
Lowering the Barriers to Large-Scale Mobile Crowdsensing

Yu Xiao
Carnegie Mellon University

Aalto University
yuxiao@cs.cmu.edu

Pieter Simoens
Carnegie Mellon University
Ghent University - iMinds

pieter.simoens@intec.ugent.be

Padmanabhan Pillai
Intel Labs

padmanabhan.s.pillai@intel.com

Kiryong Ha
Carnegie Mellon University

krha@cmu.edu

Mahadev
Satyanarayanan

Carnegie Mellon University
satya@cs.cmu.edu

ABSTRACT
Mobile crowdsensing is becoming a vital technique for envi-
ronment monitoring, infrastructure management, and social
computing. However, deploying mobile crowdsensing appli-
cations in large-scale environments is not a trivial task. It
creates a tremendous burden on application developers as
well as mobile users. In this paper we try to reveal the
barriers hampering the scale-up of mobile crowdsensing ap-
plications, and to offer our initial thoughts on the potential
solutions to lowering the barriers.

1. INTRODUCTION
In recent years, there has been phenomenal growth in the

richness and diversity of sensors on smartphones. It is now
common to find two cameras, a GPS module, an accelerom-
eter, a digital compass, a gyroscope and a light sensor in a
single smartphone. And there is more to come! The rich
information about the smartphone user’s activity and envi-
ronment provided by these sensors inspired the first wave of
sensing applications that personalized user experience based
on the sensed context. Now, a second wave of mobile sensing
applications is gaining momentum. The focus has shifted
from individual sensing towards crowdsensing, defined as
“individuals with sensing and computing devices collectively
sharing information to measure and map phenoma of com-
mon interest” [10]. Initially, crowdsensed inputs were ana-
lyzed offline, for example in the analysis of transportation
activities in urban spaces [34], for the measurement of inter-
person similarity [14], or for mental and physical health as-
sessment of elder people [23]. In more recent crowdsensing
applications, the collected inputs are processed in real time.
Examples include traffic monitoring [35, 36], public safety
management [27], and collaborative searching [31].

A hypothetical use case serves to illustrate the potential
benefits of crowdsensing using information-rich multimedia
sensors and some potential pitfalls [25]. Imagine that a small

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile’13, February 26–27, 2013, Jekyll Island, Georgia, USA.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

child gets lost while watching a parade in the middle of a
large city. The distraught parents, upon noticing their child
is missing, immediately use their smartphone to initiate a
search, providing sample images with their child’s face. A
crowdsensing search application tries to match these with
the videos and images being captured by the many smart-
phone cameras in the crowd. Any potential matches are
forwarded to the parents’ phone, along with GPS location
information. With thousands of electronic eyes applied to
this problem, the child is quickly found, before she herself
is even aware of being lost. For this use case, the large
number of smartphone cameras in use makes it likely the
child appears in one or more captured images; however, the
crowdsensing search application itself can succeed only if a
sufficiently large number of smartphone users participate.

More generally, there is a growing realization that scale is
the key to the success of crowdsensing applications. Since in-
dividual users may go offline and individual sensor readings
may be inaccurate or corrupted, the reliability and trustwor-
thiness of crowdsensing applications scales more than pro-
portionally with the number of users. Access to a vast user
base is thus crucial. However, our survey of the literature
shows that today’s mobile crowdsensing applications using
physical sensors like GPS have rarely been scaled up to more
than 1,000 participants.

Table 1 shows a representative sample of crowdsensing
studies. Much to our surprise, the number of participants is
often omitted in the papers reporting these studies. When
concrete numbers are provided, the crowd sizes are usually
small. It is only with data sources that are easy to collect
(e.g. from social networking applications such as Twitter)
that larger crowds have been studied. The one notable ex-
ception is the work of Balan et al [2], discussed in Section 2.

What limits the scaling of crowdsensing applications? In
this paper, we explore this issue and and propose an archi-
tectural solution. We then explore the merits of this archi-
tecture, and discuss potential implementation challenges.

