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Abstract- This paper describes the FPGA implementation of a 

parallelized scalable radix-2 Montgomery multiplier. It improves 

upon previous designs by rearranging previously sequential 

calculations to take place in parallel. On a Virtex-II FPGA, this 

design can perform 1024-bit modular exponentiation in 6.3 ms 

using 6006 lookup tables, a 17% speed improvement over the 

previously fastest scalable radix-2 Montgomery multiplier.   

 

I. INTRODUCTION 

 

Modular exponentiation is widely used in modern 

cryptography algorithms such as RSA and digital signatures. 

However, the operands of these algorithms usually involve 

256 to 2048-bit numbers and the process is time-consuming 

due to the long divisions necessary in the modulo calculation. 

Montgomery multiplication transforms this difficult division 

into a simple bit shift, and is therefore very attractive for 

hardware implementation. 

 Since the advent of Montgomery’s algorithm in [1], there 

have been many designs of the Montgomery multiplier that 

falls into different categories based on their radix. In a simple 

radix-2 design, an n × n-bit multiplication is performed using 

n steps. The multiplier kernel contains processing elements 

(PEs) that acts on one bit of the multiplier and all n bits of the 

multiplicand.  These designs are hardwired to support only 

one choice of n.  A scalable radix-2 design described in [2, 3] 

breaks the n-bit multiplicand into w-bit words. The kernel of 

the designs contain p PEs organized in a systolic array.  Each 

PE handles one bit of the multiplier and w bits of the 

multiplicand at a time.  The kernel iterates until the entire 

multiplication completes. These designs are highly flexible; 

they can be configured to handle any n. The overall advantage 

of a radix-2 Montgomery multiplier design is its hardware 

simplicity. The 1 × n-bit or 1 × w-bit multiplication involved 

in these designs can be accomplished with an n-bit AND gate 

or a multiplexer, and the number of registers required to store 

intermediate values is minimal.  However, the hardware 

efficiency comes at the cost of large number of iterations 

through the kernel.  

The critical path in a standard Montgomery multiplier 

involves two dependent multiplications steps.  Orup showed 

how to reorder the steps so that the multiplications can take 

place in parallel [7].  We have successfully applied the 

technique to very high radix Montgomery multipliers [4, 5, 6] 

to shorten the critical path.  Our goal in this paper is to apply 

the parallel modification of the Montgomery algorithm to the 

improved scalable radix-2 multiplier implemented in [3]. By 

parallelizing the existing radix-2 designs, we achieve a 

significant performance boost without increasing hardware 

cost. 

 

II. BACKGROUND 

 

The basic Montgomery Multiplication algorithm is  

 

Z = (XYR
-1

) mod M    (1) 

 

with the notations 

 

X: n-bit multiplier 

Y: n-bit multiplicand 

M: n-bit odd modulus, typically prime 

R: 2
n
 

R
-1

:   modular multiplicative inverse of R satisfying 

(RR
-1

) mod M = 1 

M′: n-bit integer satisfying RR
-1

 – MM′ = 1 

 

Montgomery in [1] showed how to perform this multiplication 

without dividing by M: 

 

Multiply: Z = X × Y 

Quotient: Q = Z × M′ mod R 

Result :  Z = [Z + Q × M] / R 

 

The Q term has the property such that it forces the numerator 

of the Result step to be divisible by R, simplifying the division 

to a shift. 

 

A. Improved Radix-2 Design 

The radix-2 design in [3] will be the basis of this paper’s 

radix-2 implementation. The design follows Tenca-Koç’s 

multiple word radix-2 Montgomery multiplication algorithm 

from [2] shown in Figure 1.  

