
Parallelized Radix-2 Scalable

Montgomery Multiplier
Nan Jiang and David Harris

Harvey Mudd College

301 E. Twelfth St. Claremont, CA 91711

{Nan_Jiang, David_Harris}@hmc.edu

Abstract- This paper describes the FPGA implementation of a

parallelized scalable radix-2 Montgomery multiplier. It improves

upon previous designs by rearranging previously sequential

calculations to take place in parallel. On a Virtex-II FPGA, this

design can perform 1024-bit modular exponentiation in 6.3 ms

using 6006 lookup tables, a 17% speed improvement over the

previously fastest scalable radix-2 Montgomery multiplier.

I. INTRODUCTION

Modular exponentiation is widely used in modern

cryptography algorithms such as RSA and digital signatures.

However, the operands of these algorithms usually involve

256 to 2048-bit numbers and the process is time-consuming

due to the long divisions necessary in the modulo calculation.

Montgomery multiplication transforms this difficult division

into a simple bit shift, and is therefore very attractive for

hardware implementation.

 Since the advent of Montgomery’s algorithm in [1], there

have been many designs of the Montgomery multiplier that

falls into different categories based on their radix. In a simple

radix-2 design, an n × n-bit multiplication is performed using

n steps. The multiplier kernel contains processing elements

(PEs) that acts on one bit of the multiplier and all n bits of the

multiplicand. These designs are hardwired to support only

one choice of n. A scalable radix-2 design described in [2, 3]

breaks the n-bit multiplicand into w-bit words. The kernel of

the designs contain p PEs organized in a systolic array. Each

PE handles one bit of the multiplier and w bits of the

multiplicand at a time. The kernel iterates until the entire

multiplication completes. These designs are highly flexible;

they can be configured to handle any n. The overall advantage

of a radix-2 Montgomery multiplier design is its hardware

simplicity. The 1 × n-bit or 1 × w-bit multiplication involved

in these designs can be accomplished with an n-bit AND gate

or a multiplexer, and the number of registers required to store

intermediate values is minimal. However, the hardware

efficiency comes at the cost of large number of iterations

through the kernel.

The critical path in a standard Montgomery multiplier

involves two dependent multiplications steps. Orup showed

how to reorder the steps so that the multiplications can take

place in parallel [7]. We have successfully applied the

technique to very high radix Montgomery multipliers [4, 5, 6]

to shorten the critical path. Our goal in this paper is to apply

the parallel modification of the Montgomery algorithm to the

improved scalable radix-2 multiplier implemented in [3]. By

parallelizing the existing radix-2 designs, we achieve a

significant performance boost without increasing hardware

cost.

II. BACKGROUND

The basic Montgomery Multiplication algorithm is

Z = (XYR
-1

) mod M (1)

with the notations

X: n-bit multiplier

Y: n-bit multiplicand

M: n-bit odd modulus, typically prime

R: 2
n

R
-1

: modular multiplicative inverse of R satisfying

(RR
-1

) mod M = 1

M′: n-bit integer satisfying RR
-1

 – MM′ = 1

Montgomery in [1] showed how to perform this multiplication

without dividing by M:

Multiply: Z = X × Y

Quotient: Q = Z × M′ mod R

Result : Z = [Z + Q × M] / R

The Q term has the property such that it forces the numerator

of the Result step to be divisible by R, simplifying the division

to a shift.

A. Improved Radix-2 Design

The radix-2 design in [3] will be the basis of this paper’s

radix-2 implementation. The design follows Tenca-Koç’s

multiple word radix-2 Montgomery multiplication algorithm

from [2] shown in Figure 1.

n: size of operands

R: 2
n

M: n-bit odd modulus

R
-1

: modular multiplicative inverse of R satisfying (RR
-1

)

mod M = 1

M′: n-bit integer satisfying (RR
-1

-MM’) = 1

X : n-bit muliplier

Y: n-bit multiplicand

Z = 0

for i = 0 to n-1

 Z = Z + X
i
 × Y

 if Z is odd then Z = Z + M

 Z = Z/2

Figure 1: Tenca-Koç’s radix-2 Montgomery multiplication

algorithm

Each iteration of the i loop is called a kernel cycle, and the

clock delay between successive PEs is called a PE cycle. The

Tenca-Koç design [2] requires a delay of two clock cycles

between PEs, because at the end of a PE the resulting word of

Z needs to be right shifted to account of the division by 2.