2. OBSTACLES TO CROWD SCALING
Crowdsensing applications, including the ones that exist

today and the emerging class of applications making use
of richer multimedia sensors, face three major barriers to
achieving the large crowd sizes critical to their success.

The first obstacle is the heterogeneity of sensing hard-
ware and mobile platforms. In today’s mobile device market,
there are at least three popular software platforms, includ-

Reference Mobile Platform Application Category Crowd Size Input
Zhou et al. [35] (Mobisys 2012) Android Transportation unknown cell tower ID, audio signal

accelerometer
Tiramisu [36] (CHI 2011) iOS Transportation 28 GPS

SignalGuru [12] (MobiSys 2011) iOS Transportation 13 video frames
Balan et al. [2](Mobisys 2011) Car GPS Transportation 15000 GPS

Mathur et al. [16] (Mobisys 2010) Car GPS Transportation 500 GPS
Niu et al. [20] (Com.geo 2011) Blackberry Transportation unknown GPS
Bao et al. [3] (Mobisys 2010) Symbian, iPod Social Application unknown video
Wirz et al. [30] (SCI 2011) Android Social Application unknown GPS

CrowdSearch [31] (Mobisys 2010) iOS Search unknown image
GeoLife [34] (WWW 2009) GPS phones User Behavior Study 107 GPS

SoundSense [15] (Mobisys 2009) iOS User Behavior Study unknown audio stream
#EpicPlay [28] (CHI 2012) Twitter Social Application unknown tweets

Wakamiya et al. [29] (ICUIMC 2012) Twitter User Behavior Study 39898 tweets
Fujisaka et al. [9](ICUIMC 2012) Twitter User Behavior Study 8139 tweets
CrowdSearcher [5] (WWW 2012) Facebook Search 137 text

Table 1: Representative Sample of Crowd-sensing Applications

ing Android, iOS and Windows 8. Applications written for
any of these can not be run on the others. Even different
versions of a particular platform are sometimes incompati-
ble, due to changes in hardware or evolution of the software
APIs. Furthermore, the Apps model in vogue today, along
with the relatively low processing power of mobile devices,
has encouraged smaller, stand-alone applications, and dis-
couraged the development of external libraries, middleware,
and virtualization techniques to bridge the differences be-
tween platforms. There is no sign that a single platform will
dominate this fragmented market in near future. For true
ubiquity, application developers need to write, test, support,
and maintain versions of their applications for all of these
platforms. In a sense, the complexity of the crowdsensing
application space grows with cross product of the number of
platforms and the number of applications.

This issue of heterogeneity is underscored by the experi-
ence of Balan et al. [2], who conducted one of the largest
crowdsensing studies to date. It took them six months to
deploy one version of their GPS-based crowdsensing applica-
tion on 15,000 taxis in Singapore, mainly due to the hetero-
geneity of the on-car GPS devices provided by different ven-
dors. Web-based applications implemented in HTML5 are
sometimes put forward as a “write once, run everywhere” al-
ternative. Unfortunately, the HTML5 sensor APIs available
on mobile browsers are still quite limited and the support
for different sensors varies from browser to browser and from
platform to platform. While geolocation tracking using GPS
is widely supported in the up-to-date mobile browsers, ac-
cessing the microphone and video cameras is not possible in
most cases [17]. In practice, due to the potential incompat-
ibility between browsers (e.g. the inconsistent support for
audio and video codecs), developers still have to customize
their code for different browsers in some cases.

The second obstacle is the burden today’s crowdsensing
applications place on users. Today, each user must install a
separate proprietary application for every crowdsensed ex-
periment in which s/he wishes to participate. As a result,
the deployment of a single crowdsensing application is lim-
ited by the rate at which users adopt and install it on their
devices. It can take weeks or months for a newly introduced
application to reach the critcial mass of participants needed

for it to be useful. Rapid, large-scale deployment, as in the
lost child usage scenario above, is impossible with an install-
based deployment model. Users also have to be tolerant
of the processing, memory, and battery life these applica-
tions consume. Because today’s mobile operating systems
are designed to shield applications from each other, each
application is meant to be self-contained and does not share
information with others. In addition, some sensors, such as
cameras, need to be exclusively locked before use. Partici-
pating in more than one crowdsensing application at a time
is therefore not easy, even if a user is positively inclined.