 

n: size of operands 

R: 2
n
 

M: n-bit odd modulus  

R
-1

:   modular multiplicative inverse of R satisfying (RR
-1

) 

mod M = 1 



M′: n-bit integer satisfying (RR
-1

-MM’) = 1 

X : n-bit muliplier 

Y: n-bit multiplicand 

 

Z = 0 

for i = 0 to n-1 

 Z = Z + X
i
  × Y 

 if Z is odd then Z = Z + M 

 Z = Z/2 

Figure 1: Tenca-Koç’s radix-2 Montgomery multiplication 

algorithm 

Each iteration of the i loop is called a kernel cycle, and the 

clock delay between successive PEs is called a PE cycle. The 

Tenca-Koç design [2] requires a delay of two clock cycles 

between PEs, because at the end of a PE the resulting word of 

Z needs to be right shifted to account of the division by 2. 

Before this shift can occur, the next word of Z needs to be 

calculated so that the least significant bit of the next word of Z 

can be shifted to become the most significant bit of the current 

word of Z. Our improved design [3] is able to avoid right 

shifting of Z by left shifting Y and M, as show Figure 2. Each 

PE no longer has to wait for the next word of Z to be 

computed before producing the correct Z output. Thus, the 

latency between PEs drops to only one clock cycle.  
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Figure 2: PE diagram for improved radix-2 design from [3] 

 

B. Parallelized Algorithm 

In [5], an alternative implementation of the Montgomery 

algorithm based on [7] is discussed. The parallel algorithm 

reorganizes the original algorithm to produce a new pre-

calculated value M̂  that allows the original algorithm’s 

Multiply and Result steps’ multiplications to occur 

simultaneously. After parallelizing, the basic algorithm is 

shown in Figure 3 

 

M̂ :  ((M′ mod 2)M +1)/2 

 

Z = 0 

for i = 0 to n 

 Q = Z mod 2 

 Z = Z/2+ Q × M̂ + X
i
 × Y 

Figure 3: Parallelized Montgomery algorithm 

 

There are two side effects caused by parallelizing the 

original algorithm. The first is that the result, Z, has increased 

in size by 1 bit. This is because division by 2 is no longer the 

final operation of the algorithm. This side effect requires 

additional calculations to normalize the result back to the 

expected range. However, normalization can be performed at 

the end of a modular exponentiation after many iterations of 

Montgomery multiplication. The second side effect is that this 

design requires one more kernel cycle than the non-parallel 

algorithm to compensate for the loop reordering. 

 

III. PARALLELIZED RADIX-2 

 

The Montgomery algorithm implemented for this paper is a 

hybrid between the improved radix-2 and the parallel 

algorithm. The basic algorithm is nearly identical to the 

parallel very high radix algorithm in Figure 3. The features of 

the improved radix-2 algorithm are introduced by left shifting 

M̂ and Y at each PE. The resulting algorithm takes advantage 

of both simultaneous multiplication and one-cycle latency 

between PEs.  

The general algorithm can be recast in scalable form by 

splitting M̂  and Y into w-bit words. Each PE has to run 

multiple times during a kernel cycle to process all bits of M̂  

and Y. Thus, an inner for loop iterates over the n/w words of 

M̂  and Y. In addition, another iteration of the inner loopis  

necessary to process the left shifted bits of M̂  and Y. 

Furthermore, as mentioned previously, one side effect of the 

parallel algorithm is that the result could be larger than 

expected. Thus the inner loop iterations is  increase by one to 

account for the additional PE iteration required. The resulting 

scalable algorithm is shown in Figure 4. 

 

w: multiplicand word length 

e: n/w + 2 PE iterations per kernel 

C: 1-bit carry digit 

 

Z = 0  

Q = 0 

for i = 0 to n 

 C = 0 

 Q = Z
0
 mod 2 

 for j = 0 to e-1  

  (C, Z
j+1

)  =  Z
j
 + Q × M̂

j
 + 

             X
i
 × Y

j
 + C 

Figure 4: Scalable parallel Radix-2 algorithm 

 

IV. HARDWARE IMPLEMENTATION 

 
The overall hardware architecture of the parallel radix-2 

multiplier is similar to those presented in [3, 4, 5, 6].  Figure 5 

provides the overview architecture of a scalable Montgomery 

multiplier using p PEs.  Every PE receives one bit of X and Q, 

and w bits of M̂ , Y, and Z on each step.   In one kernel cycle, 

p digits of X are processed against all n bits of M̂  and Y’.  

