
Model Ontological Commitments Using ORM+ in T-
Lex

Yan Tang and Damien Trog

Semantic Technology and Application Research Laboratory (STARLab),
 Department of Computer Science, Vrije Universiteit Brussel,

 Pleinlaan 2, 1050 Brussel, Belgium
{yan.tang, Damien.trog}@vub.ac.be

Abstract. When designing and developing ontology based applications, we
semantically ground them by ontologically committing the application rules to
their respective domain. These rules can be, for instance decision rules for a
decision support system. For the DOGMA framework we have introduced
ORM+, a novel extension of ORM for modeling, visualizing and interchanging
ontological commitments. In this paper, we illustrate our ongoing research on
ORM+ and T-Lex as its supporting tool. We demonstrate in the field of on-line
customer management.

1 Introduction

An ontology is a semiotic representation of agreed conceptualization in a subject
domain [1, 8]. As an ontology modeling framework and ontology engineering
methodology, DOGMA (Developing Ontology-Grounded Methods and Applications,
[14, 18]) was designed and inspired by the tried-and-tested principles from conceptual
database modeling. In DOGMA, an ontology is represented in two layers using the
double-articulation principle: the lexon layer and the commitment layer.

A lexon is modeled as a quintuple <γ , t1, r1, r2, t2>, where t1 and t2 are terms that
represent two concepts in some language. r1, r2 are roles (r1 corresponds to “role” and
r2 - “co-role”) referring to the relationships that the concepts share with respect to one
another. γ is a context identifier. It is assumed to point to a resource, usually a
document in the general sense, where the terms t1, t2 are originally defined and
disambiguated, and in which the roles r1, r2 become “meaningful”. For example, a
lexon <γ , order manager, accept, is accepted by, customer request> explains a fact
that “order manager accepts customer request”.

An ontology is often designed for several tasks or applications. As Guarino
mentioned, the value of an ontology is the reusability in the context of knowledge
management [8]. In order to ensure the reusability of an ontology, the commitment
layer in DOGMA is designed to separate the application layer and the lexon layer. It
contains a set of ontological commitments, with which an application commits its
local vocabulary and application semiotics to the meaning of the ontology vocabulary.

The commitments need to be expressed in a commitment language that can be
easily interpreted by the domain experts and a machine. In [1, 18], the authors studied
many advantages of using ORM (Object Role Modeling, [9]) as a commitment
modeling manner. Furthermore, they argue that it is rather feasible to model and
visualize the commitments using ORM, for ORM has an expressive capability in its
graphical notations and verbalization possibilities. The ORM commitment models can
be stored in XML files (ORM Markup Language, ORM-ML for short, [1]), with
which agents can share the ontologies.

Suppose that a domain expert wants to constrain the lexon <Customer Request, is
Accepted By, accept, Order Manager> with a uniqueness constraint like “one
customer request is accepted by at most one order manager”. Its ORM diagram is
shown in Fig. 1.

Fig. 1. Model ORM uniqueness constraint

The corresponding XML file is shown as below:
 …
 <Predicate id= “lexon-1”>
 <Object_Role ID= “lexon1_forward”
 Object=“CustomerRequest” Role=“isAcceptedBy”/>
 <Object_Role ID= “lexon1_backward”
 Object=“OrderManager” Role= “accept”/>
 …
 <Constraint xsi:type= “Uniqueness”>
 <Object_Role>lexon1_forward</Object_Role>
 </Constraint>
 …

ORM, ORM 21 and ORM-ML are the technology that is mainly used in DOGMA.
However, it still lacks several operators and connectors while grounding the
semantics for the application rules, e.g. the sequences and dependences. Moreover,
ORM has certain limitations on using some specific operators, such as the implication
operator. As the response, we have proposed ORM+ (an extension to ORM) and
ORM+ ML (a hybrid language of ORM-ML and FOL Rule ML) in our early paper
[21]. Seven new graphic notations, including negation, conjunction and sequence
operators, were introduced. These notations are mainly used for modeling
commitments used by ontology based decision support systems, such as Semantic
Decision Tables [22].

