes, and then eigenanalyze the outer product matrix of
these vectors. The principal components of these points are argued to describe the most important vectors in
the decision boundary. Another popular feature extraction method developed for hyperspectral images is the
nonparametric weighted feature extraction (NWFE) proposed in4 , which can be viewed as a nonparametric
extension of Fisher’s linear discriminant. In Fisher’s linear discriminant, the between-class scatter is of deficit
rank. In NWFE this is overcome by redefining this scatter to represent the scatter between all samples and a
distance weighted mean.

2.1 Piecewise constant function approximation

We recently proposed5 a method for fast piecewise constant function approximation that we will describe in the
following. Spectral curves are divided into contiguous regions by piecewise constant function approximations.
The extracted constants are then used as new features. The number of segments, and their corresponding length,
are found by dynamic programming.

The basic idea behind this approach is to parition the hyperspectral signatures into a fixed number of
contiguous intervals with constant intensities by minimizing the mean square representation error.

Let Sij be the jth feature in the ith pixel of a dataset with a total of N pixels with M features. S = {Sij |1 ≤
i ≤ N, 1 ≤ j ≤ M} is thus the collection of all spectral curves (the entire training dataset) available regardless
of class belonging. We seek a set of K breakpoints, P = p1, p2, .., pK , which define the contiguous intervals,
Ik = [pk, pk+1). Note that the K breakpoints are equal for all the different classes. Each interval, for each pixel
i, is represented by a constant, µik ∈ R. The square representation error of the model is thus

H =

K
∑

k=1

N
∑

i=1

∑

j∈Ik

(Sij − µik)2. (1)

If the breakpoints, P , are given, one ends up with a simple square function w.r.t. the constants, µik, so the
minimizer of (1) w.r.t. µik is given by, letting |Ik| denote the number of elements in the k-th interval,

µik =
1

|Ik|

∑

j∈Ik

Sij , (2)

i.e., the mean value of each pixel’s interval between breakpoints. What is left to be determined to minimize (1)
is thus the locations of the breakpoints. Note that when the breakpoints are given the segment lenghts are also
given. These breakpoints can be found using dynamic programming. The detalied algorithm for this can be
found in5 .

After finding the breakpoints, the constants, µik, are applied as features in the classification process. The
optimal number of breakpoints and their location is estimated using cross validation. An example of the function
approximation technique is shown in Figure 1.
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Figure 1. Example of constant function approximation for the KSC data set. The number of segments (K+1) was 21.

3. CLASSIFICATION IN FULL DIMENSION

Computing robust estimates of the decision boundary in full dimension is an alternative to dimensionality
reduction. Consider a Gaussian classifier with mean vector µk and covariance matrix Σk. The simplest approach
to reduce the number of parameters is to assume that the features are uncorrelated. Classical methods for robust
covariance matrix estimation are e.g. regularized discriminant analysis6 where the covariance matrix is given as

Σ
kRDA = (1 − α)Σ̂ + αΣ̂k,

where Σ̂ is the regular sample covariance matrix, Σ̂k is the classwise sample covariance matrix, and the
parameter α is determined using cross validation. In standard ridge regression, a small penalty term is added to
the diagonal of the covariance matrix:

ΣRidge = Σ̂ + RI,

where R is a penalization parameter.

Support Vector Machine (SVM) classifiers have recently been reported to perform well in classifying hyper-
spectral images7–9 . Some studies claim that SMVs are insensitive to dimesionality issues and overtraining, while
others argue that this is not true10 . An advantage with SVMs is that they can be used to design arbitrary
complex decision boundaries. The SVM is a kernel method, which means that it measures sample distance in
some space implicitly defined by a weighting function. A common kernel is the Gaussian radial basis function
(RBF). To avoid overfitting to the data, the SVM formulation has a tuning parameter acting as a regularizer
on the decision boundary, which needs to be carefully adjusted to ensure good generalization performance. This
regularization is measured as the cost of misclassifying a training sample. In addition, the width of the Gaussian
kernel must be determined.



Figure 2. Example of different structures for 2D covariance matrices.