Hence, k = n/p + 1 full kernel cycles are necessary to 

process all the bits of X and satisfy the additional kernel cycle 

requirement of parallel algorithm. As results emerge from the 



last PE of the kernel, they are either stored in a FIFO until the 

first PE has finished its kernel cycle or bypassed directly to 

the input of the first PE.  
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Figure 5: Parallel radix-2 hardware diagram 

 

A. Processing Element 

Figure 6 shows a processing element for the parallel radix 2 

design. Compared to Figure 2, the two AND-multipliers are 

placed in parallel and the 2 input multiplexer is eliminated. 

The left shifting of M̂  and Y are achieved using the two delay 

registers in the design. At each PE, the most significant bit of 

a word of M̂  and Y are delayed to become the least significant 

bit of the next word of M̂  and Y. After M̂  and Y have passed 

through p PEs, they are in effect left shifted by p bits. The PE 

diagrams also show that the change from improved radix-2 

design to parallel radix-2 design eliminates an AND and a 

multiplexer from the critical path without increasing the 

hardware cost.  
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Figure 6: Parallel Radix-2 PE diagram 

 

B. Latency 

The latency of the parallelized radix-2 design is similar to 

that of [3]. One PE cycle consists of only one clock cycle due 

to the left shifting of M̂  and Y. Each PE multiplies one bit of 

X with w bits of Y and M̂ . When a PE has processed all the 

bits of M̂  and Y, a kernel cycle has completed. It will then 

wait for a new set of X bits to start the cycle all over again. 

Modification introduced by the parallel algorithm shows no 

visible effect on the latency graph in Figure 7.  However, e 

and k are increased by 1. 
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Figure 7: Parallel radix-2 kernel latency 

 

An entire multiplication using p PEs takes k kernel cycles 

to complete. When the first PE has finished a kernel cycle, it 

cannot begin the next kernel cycle until the last PE has 

completed the first word of Z.  The latency of a kernel cycle 

depends on e and p. Case I corresponds to a large number of 

PE cycles, e, relative to the number of processing elements, p.  

In this situation, when the first PE has finished its kernel 

cycle, the first word of Z from the last PE is already waiting in 

the FIFO, there is no stall between kernel cycles, and the 

kernel hardware is used with maximal efficiency.  Case II 

corresponds to a large number of processing elements relative 

to the number of PE cycles.  As shown in Figure 7, the first PE 

must wait until the last PE finishes calculating the first word 

of Z. Therefore, Case I occurs when e > p and Case II occurs 

when e < p+1.  

Case I: The first PE is used continuously e times per kernel 

cycle for k full kernel cycles.    Therefore the total delay is

     

DI = ke     (2) 

 

Case II: Each kernel cycle takes p+p/w clock cycles until 

the first word of Z is ready, plus 1 to bypass the result back to 

the first PE. The p/w term is caused by the left shifting of M̂  

and Y. After passing p PEs, p zeros have been shifted into the 

least significant bits of M̂  and Y which are ignored, causing 

p/w cycles of delay. Therefore the total delay Case II is  

 

DII = k(p+p/w+1)    (3) 

 

Rewriting these delays in terms of the design parameters n, 

w, and p, and assuming integer divisibility, we obtain 



DI =  
2n n n

pw p w
      (4) 

DII = 1
n p n

n p
w p


        (5) 

 
V. RESULTS 

 

 The parallel radix-2 Montgomery multiplier design 

described previously was implemented using Verilog. The 

design was synthesized using Synplify Pro and compared to 

the synthesis result of previous designs. All synthesis results 

were produced by targeting the Xilinx Virtext II XC2V2000 

speed grade -6 FPGA with “sequential optimizations” disabled 

[8] to prevent flip-flops from being turned into shift registers.  