Recently, we have been working on a modeling tool called T-Lex [23] for
modeling ontological commitments using ORM+. T-Lex is a tool for graphical
ontology engineering that has a notation based on ORM.

By using T-Lex, the most significant constraints for ontologies (mainly based on
ORM) are supported [24], which include most database consistency constraints.

1 ORM 2 [11] is the second generation of ORM. Its graphical notations are improved based on

industrial experiences.

Because of the tree representation, constraints are indexed instead of connected with a
line to avoid cluttering.

In this paper, we focus on the ongoing researches on ORM+ and discuss how to
model, visualize and verbalize the ORM+ models in T-Lex. The rest of the paper is
organized as follows: section 2 is the related work. We compare our work to other
ontology modeling tools, such as Protégé. Seven graphical notations are demonstrated
in section 3. We conclude, open a discussion and discuss the future work in section 4.

2 Related Work

The current state of the art on ORM modeling is the NORMA tool from Neumont
University [1]. It supports the new ORM2 notation and is able to map the schemas to
the popular RDBMs.

Protégé [16] is an ontology development tool developed at Stanford University.
For Protégé different visualization modules have been developed, with Jambalaya
[19] as the most popular one. It uses a nested graph-based representation of
hierarchical structures, together with nested interchangeable views.

Variations of the spring embedded algorithm [3] are also widely used in ontology
engineering tools. Examples are the work of Mutton and Golbeck [15], the
OIModeller plug-in for the KAON server [5], and the visualization user interface in
OntoEdit [20]. The ontology is considered as a graph whose vertices represent
concepts and whose edges represent relationships. Vertices are positioned randomly
as their initial position. Each vertex is considered to cause a repulsive force on the
others, while edges represent an attracting force. When minimum energy is reached,
the visualization is complete. The advantage is that high-level structure can be
detected. The disadvantage is that the number of iterations and the initial positions
can create a new representation on each visualization.

Another approach is using cluster maps for visualizing populated, light-weight
ontologies [4]. This visualizes the instances of a number of selected classes from a
hierarchy, organized by the taxonomy.

Pretorius also visualized the lexon base by employing a fish eye view on an
ordered visual representation [17]. The technique is well suited for an overview of
very large lexon bases, but not for searching for particular terms.

An overview of other ontology tools can be found in several surveys [13, 6].
Unlike all the tools illustrated above, T-Lex [23] uses NORM tree to tackle the

lexon base visualization problems in a scalable and structured manner. NORM is a
recursive acronym of “NORM Ontology Representation Method”. It is a method to
represent domain ontologies in an undirected rooted tree format. T-Lex is particularly
suited for small to medium sized ontologies. This is partly supported by grouping
lexons by context and by the assumption that the user already knows the starting point
for searching. Just like the term NORM is a recursive definition, the NORM tree in
general is recursive. It can be spanned infinitely. By using T-Lex, the users can have
more flexible ontology views than other ontology modeling tools.

3 ORM+ in T-Lex

In [21], we introduced the ORM+ graphical notations of negation, conjunction,
implication, sequence, necessity and possibility. Negation, conjunction and
implication are borrowed from the basic operators2 of propositional logics. Sequence
is used in the commitments related to the time issue. The necessity and possibility
operators are two basic ones in Modal logic. We illustrate their graphical notations in
the following subsections.

3.1 Negation

It is possible to model a negation constraint using ORM. In ORM, one uses “closed-
world” and specific “open-world” assumptions [9, pp. 61]. The “closed-world”
assumption uses the absence of positive information (e.g. Customer request is
accepted by Order manager) to imply the negative (e.g. Customer request is not
accepted by Order manager). With an “open-world” approach, negative information is
explicitly stored using negative predicates or status object types. I.e. “Customer
request” has Acceptance status {‘Accepted’, ‘Not Accepted’} and each “Customer
request” has at most one Acceptance status (Fig. 2). Or, “Customer request” has two
subtypes “Accepted customer request” and “Unaccepted customer request”, which are
mutually exclusive (Fig. 3).