The third obstacle, which primarily affects future appli-
cations, is the increasing network bandwidth demands of
emerging crowdsensing applications. Table 1 shows that
the GPS data has been the most widely used sensing in-
formation in the existing crowdsensing applications. How-
ever, looking ahead, we envision growing use of data-rich,
multimedia sensing information like video [1] in emerging
applications such as augmented reality, or the video-based
lost child locator discussed above. These applications not
only demand far more computing power, but also far more
network bandwidth to send data to the cloud infrastructure.
Based on data rate analysis of 80 videos on YouTube cap-
tured from a first-person viewpoint, each participant in a
video-based crowdsensing application will upload between
0.6 Mbps (360p resolution) and 5.6 Mbps (1080p resolu-
tion). With many users, such an application can easily over-
whelm link capacity in regional networks and into datacen-
ters. For example, Verizon recently introduced state-of-the-
art 100 Gbps links in their metro networks [21], yet these are
only capable of supporting 1080p streams from just 18000
users. A broadly-deployed application with 1 million users
will require 1–2 Tbps, 200x the total upload bandwidth of
all YouTube contributors [33] today. An application model
where each device sends data to centralized servers (as is
typical today) cannot scale to support data-rich sensors. En-
suring the scalability of crowdsensing with data-rich sensors
requires rethinking application and cloud architectures to
acquire, process, and aggregate such data efficiently.

Ultimately, all three of these obstacles are ramifications of
the deployment model in vogue today, where participation
in each crowdsensing activity requires a separate application

P Proxy VM (one per mobile user)

A
Clone of Application VM (one
per application per user)

P P

Mobile device

A

P

B

Sensing data

B

P

Master Application VM (optional;
one per cloudlet)

Application
Server

A
M

A
A

Private virtual network

Cloud

Sensing data stream

M

Figure 1: System Architecture.

that must be installed and run on user devices, and directly
communicates to central servers. To overcome these obsta-
cles, we must rethink the structure and deployment model
used in crowdsensing applications.

3. PROPOSED SOLUTION
We propose a crowdsensing deployment model built around

3 core design principles:

• separation of data collection and sharing from application-
specific logic.

• removal of application installation on smartphones from
the critical path of application deployment.

• decentralization of processing, and data aggregation
near the source of data.

These design principles address the obstacles discussed above.
By construction, our proposed solution overcomes the key
barriers to scaling up crowdsensing applications.

3.1 System Architecture
The 3-tier system architecture of our deployment model

is illustrated in Fig. 1. The first layer is composed of mobile
devices, whose roles are essentially reduced to that of (multi-
input) sensors forwarding captured data to proxy VMs in
the second layer. The second layer comprises of distributed
cloud infrastructure deployed close to the mobile devices,
typically in the access or aggregation network of Wi-Fi or
cellular network providers. The concept of distributed cloud
infrastructure here is akin to the concept of cloudlet pre-
sented in [26]. In practice, this can be a private cloud owned
by a business or community, or a small data center such as
Myoonet’s Micro data center [18] that is deployed by a cloud
operator. For the sake of simplicity, we will refer to this dis-
tributed cloud infrastructure as cloudlets in the remainder
of this paper.

Each proxy VM is associated with a single mobile device,
and is kept physically close to the mobile device through VM
migration to other cloudlets or public clouds. This ensures
network resources to transfer data from the mobile device is
minimized. The proxy VM handles all the requests for sensor
data on behalf of the mobile device. On the mobile device,

a single application is responsible for collecting sensor data
and communicating it to the proxy VM. This application can
be either implemented as a native application, or -if a good
mobile browser is available on the device- as a HTML5 web
application. The proxy VM is essentially an extension of
the mobile device into the cloudlet, and can perform custom
data preprocessing, e.g., to enforce privacy settings or handle
quirks of the mobile platform, and enforce user preferences
on data sharing and crowd participation. From here, data
is forwarded to one or more application VMs also running
on the cloudlet infrastructure.