Table 1 shows the synthesis result of a single process element 

for several radix-2 designs. The result matches our expectation 

that the parallel algorithm removed an AND and a multiplexer 

from the PE critical path. As a result, the PE of a parallel 

radix-2 design achieved a 26% clock speed increase. In 

addition, because several gates were removed from the 

parallel radix-2 PE, there is a hardware decrease when 

compared to previous designs.  Thus, the parallel radix-2 

design is both faster and small than previous designs. 

Table 2 compares overall system performance of the new 

parallel design to the other scalable radix-2 designs. For the 

kernel synthesis, the frequency of the kernels is significantly 

lower than the PE synthesis show in Tables 1. This difference 

is caused by the interconnect delay estimated by Synplify Pro 

which can be minimized in a real implementation of the 

Montgomery multipliers through datapath floorplanning. 

From Table 2, we see that the parallel radix-2 design is the 

fastest radix-2 multiplier. In the 1024-bit multiplication using 

16 PEs, it can perform a multiplication 17% faster than the 

improved radix-2 design and significantly faster than the 

improved radix-2 design. In addition, the hardware 

requirement of the parallel radix-2 multiplier is approximately 

the same as other designs, justifying our claim that this design 

provides an performance increase without additional hardware 

costs.   

It is interesting to note that as the number of PEs in the 

kernel increase, the performance benefit of the parallel radix-2 

design decrease. This effect is caused by the fact parallel 

algorithm requires an addition kernel cycle than traditional 

radix-2 Montgomery multipliers. Thus, as the number of PE 

increases, this performance overhead for parallel radix-2 is 

increased as well. It is possible to increase the number of PEs 

so much that the parallel radix-2 design would actually 

become slower than the traditional designs despite of running 

at higher clock frequencies. 
 

VI. CONCLUSION 

 

In this paper, we have demonstrated a novel approach to 

radix-2 scalable Montgomery multipliers by reordering the 

steps to perform multiplications in parallel. The design is both 

faster and smaller than previous radix-2 Montgomery 

multipliers. It provides a significant cycle time improvement 

at the cost of a small increase in cycle count. In simulation, the 

parallel radix-2 design was able to provide a 17% speed 

increase over the previous designs for a 1024-bit 

multiplication using 16 PEs. 
 

 

Architecture Reference w 4-input  

LUTs / PE 

Registers / 

PE 

Critical Path PE 

Clock Speed 

(MHz) 

Parallel  
Scalable Radix 2 

This work 16 94 72 AND + 2CSA + REG 403 

Improved  

Scalable Radix 2 

[3] 16 97 72 2AND + 2CSA + BUF + MUX + REG 318 

Tenca-Koç 
Scalable Radix 2 

[2] 16 97 72 2AND + 2CSA + BUF + MUX + REG 318 

TABLE 1: SYNTHESIS PERFORMANCE COMPARISON OF VARIOUS 
PROCESSING ELEMENTS 

TABLE 2: SYNTHESIS PERFORMANCE COMPARISON OF VARIOUS 

MONTGOMERY MULTIPLIERS 

Description Ref Tech w v p LUTs REGs 
16×16 

MULT 

N Tmult 

 (ms) 

Parallel  

Scalable radix 2 

This 

work 

Xilinx XC2V2000-

06 

16 1 16 1575 1189 0 256 0.41 

1024 21.8 

64 6006 4597 0 256 0.52 

1024 6.3 

Improved  scalable 

radix 2 

[3] Xilinx XC2V2000-

06 

16 1 16 1564 1202 0 256 0.49 

1024 27.2 

64 5932 4705 0 256 0.56 

1024 7.6 

Tenca-Koç Scalable 

radix 2 

[2] 0.5 m CMOS 8 1 40 28 kgates 0 256 1.6 

1024 37 

Xilinx XC2V2000-

06 

8 1 40 3902 2937 0 256 1.0 

1024 15 
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