Fig. 2. Model negation in ORM – method 1

Fig. 3. Model negation in ORM – method 2

Although transferring the negation connective to the value constraint or the
exclusive constraint doesn’t lose any information of a negative proposition, it is still

2 In propositional logic, there are five basic operators and connectors: negation, conjunction,

disjunction, implication and equivalence. The disjunction can be modeled using the
exclusive-or constraint in ORM. The equivalence can be modeled using the equality
constraint in ORM. Therefore, the equivalence and disjunction are excluded in the paper.

not easy for a domain expert to know when the negative status is taken. For both
positive and negative statuses of a type are modeled in the same schema. The domain
expert has to make the analysis or reckon on extra information in order to know
whether he uses the negative status or the positive one. To simplify the situation, we
introduce the constraint of negation in ORM+.

Fig. 4. Model ORM+ negation in T-Lex

Fig. 4 shows an ORM+ diagram containing a notion of negation. A “ ”is marked
above each applied role. The number (e.g. ‘1’ in Fig. 4) after “ ” indicates the
constraint group. Note that a negation constraint needs to be applied to both role and
co-role. Because the lexon role and co-role often has the same meaning, e.g. ‘is
accepted by’ and ‘accept’ in Fig. 4. It is strange for a role to have a negative situation
while the co-role stays positive, and vice verse.

Fig. 4 is verbalized as “a customer request is not accepted by an order manager; an
order manager doesn’t accept a customer request”. When an application receives this
commitment, it will give two resulting sets: one contains the customer requests that
are not accepted by any order managers; the other contains the order managers that do
not accept any customer requests.

The negation is often used with other connectors, such as the implication, which
will be discussed later.

3.2 Conjunction

The conjunction binary operator is to construct a logical AND with the conjunction
operator∧ . The conjunction operator is equivalently used as set intersection in the set
theory. It is very useful to restrict the population of an object that plays a specific role.
One writes such ontological commitments at the query level, e.g. list all the customers
who are listed in a customer catalog AND whose state is normal”.

ORM doesn’t provide modeling techniques for the conjunction operator. In ORM+,
a “ ” denotes the conjunction operator. ∧

Fig. 5. Model ORM+ conjunction in T-Lex

Fig. 5 is an example containing a conjunction connector. We verbalize it as “a
customer is listed in a customer catalog AND he has a normal state”. Note that the

conjunction connective is often applied to more than two lexons. It is not possible to
be applied on only one lexon.

When a decision supporting system receives an ontological commitment shown in
Fig. 5, it will give a record of ‘customer’ that is listed in a ‘customer catalog’ and he
has a ‘normal state’. As the negation operator, the conjunction operator is also often
used with the implication connective.

3.3 Implication

In ORM, the implication operator is modeled using a subset operator. Fig. 6 shows an
ontological commitment that the set of the members of ‘Driver’ who has ‘Driver’s
license’ is the subset of the members of ‘Driver’ who has ‘License’. ORM uses a
dotted arrow-tipped bar running from the subset role to the superset role for the subset
constraint. It is comparable to the logical connective→ , which can be verbalized as
“IF…, THEN” alike sentences. For example, Fig. 6 is verbalized as “IF a driver has
driver’s license, THEN he has license”.

Fig. 6. Model implication using ORM subset constraint

However, there are two limitations while modeling the implications using ORM.
One is that users can only model monotonic rules in ORM. In practice, we often
encounter non-monotonic rules. E.g., the ontological commitments for the ontology
based decision support systems often include non-monotonic rules, which are
verbalized as “IF…THEN…ELSE” alike sentences and cannot be modeled using
ORM.