Application VMs perform data processing steps specific
to each crowdsensing application. Each application VM
hosts a single crowdsensing application, which is not cus-
tomized to any particular mobile platform. Generally, for
each crowdsensing activity, one application VM is assigned
to each participant, making it easy to migrate a user’s proxy
VM together with the associated application VMs, preserv-
ing any hard state they may contain. If an application does
not need to maintain hard state for each user, then a single
application VM can be shared by all users on a particular
cloudlet.

The application VMs for each sensing service are deployed
by a coordinating entity on the highest layer in our archi-
tecture, typically by the application server running on the
centralized cloud infrastructure. In practice, when many
application VMs are run on each cloudlet, the application
server can initiate a master application VM (MAVM) on
each cloudlet and delegate management and data aggrega-
tion tasks. The MAVM will coordinate, clone, and config-
ure the application VMs on the cloudlet, and aggregate data
within the cloudlet before forwarding results. Depending on
the application, the MAVMs on multiple cloudlets may form
a peer-to-peer overlay network / tree to scalably aggregate
data to the central application server.

Our deployment model is predicated on two assumptions.
First, this architecture depends on distributed cloud infras-
tructure near the user. The vision of executing customized
VMs on nearby infrastructure has been articulated many
times, e.g. in [8] and [11]. It has also be argued that of-
floading to nearby computing infrastructure (cyber foraging)
is needed for compute-intensive and latency-sensitive mobile
applications [4] for the purpose of energy savings and latency
reduction. Our concept of distributed cloud infrastructure
to host proxy and application VMs fits perfectly in this vi-
sion.

Second, our approach assumes a standard API exists for
the data transfer between the proxy VM and the associated
application VMs. However, we argue this is a much eas-
ier task to accomplish than having to write an individual
application for each mobile platform (and possibly for each
individual version of the mobile platform). Indeed, the out-
put of scalar sensors can be represented as a few integers
(e.g. GPS coordinates, temperature value, ...), and stan-
dards for multimedia data (e.g., video formats) already ex-
ist. Combining such data with standardized XML format
descriptions, one can establish a standard for communica-
tion between proxy VMs and application VMs. In fact, sev-
eral programming frameworks for crowdsensing applications
have proposed solutions to abstract sensing information [32,
24] and task description [22]. These programming frame-
works can be leveraged in our model as well.

Registry

Local
Registry

App
Server

Example Task Description:
<location> Fifth Avenue , New
York</location>
<time> 13.00-13.30EST
30.10.2011 </time>
<action> face detection </action>
<output> GPS </output>
<attachments>
 
 
</attachments>

① send task description

② get a list of cloudlets located in the target area

M

VM Monitor

Cloudlet
Daemon

③ create a master
application VM

A

④

P ⑤

⑤ get permission
from user through
the proxy VM

⑥

⑦

worker

Task
Generator

④ get a list of proxy VMs
that can provide images
⑥ request for application
VM creation
⑦ configure the new
application VM

Figure 2: Workflow of crowd bootstrap.

3.2 Crowd Bootstrap
Let’s revisit the lost child scenario from Section 1 to see

how a crowdsensing task can be rapidly bootstrapped using
our deployment model. As shown in Fig. 2, the process of
crowd bootstrap can be summarized in the following seven
steps.

1. The task generator (here, it is the parents’ smart-
phone) constructs and sends a task description to the
application server, typically located in the public cloud.
The actual format of this can be application-specific,
but is shown as an XML snippet here. The critical
information includes type of search (face detection),
the sample images, and a location area to scope the
search. How this description is constructed and com-
municated is also left to the application, e.g., with a
front-end app on the phone, or through a web-form on
the application server.

2. The application server parses the task description, and
consults a global registry for a list of cloudlets that are
located in the target area.

3. The application server contacts the cloudlet daemon
on each target-area cloudlet, and requests a MAVM in-
stance be created. It forwards the VM disk image and
memory snapshot to launch the MAVM. In practice,
techniques employing demand paging or VM synthesis
can minimize overheads of launching the MAVM.