Before this shift can occur, the next word of Z needs to be

calculated so that the least significant bit of the next word of Z

can be shifted to become the most significant bit of the current

word of Z. Our improved design [3] is able to avoid right

shifting of Z by left shifting Y and M, as show Figure 2. Each

PE no longer has to wait for the next word of Z to be

computed before producing the correct Z output. Thus, the

latency between PEs drops to only one clock cycle.

3
:2

 C
S

A

3
:2

 C
S

A

(w)

C
in

C
b

x
i

odd

Z
w-1:0

M
w-1:0

Y
w-1:0

M
-1

Z
w-2:-1

Y
w-2:-1

M
w-2:-1

M
w-1

C
a

C
out

C
in

C
out

reset

(w)

Y
w-1

Y
-1

Z
0

Figure 2: PE diagram for improved radix-2 design from [3]

B. Parallelized Algorithm

In [5], an alternative implementation of the Montgomery

algorithm based on [7] is discussed. The parallel algorithm

reorganizes the original algorithm to produce a new pre-

calculated value M̂ that allows the original algorithm’s

Multiply and Result steps’ multiplications to occur

simultaneously. After parallelizing, the basic algorithm is

shown in Figure 3

M̂ : ((M′ mod 2)M +1)/2

Z = 0

for i = 0 to n

 Q = Z mod 2

 Z = Z/2+ Q × M̂ + X
i
 × Y

Figure 3: Parallelized Montgomery algorithm

There are two side effects caused by parallelizing the

original algorithm. The first is that the result, Z, has increased

in size by 1 bit. This is because division by 2 is no longer the

final operation of the algorithm. This side effect requires

additional calculations to normalize the result back to the

expected range. However, normalization can be performed at

the end of a modular exponentiation after many iterations of

Montgomery multiplication. The second side effect is that this

design requires one more kernel cycle than the non-parallel

algorithm to compensate for the loop reordering.

III. PARALLELIZED RADIX-2

The Montgomery algorithm implemented for this paper is a

hybrid between the improved radix-2 and the parallel

algorithm. The basic algorithm is nearly identical to the

parallel very high radix algorithm in Figure 3. The features of

the improved radix-2 algorithm are introduced by left shifting

M̂ and Y at each PE. The resulting algorithm takes advantage

of both simultaneous multiplication and one-cycle latency

between PEs.

The general algorithm can be recast in scalable form by

splitting M̂ and Y into w-bit words. Each PE has to run

multiple times during a kernel cycle to process all bits of M̂

and Y. Thus, an inner for loop iterates over the n/w words of

M̂ and Y. In addition, another iteration of the inner loopis

necessary to process the left shifted bits of M̂ and Y.

Furthermore, as mentioned previously, one side effect of the

parallel algorithm is that the result could be larger than

expected. Thus the inner loop iterations is increase by one to

account for the additional PE iteration required. The resulting

scalable algorithm is shown in Figure 4.

w: multiplicand word length

e: n/w + 2 PE iterations per kernel

C: 1-bit carry digit

Z = 0

Q = 0

for i = 0 to n

 C = 0

 Q = Z
0
 mod 2

 for j = 0 to e-1

 (C, Z
j+1

) = Z
j
 + Q × M̂

j
 +

 X
i
 × Y

j
 + C

Figure 4: Scalable parallel Radix-2 algorithm

IV. HARDWARE IMPLEMENTATION

The overall hardware architecture of the parallel radix-2

multiplier is similar to those presented in [3, 4, 5, 6]. Figure 5

provides the overview architecture of a scalable Montgomery

multiplier using p PEs. Every PE receives one bit of X and Q,

and w bits of M̂ , Y, and Z on each step. In one kernel cycle,

p digits of X are processed against all n bits of M̂ and Y’.

Hence, k = n/p + 1 full kernel cycles are necessary to

process all the bits of X and satisfy the additional kernel cycle

requirement of parallel algorithm. As results emerge from the

last PE of the kernel, they are either stored in a FIFO until the

first PE has finished its kernel cycle or bypassed directly to

the input of the first PE.