3.1 Structured eigenvector decomposition of the covariance matrix

In11 we presented a model where eigenvector decomposition is used to decompose the covariance matrix. We use
the modified eigenvalue decomposition of the covariance matrix estimate

ΣSMOG = λkDkAkD′

k

where λk measures volume or scale, Ak shape, and Dk orientation. Common structures in the covariance matrices
are obtained by forcing some or all of these to be equal for a subset of the components. λk = |ΣSMOG|

1/d is a
proportional scaling parameter for the eigenvalues Ak, and Dk is the principal directions of the hyperellipsoid
corresponding to the covariance matrix. How sharing of some of these structures affects the shape of the
hyperellipsoids representing the covariance matrices is illustrated in Figure 2. The ellipsoids for (a), (b), (d) and
(e) share orientation (note that the eigenvectors are common). (b), (c) and (d) have common shape, and (b)
and (d) also share orientation but have different scale. The pairs {(a),(e)} and {(b),(c)} share scale.

The possible non-Gaussianity of the data is modelled using mixtures of Gaussians. Each class is modelled as
a mixture of M Gaussian components. This decomposition of the covariance matrix allows a wealth of possible
models for sharing of parameters. To build a classifier model, a model structure for deciding which parameters
(λk, Ak and Dk) that should be shared between different classes (or subclasses in the Gaussian mixtures) must be
determined. The primary goal is to use as few parameters as possible, thus the algorithm starts with a structure
where all classes or components share all parameters. This corresponds to starting with a common covariance
matrix. Parameters are then released one at a time. Since the number of parameters to estimate for each λk, Ak

and Dk is 1, d and d(d − 1)/2 respectively, they are released in that order.

A search for finding the best structure is performed, starting with a structure in which all components share
both cluster shape, volume and scale using the following algorithm:

1. Initialization - Assume that all parameters Dk, Ak, λk are shared between all M components and find the
10-CV error when using this model.

2. Search: For each of the parameters λk, Ak and Dk do the following model search:

(a) Initialize the table with value i = 1.
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Figure 3. Illustration of a matrix of correlations, L, for the inverse covariance matrix . The matrix is lower triangular,
with ones on the diagonal. Sparsity in the covariance estimate is obtained by only estimating the matrix elements in some

off-diagonal vectors.

(b) From all possible components with table value i, find the component k that gives the largest decrease
in 10-CV error when the parameter corresponding to this component is estimated freely.

(c) Allow component k to be estimated freely and repeat from b) until 10-CV error stops decreasing.

(d) Define a new set i = i + 1 of shared parameters over all (zero) marked components in the table and
repeat from b) until 10-CV error stops decreasing.

The number of mixture components, M , is also determined using crossvalidation, see.11 Parameter estimates
of λk, Ak and Dk are found in.11 Adding a small value to the diagonal of the scatter matrix, similar to ridge
penalization in regression can be used to stabilize singular or near singular scatter matrices before eigenvector
decomposition.

3.2 Cholesky decomposition of the inverse covariance matrix

In12 we presented an approach where Cholesky decomposition of the inverse covariance matrix is utilized. Well
known results from the time series literature13, 14 relates the estimation of the inverse covariance matrix to a
series of regressions by using the Cholesky decomposition. Consider the discriminant functions for a Gaussian
classification problem with K classes

gk(x) = −
1

2
log |Σk| −

1

2
(x − µk)′Σ−1

k (x − µk) + log πk

where πk is the a priori probability for class k. Noting that − log |Σk| = log|Σ−1
k |, it is clear that there is no need

for matrix inversion when classifying data if we have a method for estimating the inverse covariance matrices
directly.

The Cholesky decomposition of the inverse covariance matrix is given by

Σ−1 = LDLT ,

where L is a lower triangular matrix with ones on the diagonal (see Figure 3) and D a diagonal matrix.

If we were to consider the features of each sample as a time-series, the elements in L can be seen row-wise as
parameters in autoregressive processes of the same order as the row number minus one. We use this to transform
the task of approximating covariance matrices into a sequence of regressions. For each row, r, one could then
predict the next feature xr based on the r − 1 preceding features, {x1, ..., xr−1}. In keeping with the earlier
notation, and assuming zero mean for readability, this can be expressed as minimizing the squared residual in:

xr =

r−1
∑

j=1

αr,jxj + ǫr.

As long as the diagonal elements of D are positive, any choice of α will produce a positive definite covariance
matrix.



Sparsity in the inverse covariance matrix can thus be obtained by fixing some α to be zero. Setting elements
in the L-matrix to zero is thus a way of sparsing the inverse covariance matrix. A full search of testing all possible
elements of L individually is not computationally feasible, so a heuristic must be defined. We use a diagonal
pattern where diagonal vectors are added if this increases the crossvalidation performance. One diagonal vector
corresponds to a certain lag (using time series terminology) in the time series expression above, indicating that
when predicting feature xr , correlations with certain features xr−t are added. A search over the best lags, t, is
then performed, and a given lag is added if it improved the cross-validation performance.