4. The MAVM on each target cloudlet uses a cloudlet-
local registry to discover proxy VMs connected to de-
vices that can provide the desired sensor data (here,
videos and images).

5. The MAVM requests participation from the mobile
users through the proxy VMs. Depending on user-
defined policies, the proxy may require explicit permis-
sion from the user, or the proxy VM can automatically
join crowds on behalf of the user when particular cri-
teria are met (e.g., share video when in a public space,
but not audio).

6. Once permission is granted, the MAVM will request
the cloudlet daemon to create application VMs. In

practice, these can simply be clones of the MAVM,
operating in a different mode.

7. The MAVM configures the networking setup of the ap-
plication VMs, while the the proxy VM will add the
new application VM to the subscriber list.

When the above steps are finished, the proxy VMs will
start forwarding images and videos to the application VMs,
which will apply face detection and forward potential matches
through the MAVM and application server to the parents’
smartphone. We believe our architecture has the potential
to bootstrap large crowds in just a matter of minutes, mak-
ing this on-demand crowdsensing use case possible.

3.3 Benefits of Our Design
Our deployment model is architected to support scalable,

efficient data sharing between multiple applications and users,
while reducing the burden on application developers and end
users. It scales up crowdsensing tasks by making it easier to
access data from a larger pool of diverse smartphones, allow
users to simultaneously particpate in multiple applications,
and support rich, high-data-rate sensors at global scale.

Separating the process of data collection and sharing from
application-specific processing, our system lets developers
focus on the latter, rather than porting their application to
a myriad of mobile platforms and understanding the idiosyn-
chrasies of each. In fact, our deployment model increases the
choices in programming languages, as the application is self-
contained in its application VM and does not have to meet
specific compatibility constraints for mobile platforms. Sim-
ilarly, the developer is free to use a variety of programming
models to distribute computation and aggregate results, and
not forced to use a one-size-fits-all paradigm. Deploying
VMs to users boils down to rapid cloning of the application
VMs on cloudlets, regardless of the mobile devices.

In our architecture the personal data of the users is stored
and processed on their own proxy VMs. According to [7] this
approach provides a higher degree of privacy if compared to
the traditional approach of storing and processing the data
using centralized third party services. Our framework also
allows flexibility in partitioning work between the proxy VM
and mobile device. For example, supporting multiple appli-
cations with differing fidelity or resolution requirements si-
multaneously will entail some amount of preprocessing; this
can be done in the proxy VM, mobile device, or a combina-
tion of both depending on hardware capabilities, processing
overheads, and energy availability.

Our approach reduces the burden on users and their mo-
bile devices for participating crowdsensing. First, instead of
installing individual apps on their devices for each crowd-
sensing application, users only need to install one app that
allows users to participate in different crowdsensing applica-
tions. Users can join a crowd by simply granting permission,
and if willing, can direct their proxies to automatically par-
ticipate in some forms of crowdsensing. When a user leaves a
crowd, the application VM is simply destroyed, and does not
require additional attention from the user. Second, demands
on the mobile device can also be reduced, as processing is
offloaded to the cloud, and only a single copy of the sensor
data is uploaded even when participating in multiple appli-
cations. The potential reduction in data transmission helps
save energy for users’ mobile devices.

Lastly, our design performs processing and data aggrega-
tion close to the data sources. This brings two benefits: 1) it
reduces traffic on wide-area networks; 2) it reduces network
latency by avoiding long-distance data transmission through
the backbone networks. This makes it possible to scale up
crowdsensing with high-data-rate sensors. VM migration
can ensure that processing remains close to data source even
as users move around.

4. CHALLENGES
There are several technical hurdles in the path of a real-

world deployment of our proposed architecture. We discuss
these below.

4.1 Virtualization Overhead
Leveraging virtualization allows us to create a flexible

platform in a multi-party setting where user privacy, scal-
ability and isolation between crowdsensing applications are
key requirements. These advantages come at the price of
both VM creation overhead and the need for more advanced
inter-VM communication management. In our design, a new
clone of the application VM is instantiated for each user join-
ing the crowd. Ideally, this new VM should start as fast as
possible with minimal cost on resources. In practice, when
a VM Monitor starts a new VM, it must first reserve all of
the memory resources needed for the VM. This constraint
prevents rapid creation of multiple VMs concurrently.