0

X Mem

PE1 PE2 PE3 PE p

Sequence

Control

Z

M
Y

x

Kernel

first

quotient

FIFO

0

YM

Mem

FIFO

Figure 5: Parallel radix-2 hardware diagram

A. Processing Element

Figure 6 shows a processing element for the parallel radix 2

design. Compared to Figure 2, the two AND-multipliers are

placed in parallel and the 2 input multiplexer is eliminated.

The left shifting of M̂ and Y are achieved using the two delay

registers in the design. At each PE, the most significant bit of

a word of M̂ and Y are delayed to become the least significant

bit of the next word of M̂ and Y. After M̂ and Y have passed

through p PEs, they are in effect left shifted by p bits. The PE

diagrams also show that the change from improved radix-2

design to parallel radix-2 design eliminates an AND and a

multiplexer from the critical path without increasing the

hardware cost.

3
:2

 C
S

A

3
:2

 C
S

A

C
in

X

quotient

Z

Y

Z

Y

C
out

C
in

C
out

quotient

first

M M
w

w

w

w

w

w

Mw-1 Yw-1

Figure 6: Parallel Radix-2 PE diagram

B. Latency

The latency of the parallelized radix-2 design is similar to

that of [3]. One PE cycle consists of only one clock cycle due

to the left shifting of M̂ and Y. Each PE multiplies one bit of

X with w bits of Y and M̂ . When a PE has processed all the

bits of M̂ and Y, a kernel cycle has completed. It will then

wait for a new set of X bits to start the cycle all over again.

Modification introduced by the parallel algorithm shows no

visible effect on the latency graph in Figure 7. However, e

and k are increased by 1.