The general idea is to start by approximating the covariance matrices with the simplest possible model, i.e.,
diagonal matrices, and add parameters to the approximation until the classification performance of the model no
longer improves. With regard to our proposed heuristic, we search for the off-diagonal vectors in the class-wise
covariance matrices that need to be estimated in order to improve classification performance on the training data.
The search, guided by cross-validation (10-CV) as a performance measure, can be described by the following
steps:

1. Initialization - Approximate class-wise covariance matrices by diagonal matrices, and find 10-CV perfor-
mance.

2. Search - Select off-diagonal vectors in Lk to be nonzero in a sequential forward manner:

(a) For all zero off diagonal vectors in Lk, evaluate the 10-CV performance gain when allowing each to
have nonzero elements.

(b) Add the one off-diagonal vector that gives the largest improvement in 10-CV to the set of off-diagonal
vectors to be nonzero in Lk.

(c) Loop from a) until 10-CV performance does not improve further.

Maximum likelihood estimates for estimating all the parameters involved can be found in.12 All classes share a
common set of alphas fixed to zero.

4. EXPERIMENTAL RESULTS

4.1 Data sets

The classification approaches are tested on four different data sets. Not all of the methods were tested on all data
sets as the experiments were run in a sequential order. The four hyperspectral datasets contain widely different
types of data, and with dimensions ranging from 81 to 176 bands. The first dataset, ROSIS, is from an airborne
sensor, contains forest type data, is divided into three classes, has 81 spectral bands and has a pixel size of 5.6m.
The second data set, Pavia, is also from an airborne sensor (DAIS) depicting urban landcover pixels over Pavia,
Italy. The dataset has 71 bands, 9 different landcover classes, and 2.6m pixels. The third set, KSC [12], is from
an airborne sensor (AVIRIS), contains vegetation type data, divided into 13 classes, has 176 spectral bands and
has 18m pixels. The last dataset, BOTSWANA [12], is from a scene taken by the Hyperion sensor aboard the
EO-1 satellite, contains vegetation type data, is divided into 14 classes, has 145 bands, and has a 30m pixel size.
The average number of training pixels per class is 700, 100, 196 and 115 for the datasets in sequential order.
10-CV was used for parameter estimation in all models. SVM parameters Cerr (misclassification penalty) and
the width of the Gaussian kernel were found by grid search.

4.2 Dimensionality reduction experiments

The performance of PCA, sequential forward selection using the sum of the estimated Mahalanobis distances as
feature evaluation function, decision boundary feature extraction (DBFE), and the piecewise constant function
approximation (PieceConst) is compared. PCA was selected for comparison because it is fast and simple, while
DBFE is more elaborate since it includes class separability in the optimization process. Only the simplest feature
selection algorithm (sequential forward search (SFS)) was used, the more complex feature selection algorithms
were omitted due to their excessive execution times.
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Figure 4. Misclassification rate for different numbers of features on the KSC dataset. Crossvalidation estimated 12, 14,
16 and 20 features for PieceConst, PCA, SFS and DBFE.

The number of features for each approach, that is, the number of principal components for PCA, the number
of features for SFS, and the number of contiguous intervals in PieceConst, were chosen using 10-CV on the
training sets.

Table 1 shows the overall classification accuracy for the datasets ROSIS, KSC and PAVIA when the optimal
number of features is chosed using cross-valiation. Overall, PieceConst performs equal to or better than the
other dimensionality reduction metods. Figures 4-5 shows the performance as a function of dimensionality. For
the BOTSWANA data set the optimal number of features was 12, 14, 16 and 20 for PieceConst, PCA, SFS and
DBFE respectively. For the KSC data set 21, 14, 18 and 11 features were selected for PieceConst, PCA, SFS
and DBFE. We note that most of the dimensionality reduction algorithms have fairly similar performance over
a range of dimensions. The plots only show performance up to 40 features, after that the classification error
increases further.

Table 1. Classification accuracy for dimensionality reduction algorithms.

ROSIS KSC BOTSWANA
PCA 85.21 87.78 95.55
SFS 85.07 87.51 94.72

DBFE 83.56 86.67 93.8
PieceConst 85.82 89.84 96.26

An advantage with the Piecewise Constant Function Approximation approach is that it allows direct in-
terpretation of the selected features (SFS also gives interpretable results), while PCA and DBFE results in
linear combinations of the original features and can not be directly interpreted. The PieceConst method is fast
compared to the other methods (except PCA).