One way to solve this problem is to reduce the num-
ber of running VMs by replacing the per-user application
VMs with one multiplexing application VM on each cloudlet.
However, this will introduce the complexity of process mi-
gration in mobile scenario when any hard state contained in
the application VMs must be preserved. An alternative way
is to reduce the overhead of VM creation through advanced
cloning mechanisms. There are several efforts that try to
reduce the memory copy overhead by cloning the memory
from running VMs. SnowFlock [13] proposes to fetch mem-
ory on demand while cloning VMs. It manages to clone 32
clones in 32 different hosts within one second by combin-
ing on-demand fetching with TCP multicasting for network
scalability. Kaleidoscope [6] takes this one step further by
discriminating VM memory state into semantically related
regions to achieve prefetching and efficient transmitting.

An additional challenge is configuration and performance
of inter-VM communication. The performance of inter-VM
communication is relatively low compared to inter-process
communication. When the system workload on the cloudlet
increases, this may result in delayed transmission of sensor
data between proxy and application VMs. Note that this
low performance is due to inefficient CPU scheduling of the
host, as the physical network interface is not touched by
inter-VM traffic.

4.2 Migration-induced Reconfiguration
Physical mobility of a device may trigger the migration of

the proxy VM and the associated application VMs that are
not stateless. Consequently, the IP address of the mobile de-
vice as well as those of the VMs may change. To maintain es-
tablished connections between mobile device and proxy VM,
as well as between proxy VMs and application VMs, auto-
mated advanced network reconfiguration is needed. This
potentially includes network addressing, NAT settings and
firewall setup in VMs. Due to this overhead, IP-based so-

lutions may not provide adequate performance in our en-
visaged scenarios. Non IP-based solutions such as the Host
Identify Protocol [19] have been designed from scratch with
these limitations in mind, but these protocols still need to
be evaluated in real networks. The deployment of these is
unlikely to be easy, given the fact that today’s Internet is
built almost exclusively on the TCP/IP stack.

4.3 Standardization of Sensing Interfaces
Sensor data is distributed from the proxy VMs to the

application VMs through a publish-subscribe mechanism.
Standard sensor data descriptions are needed to realize com-
munication between proxy VMs and application VMs of var-
ious developers. As discussed in Section 3.1, some efforts [32,
24] have been invested on developing such interfaces, how-
ever, unfortunately so far no consensus has been made yet.

Another challenge lies in the fact that different crowd-
sensing applications might be built on the same sensor data,
but require a different format or sample rate. However, the
sensor data collected from the devices provided by different
vendors may not be able to always provide the data in the
right format or at the right sample rate.

There is a trade-off to be studied on whether the conver-
sion from the original sensor data to the requested output
format(s) must be done on the mobile device, the proxy VM
or inside the application VM itself. At first sight, running
inside the application VM is the most logical choice, as it
removes as much logic as possible from the mobile device
and the proxy VM. However, this results in a lack of syn-
chronization and a potential waste of resources. For exam-
ple, what if all currently running application VMs only need
camera frames at 10 fps, while the mobile device emits at a
standard 30 fps? In this case, it would make sense to put
downsampling application logic on the mobile device, and to
put logic in the proxy VM that can configure the sensor cap-
turing on the mobile device. When a new application VM
is deployed needing 15 fps, the proxy VM may instruct the
mobile device to increase its frame rate accordingly. Sup-
port for device-level configuration may vary significantly by
platform and specific sensor hardware, so proxy VMs need
to be designed to abstract away such differences.