K
e

rn
e

l
C

y
c
le

 1

Case I: e > p

e = 4, p = 2

Case II: e < p

e = 4, p = 4

ti
m

e

space
PE1 PE2

1
MYw-1:0

Zw-2:-1
x0

MYw-2:-1

Zw-3:-2
x1

MY2w-1:w

Z2w-2:w-1
x0

MY2w-2:w-1

Z2w-3:w-2
x1

MY3w-1:2w

Z3w-2:2w-1
x0

MY3w-2:2w-1

Z3w-3:2w-2
x1

MY4w-1:3w

Z4w-2:3w-1
x0

MY4w-2:3w-1

Z4w-3:3w-2
x1

x3

x3

x3

x3

x2

x2

x2

x2

2

3

4

5

6

7

8

9

10

11

12

13

K
e

rn
e

l
C

y
c
le

 2

K
e

rn
e

l
C

y
c
le

 1

PE1 PE2

x0

x1x0

x1x0

x1x0

x1

MYw-3:-2

Zw-4:-3
x2

MY2w-3:w-2

Z2w-4:w-3
x2

MY3w-3:2w-2

Z3w-4:2w-3
x2

MY4w-3:3w-2

Z4w-4:3w-3
x2

MYw-4:-3

Zw-5:-4
x3

MY2w-4:w-3

Z2w-5:w-4
x3

MY3w-4:2w-3

Z3w-5:2w-4
x3

MY4w-4:3w-3

Z4w-5:3w-4
x3

PE3 PE4

K
e

rn
e

l
C

y
c
le

 2

x4

x5x4

x4

x4

x6

x7

Kernel Stall
MYw-1:0

Zw-2:-1

MYw-2:-1

Zw-3:-2

MY2w-1:w

Z2w-2:w-1

MY2w-2:w-1

Z2w-3:w-2

MY3w-1:2w

Z3w-2:2w-1

MY3w-2:2w-1

Z3w-3:2w-2

MY4w-1:3w

Z4w-2:3w-1

MY4w-2:3w-1

Z4w-3:3w-2

MYw-1:0

Zw-2:-1

MYw-2:-1

Zw-3:-2

MY2w-1:w

Z2w-2:w-1

MY2w-2:w-1

Z2w-3:w-2

MY3w-1:2w

Z3w-2:2w-1

MY3w-2:2w-1

Z3w-3:2w-2

MY4w-1:3w

Z4w-2:3w-1

MY4w-2:3w-1

Z4w-3:3w-2

MYw-1:0

Zw-2:-1

MYw-2:-1

Zw-3:-2

MY2w-1:w

Z2w-2:w-1

MY2w-2:w-1

Z2w-3:w-2

MY3w-1:2w

Z3w-2:2w-1

MY3w-2:2w-1

Z3w-3:2w-2

MY4w-1:3w

Z4w-2:3w-1

MY4w-2:3w-1

Z4w-3:3w-2

MYw-3:-2

Zw-4:-3

MY2w-3:w-2

Z2w-4:w-3

MY3w-3:2w-2

Z3w-4:2w-3

MY4w-3:3w-2

Z4w-4:3w-3

MYw-4:-3

Zw-5:-4

MY3w-4:2w-3

Z3w-5:2w-4

MY4w-4:3w-3

Z4w-5:3w-4

MY2w-4:w-3

Z2w-5:w-4

x5

x6

x7

x5

x6

x7

x5

x6

x7

MY5w-1:4w

Z5w-2:4w-1
x0

MY5w-2:4w-1

Z5w-3:4w-2
x1

14

MY5w-1:4w

Z5w-2:4w-1
x2

MY5w-2:4w-1

Z5w-3:4w-2
x3

x0

MY5w-3:4w-2

Z5w-4:4w-3
x2

MY5w-4:4w-3

Z5w-5:4w-4
x3

MY5w-1:4w

Z5w-2:4w-1

x1
MY5w-2:4w-1

Z5w-3:4w-2

x4

MY5w-3:4w-2

Z5w-4:4w-3
x6

MY5w-4:4w-3

Z5w-5:4w-4
x7

MY5w-1:4w

Z5w-2:4w-1

MY5w-2:4w-1

Z5w-3:4w-2
x5

Figure 7: Parallel radix-2 kernel latency

An entire multiplication using p PEs takes k kernel cycles

to complete. When the first PE has finished a kernel cycle, it

cannot begin the next kernel cycle until the last PE has

completed the first word of Z. The latency of a kernel cycle

depends on e and p. Case I corresponds to a large number of

PE cycles, e, relative to the number of processing elements, p.

In this situation, when the first PE has finished its kernel

cycle, the first word of Z from the last PE is already waiting in

the FIFO, there is no stall between kernel cycles, and the

kernel hardware is used with maximal efficiency. Case II

corresponds to a large number of processing elements relative

to the number of PE cycles. As shown in Figure 7, the first PE

must wait until the last PE finishes calculating the first word

of Z. Therefore, Case I occurs when e > p and Case II occurs

when e < p+1.

Case I: The first PE is used continuously e times per kernel

cycle for k full kernel cycles. Therefore the total delay is

DI = ke (2)

Case II: Each kernel cycle takes p+p/w clock cycles until

the first word of Z is ready, plus 1 to bypass the result back to

the first PE. The p/w term is caused by the left shifting of M̂

and Y. After passing p PEs, p zeros have been shifted into the

least significant bits of M̂ and Y which are ignored, causing

p/w cycles of delay. Therefore the total delay Case II is

DII = k(p+p/w+1) (3)

Rewriting these delays in terms of the design parameters n,

w, and p, and assuming integer divisibility, we obtain

DI =
2n n n

pw p w
  (4)

DII = 1
n p n

n p
w p


    (5)

V. RESULTS

 The parallel radix-2 Montgomery multiplier design

described previously was implemented using Verilog. The

design was synthesized using Synplify Pro and compared to

the synthesis result of previous designs. All synthesis results

were produced by targeting the Xilinx Virtext II XC2V2000

speed grade -6 FPGA with “sequential optimizations” disabled

[8] to prevent flip-flops from being turned into shift registers.

Table 1 shows the synthesis result of a single process element

for several radix-2 designs. The result matches our expectation

that the parallel algorithm removed an AND and a multiplexer

from the PE critical path. As a result, the PE of a parallel

radix-2 design achieved a 26% clock speed increase. In

addition, because several gates were removed from the

parallel radix-2 PE, there is a hardware decrease when

compared to previous designs. Thus, the parallel radix-2

design is both faster and small than previous designs.

Table 2 compares overall system performance of the new

parallel design to the other scalable radix-2 designs. For the

kernel synthesis, the frequency of the kernels is significantly

lower than the PE synthesis show in Tables 1. This difference

is caused by the interconnect delay estimated by Synplify Pro

which can be minimized in a real implementation of the

Montgomery multipliers through datapath floorplanning.