4.3 Classification in full dimension

The following experiments are done on the original, full-dimensional feature vectors without dimensionality reduc-
tion. We compare the performance of regular quadratic classifiers (QDA) with and without penalized covariance
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Figure 5. Misclassification rate for different numbers of features on the Botswana dataset. Crossvalidation estimated 12,
14, 16 and 20 features for PConst, PCA, SFS and DBFE.

matrix estimation to Support Vector Machine (SVM) classifiers, the eigenvector decomposition approach (called
SMOG) and the Cholesky decomposition of the inverse covariance matrix (called STIC). A SVM with radial
basis kernels was tuned using 10-CV. The classification accuracies for the various approaches are shown in Table
2. Regularization significantly improves the performance on all data sets. On the KSC and BOTSWANA data
sets (with the highest dimensionality), ordinary QDA broke down due to sample sparsity. For SMOG, we note
that using mixture of Gaussians did not improve the classification accuracy significantly (more results can also
be found in11). The standard regularization approaches, LOOC and ridge regression, were outperformed by
SMOG, SVM and STIC. On the ROSIS data set, SVM was slightly better than STIC, but on the other data
sets STIC performed the best.

We can also compare the fraction of the parameters estimated in relation to a full QDA. For the ROSIS data
set, STIC used 23%, SMOG 42%, and SMOG+MIX 41% of the parameters involved in regular QDA. For the
Pavia data set, the corresponding fractions were 17% for STIC, 27% for SMOG, and 33% for SMOG+MoG.
STIC typically performed better than SMOG, and using sparser matrices.

Table 2. Classification accuracies for classification in full dimension using different methods. SMOG was not run on all
datasets, and missing values are denoted with ’-’.

ROSIS Pavia KSC BOTSWANA
QDA 81.2 84.3 13 14.3

QDA ridge 84.2 87.1 - -
QDA LOOC 84.9 90.8 88.5 96.0

SMOG 84.7 92.0 - -
SMOG + MoG 85.2 91.7 - -

SVM 87.10 92.5 89.8 96.0
STIC 85.7 93.8 91.1 97.1



4.4 Dimensionality reduction vs. robust classification in full dimension

The performance of the best dimensionality reduction method, PieceConst, is compared to the performance of
the best methods for classification in full dimension in Table 3. We note that overall, STIC has a slight edge on
SVM and PieceConst. However, the difference is quite small.

Table 3. Classification accuracies for the best dimensionality reduction method compared to the best classification in full
dimension.

ROSIS KSC BOTSWANA
PiecewiseConst 85.8 89.8 96.3

STIC 85.7 91.1 97.1
SVM 87.1 89.8 96.0

The execution times for the PieceConstant method were between 19 and 239 seconds, while the corresponding
numbers for STIC were 11-127 minutes and 218-276 minutes for SVM. Thus dimensionality reduction was much
faster than robust classification in full dimension.

The performance of STIC seems reasonably robust over a range of increasing number of parameters (off-
diagonal vectors) (see Figure 6). These figures illustrate the performance as a function of the number of param-
eters estimated compared to a full QDA model.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have presented and evaluated different methods for dimensionality reduction and robust, sparse
estimation in full dimension for the task of classifying hyperspectral images. For dimensionality reduction, a new
technique for fast piecewise constant function approximation (PieceConst) performed equal to or better than
principal component analysis, sequential forward feature selection and decision boundary feature extraction.
This was compared to classification in full dimension using simple, sparse models for parameter estimates. A
new method for sparse covariance estimation based on Cholesky decomposition of the inverse covariance matrix
(STIC) performed slightly better than SVM and eigenvector decomposition of the covariance matrix (SMOG).

When comparing dimensionality reduction to sparse estimation in full dimension, STIC had a slight edge
on the piecwise constant method for dimensionality reduction. STIC has an advantage compared to the other
methods for covariance estimation in that no estimate in full dimension (with all parameters non-zero) is needed.
It is unclear if this difference is significant. If speed is an issue, the piecewise constant model for dimensionality
reduction could be used. All experiments showed that simple, sparse models should be used when the classification
problem is ill-posed.

Both PieceConst and STIC have an advantage compared to SVM in that the resulting sparse estimates are
interpretable. Future work can include a study of how these methods can be used for visualization in exploratory
data analysis.
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