5. CONCLUSIONS
This paper has argued that the existing deployment model

for crowdsensing applications does not support either effi-
cient crowd scaling over heterogeneous mobile platforms or
the data sharing between crowdsensing applications. While
VM-based cloudlets have been widely studied and utilized
for computation offloading, we explore the potential uses of
VM-based cloudlets for lowering the barriers to scaling up
crowdsensing applications. Our solution leverages the exist-
ing programming frameworks for crowdsensing applications.
There are still several challenges that must be addressed be-
fore this kind of deployment model can be adopted, we are
implementing the deployment platform with specific focus
on the research challenges discussed in this paper.

6. ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers and our shep-

herd Nina Bhatti for their valuable comments and feedback,
which helped to improve the final version. This research
was supported by the National Science Foundation (NSF)
under grant numbers CNS-0833882 and IIS-1065336, by an

Intel Science and Technology Center grant, by the Depart-
ment of Defense (DoD) under Contract No. FA8721-05-C-
0003 for the operation of the Software Engineering Institute
(SEI), a federally funded research and development center,
and by the Academy of Finland under grant number 253860.
Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily represent the views of the NSF, Intel, DoD, SEI,
Carnegie Mellon University or Academy of Finland. This
material has been approved for public release and unlimited
distribution except as restricted by copyright.

7. REFERENCES
[1] Bahl, P., Philipose, M., and Zhong, L. Vision:

cloud-powered sight for all: showing the cloud what
you see. In Proc. of MCS (2012).

[2] Balan, R. K., Nguyen, K. X., and Jiang, L.
Real-time trip information service for a large taxi
fleet. In Proc. of MobiSys (2011).

[3] Bao, X., and Roy Choudhury, R. Movi: mobile
phone based video highlights via collaborative sensing.
In Proc. of MobiSys (2010).

[4] Bonomi, F., Milito, R., Zhu, J., and Addepalli,
S. Fog computing and its role in the internet of things.
In Proc of MCC (2012), pp. 13–16.

[5] Bozzon, A., Brambilla, M., and Ceri, S.
Answering search queries with crowdsearcher. In Proc.
of WWW (2012).

[6] Bryant, R., Tumanov, A., Irzak, O., Scannell,
A., Joshi, K., Hiltunen, M., Lagar-Cavilla, A.,
and de Lara, E. Kaleidoscope: cloud micro-elasticity
via vm state coloring. In Proc. of EuroSys (2011).

[7] Cáceres, R., Cox, L., Lim, H., Shakimov, A., and
Varshavsky, A. Virtual individual servers as
privacy-preserving proxies for mobile devices. In Proc
of MobiHeld (2009), pp. 37–42.

[8] Cuervo, E., Balasubramanian, A., Cho, D.-k.,
Wolman, A., Saroiu, S., Chandra, R., and Bahl,
P. Maui: making smartphones last longer with code
offload. In Proc. of MobiSys (2010).

[9] Fujisaka, T., Lee, R., and Sumiya, K. Discovery of
user behavior patterns from geo-tagged micro-blogs.
In Proc. of ICUIMC (2010).

[10] Ganti, R. K., Ye, F., and Lei, H. Mobile
crowdsensing: current state and future challenges.
IEEE Communications Magazine 49, 11 (2011).

[11] Kosta, S., Aucinas, A., Hui, P., Mortier, R., and
Zhang, X. Thinkair: Dynamic resource allocation and
parallel execution in the cloud for mobile code
offloading. In Proc of INFOCOM (2012).

[12] Koukoumidis, E., Peh, L.-S., and Martonosi,
M. R. Signalguru: leveraging mobile phones for
collaborative traffic signal schedule advisory. In Proc.
of MobiSys (2011).

[13] Lagar-Cavilla, H. A., Whitney, J. A., Scannell,
A. M., Patchin, P., Rumble, S. M., de Lara, E.,
Brudno, M., and Satyanarayanan, M. Snowflock:
rapid virtual machine cloning for cloud computing. In
Proc. of EuroSys (2009).

[14] Lane, N. D., Xu, Y., Lu, H., Hu, S., Choudhury,
T., Campbell, A. T., and Zhao, F. Enabling
large-scale human activity inference on smartphones
using community similarity networks (csn). In Proc. of
UbiComp (2011).