From Table 2, we see that the parallel radix-2 design is the

fastest radix-2 multiplier. In the 1024-bit multiplication using

16 PEs, it can perform a multiplication 17% faster than the

improved radix-2 design and significantly faster than the

improved radix-2 design. In addition, the hardware

requirement of the parallel radix-2 multiplier is approximately

the same as other designs, justifying our claim that this design

provides an performance increase without additional hardware

costs.

It is interesting to note that as the number of PEs in the

kernel increase, the performance benefit of the parallel radix-2

design decrease. This effect is caused by the fact parallel

algorithm requires an addition kernel cycle than traditional

radix-2 Montgomery multipliers. Thus, as the number of PE

increases, this performance overhead for parallel radix-2 is

increased as well. It is possible to increase the number of PEs

so much that the parallel radix-2 design would actually

become slower than the traditional designs despite of running

at higher clock frequencies.

VI. CONCLUSION

In this paper, we have demonstrated a novel approach to

radix-2 scalable Montgomery multipliers by reordering the

steps to perform multiplications in parallel. The design is both

faster and smaller than previous radix-2 Montgomery

multipliers. It provides a significant cycle time improvement

at the cost of a small increase in cycle count. In simulation, the

parallel radix-2 design was able to provide a 17% speed

increase over the previous designs for a 1024-bit

multiplication using 16 PEs.

Architecture Reference w 4-input

LUTs / PE

Registers /

PE

Critical Path PE

Clock Speed

(MHz)

Parallel
Scalable Radix 2

This work 16 94 72 AND + 2CSA + REG 403

Improved

Scalable Radix 2

[3] 16 97 72 2AND + 2CSA + BUF + MUX + REG 318

Tenca-Koç
Scalable Radix 2

[2] 16 97 72 2AND + 2CSA + BUF + MUX + REG 318

TABLE 1: SYNTHESIS PERFORMANCE COMPARISON OF VARIOUS
PROCESSING ELEMENTS

TABLE 2: SYNTHESIS PERFORMANCE COMPARISON OF VARIOUS

MONTGOMERY MULTIPLIERS

Description Ref Tech w v p LUTs REGs
16×16

MULT

N Tmult

 (ms)

Parallel

Scalable radix 2

This

work

Xilinx XC2V2000-

06

16 1 16 1575 1189 0 256 0.41

1024 21.8

64 6006 4597 0 256 0.52

1024 6.3

Improved scalable

radix 2

[3] Xilinx XC2V2000-

06

16 1 16 1564 1202 0 256 0.49

1024 27.2

64 5932 4705 0 256 0.56

1024 7.6

Tenca-Koç Scalable

radix 2

[2] 0.5 m CMOS 8 1 40 28 kgates 0 256 1.6

1024 37

Xilinx XC2V2000-

06

8 1 40 3902 2937 0 256 1.0

1024 15

ACKNOWLEDGEMENT

 The authors would like to thank the Clay-Wolkin Family

Foundation fellowship as well as Intel Circuit Research Lab

for funding this research project.

REFERENCES

[1] P. Montgomery, “Modular multiplication without trial division,” Math.

Of Computation, vol. 44, no. 170, pp. 519-521, April 1985.

[2] A. Tenca and Ç. Koç, “A scalable architecture for modular
multiplication based on Montgomery’s algorithm,” IEEE Trans.

Computers, vol. 52, no.9, pp. 1215-1221, Sept. 2003.

[3] D. Harris et al., “An improved unified scalable radix-2 Montgomery
multiplier”, IEEE Symp. Computer Arithmetic, pp. 172-178, 2005.

[4] N. Jiang and D. Harris, “Quotient piplelined very high radix scalable

Montgomery multipliers”, Proc. Asilomar Conf. Signal, Systems , and
Computers

[5] K. Kelly and D. Harris, “Parallelized very high radix scalable

Montgomery multipliers,” Proc. Asilomar Conf. Signals, Systems, and

Computers, pp. 1196-1200, 2005.

[6] K. Kelley and D. Harris, “Very high radix scalable Montgomery

multipliers”, IEEE IWSOC Conference, pp. 400-404, July 2005.
[7] H. Orup, “Simplifying quotient determination in high-radix modular

multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic, pp. 193-
199, 1995.

[8] Xilinx, Virtex-II Pro and Virtex-II Pro X Platform FPGAs Datasheet,

June 30, 2004, www.xilinx.com