The other limitation is, ORM implication constraint can only be applied to one
object type (lexon term), such as “Driver” in Fig. 6. It is normal to model ORM
implication in this way, because the ORM subset (implication) constraint is initially
used for set comparison instead of logical reasoning. We need a more powerful
notation to model event-driven decision commitments.

We use the symbol to designate the implication logical operator in the ORM+
diagram (Fig. 7). The condition is indicated with followed by a group number and
the action is illustrated by started with a group number. We verbalize Fig. 7 as: IF a
customer is NOT listed in a customer catalog (a customer catalog does NOT list a
customer), THEN an order manager creates a new customer.

Fig. 7 is a simple example that consists of a monotonic decision rule. We are able
to model as well non-monotonic decision rules using ORM+. Fig. 8, for example, is
verbalized as “IF a customer is NOT listed in a customer catalog, THEN an order
manager creates a new customer, ELSE the order manager approves the customer
request.” Note that the group number is very important in T-Lex. It categorizes the

modeling information. For example in Fig. 7 and Fig. 8, the negation operator is
grouped together with the action “an order manager creates a new customer”.

Fig. 7. Model ORM+ implication in T-Lex

Fig. 8. Model non-monotonic decision rules in T-Lex

3.4 Sequence

The sequence operator in ORM+ is application oriented. ORM doesn’t provide
modeling methods for this kind of operators.

The definitions of the sequence constraint may differ between domains [21].
However, the core message is the same. That is, the issue of order, regardless of in
the measure of time or space. We intend to use the sequence operator to reason on
orders, e.g. the execution order of processes. Suppose that we have a rule “an order
manager verifies a customer request AFTER the order manager receives the customer
request”, which constraints the execution order of two processes.

Fig. 9. Model ORM+ sequence in T-Lex

The event that happens earlier is indicated with a followed by a group number.
The one that happens later is marked with a after the group number.

3.5 Other ORM+ graphic notations in T-Lex

With regard to other ORM+ graphic notations, there are two important operators in
the Modal Logic – the Necessity and Possibility. In the research field of object-role
molding, Halpin categorizes rule modalities into alethic and deontic [10]. Alethic

rules “impose necessities, which cannot be violated by any applications because of
physical or logical law…”, e.g. there is only one sun in the sky. A deontic rule
“imposes obligations, which may be violated, even though they ought not …”, e.g. no
one is allowed to kill another person.

In ORM 2 [11], an alethic modality of necessity □ is used for positive
verbalizations by default. For example, the fact ‘a customer is listed in a customer
catalog’ may be explicitly verbalized as ‘a customer is NECESSARILY listed in a
customer catalog’ by default. Halpin interprets it in terms of possible world
semantics, which are introduced by Saul Kripke et al. in the 50’s [12]. A proposition
is “necessarily true if and only if it is true in all possible worlds”. The facts and static
constraints belong to a possible world, in which they must exist at some point in time.
Therefore, the necessity operator may explicitly append on the fact ‘a customer is
listed in a customer catalog’ by default.

The necessity and possibility operators are important in the decision support world,
e.g. in e-court. Therefore, their graphic notations are explicitly introduced. The
necessity constraint is indicated with above the applied roles (Fig. 10).

Fig. 10. Model ORM+ necessity in T-Lex

4 Conclusion, Discussion and Future Work

In this paper, we have discussed our ongoing work on ORM+, which is an extension
to ORM, and T-Lex as its supporting tool. The work is based on our experience on
modeling ontological commitments for decision support.

As Halpin discussed, there are, in principle, infinitely many kinds of constraints [9,
pp. 16]. This principle is general. It is not only for ORM, but also for many other
modeling languages. As new problems bring forward new needs, one can always
extend a modeling tool.