[15] Lu, H., Pan, W., Lane, N. D., Choudhury, T.,
and Campbell, A. T. Soundsense: scalable sound
sensing for people-centric applications on mobile
phones. In Proc. of MobiSys (2009).

[16] Mathur, S., Jin, T., Kasturirangan, N.,
Chandrasekaran, J., Xue, W., Gruteser, M.,
and Trappe, W. Parknet: drive-by sensing of

road-side parking statistics. In Proc. of MobiSys
(2010).

[17] Mobile HTML5. http://mobilehtml5.org, 2013.
[18] MYOONET. Unique scalable data centers.

http://www.myoonet.com/unique.html, 2011.
[19] Nikander, P., Gurtov, A., and Henderson, T.

Host identity protocol (hip): Connectivity, mobility,
multi-homing, security, and privacy over ipv4 and ipv6
networks. Communications Surveys Tutorials, IEEE
12, 2 (2010), 186 –204.

[20] Niu, Z., Li, S., and Pousaeid, N. Road extraction
using smart phones gps. In Proc. of COM.geo (2011).

[21] PC World. http://www.pcworld.com/article/
255519/verizon_to_offer_100g_links_resilient_
mesh_on_optical_networks.html, 2012.

[22] Ra, M.-R., Liu, B., La Porta, T. F., and
Govindan, R. Medusa: a programming framework for
crowd-sensing applications. In Proc. of MobiSys
(2012).

[23] Rabbi, M., Ali, S., Choudhury, T., and Berke,
E. Passive and in-situ assessment of mental and
physical well-being using mobile sensors. In Proc. of
UbiComp (2011).

[24] Ravindranath, L., Thiagarajan, A.,
Balakrishnan, H., and Madden, S. Code in the
air: simplifying sensing and coordination tasks on
smartphones. In Proc. of HotMobile (2012).

[25] Satyanarayanan, M. Mobile computing: the next
decade. In Proc of MCS (July 2010).

[26] Satyanarayanan, M., Bahl, P., Caceres, R., and
Davies, N. The case for vm-based cloudlets in mobile
computing. IEEE Pervasive Computing 8, 4 (Oct.
2009).

[27] Shah, S., Bao, F., Lu, C.-T., and Chen, I.-R.
Crowdsafe: crowd sourcing of crime incidents and safe
routing on mobile devices. In Proc. of ACM
SIGSPATIAL GIS (2011).

[28] Tang, A., and Boring, S. #epicplay:
crowd-sourcing sports video highlights. In Proc. of
CHI (2012).

[29] Wakamiya, S., Lee, R., and Sumiya, K.
Crowd-sourced urban life monitoring: urban area
characterization based crowd behavioral patterns from
twitter. In Proc. of ICUIMC (2012).

[30] Wirz, M., Strohrmann, C., Patscheider, R.,
Hilti, F., Gahr, B., Hess, F., Roggen, D., and
Tröster, G. Real-time detection and
recommendation of thermal spots by sensing collective
behaviors in paragliding. In Proc. of SCI (2011).

[31] Yan, T., Kumar, V., and Ganesan, D.
Crowdsearch: exploiting crowds for accurate real-time
image search on mobile phones. In Proc. of MobiSys
(2010).

[32] Ye, F., Ganti, R., Dimaghani, R., Grueneberg,
K., and Calo, S. Meca: mobile edge capture and
analysis middleware for social sensing applications. In
Proc. of WWW Companion (2012).

[33] YouTube.
http://www.youtube.com/t/press_statistics, 2012.

[34] Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y.
Mining interesting locations and travel sequences from
gps trajectories. In Proc. of WWW (2009).

[35] Zhou, P., Zheng, Y., and Li, M. How long to wait?:
predicting bus arrival time with mobile phone based
participatory sensing. In Proc. of MobiSys (2012).

[36] Zimmerman, J., Tomasic, A., Garrod, C., Yoo,
D., Hiruncharoenvate, C., Aziz, R.,
Thiruvengadam, N. R., Huang, Y., and
Steinfeld, A. Field trial of tiramisu: crowd-sourcing
bus arrival times to spur co-design. In Proc. of CHI
(2011).