However, the modeling means will be more and more complicated until we cannot
handle it. Therefore, we need to be very careful when we introduce new notations.
Before extending an existing modeling tool, the following questions need to be
answered: 1) Can the new constraint be modeled using a combination of existing
constraints? 2) Is this new constraint really useful? How many applications will use
it? In our problem settings, the graphical notations introduced in this paper are mainly
used in the context of ontology-based decision support systems. If our applications are
relevant to decision support, the above two questions can be answered.

Currently, we get more and more requirements on reasoning on these notations. In
the future, we’ll focus on the reasoning issue of ORM+.

Acknowledgement We’re pleased to thank Gu Yan for programming. The research is
partly supported by EC Prolix project.

References

1. Curland, M. & Halpin, T. 2007, ‘Model Driven Development with NORMA’, Proc. 40th
Int. Conf. on System Sciences (HICSS-40), 10 pages, CD-ROM, IEEE Computer Society.

2. Demey, J., Jarrar, M., & Meersman, R. (2002). Markup Language for ORM Business
Rules, In proc. Of International Workshop on Rule Markup Languages for Business Rules
on the Semantic Web (RuleML-ISWC02 workshop)

3. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42 (1984) pp. 149–
160

4. Fluit, C., Sabou, M., van Harmelen, F.: Supporting user tasks through visualisation of
light-weight ontologies. In: Handbook on Ontologies: Staab, S., Studer, R. (eds.). Int.
Handbooks on Information Systems. Springer (2004) pp. 415–434

5. Gabel, T., Sure, Y., V¨olker, J.: Kaon – ontology management infrastructure. SEKT
informal deliverable 3.1.1.a, Institute AIFB, University of Karlsruhe (2004)

6. Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering. Springer-
Verlag New York, LLC (2003)

7. Gruber, T. R. (1993), Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. In Workshop on Formal Ontology, Padva, Italy. In book “Formal Ontology in
Conceptual Analysis and Knowledge Representation”. Guarino, N., and Poli, R. (Eds.).
Kluwer Academic Publishers

8. Guarino, N. (1997), Understanding, Building, and Using Ontologies: A commentary to
"Using Explicit Ontologies in KBS Development", by van Heijst, Schreiber, and
Wielinga." International Journal of Human and Computer Studies 46: 293-310,
http://citeseer.ist.psu.edu/guarino97understanding.html

9. Halpin, T.A. (2001), Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design, ISBN-13: 978-1-55860-672-2, ISBN-10: 1-55860-672-6, San
Francisco, California, Morgan Kaufman Publishers

10. Halpin, T.A., Business Rule Modality, http://www.orm.net/pdf/RuleModality.pdf. Proc. Of
Eleventh Workshop on Exploring Modeling Methods for Systems Analysis and Design
(EMMSAD’06), 2006.

11. Halpin, T. A., & Curland, M. (2006), Automated Verbalization for ORM 2. In proc. of On
the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, R. Meersman, Z.
Tari, P. Herrero (Eds.), pp. 1181-1190, LNCS 4278, Springer, ISBN 3-540-48273-3,
Montpellier, France, October 29 - November 3, 2006

12. Kripke, S., Semantical Considerations on Modal Logic, APF 16, pp. 83 – 94, 1963.
13. Lambrix, P., Edberg, A.: Evaluation of ontology merging tools in bioinformatics. In:

Pacific Symposium on Biocomputing. (2003) pp. 589–600
14. Meersman, R. (1999), The use of lexicons and other computer-linguistic tools in

semantics, design and cooperation of database systems. In Y. Zhang, M. Rusinkiewicz,
and Y. Kambayashi, editors, The Proceedings of the Second International Symposium on
Cooperative Database Systems for Advanced Applications (CODAS99), pages 1–14.
Springer

15. Mutton, P., Golbeck, J.: Visualization of semantic metadata and ontologies. In: IV ’03:
Proceedings of the Seventh Int. Conference on Information Visualization, Washington,
DC, USA, IEEE Computer Society (2003) pp. 300

16. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first
ontology. Technical Report KSL-01-05, Knowledge Systems Laboratory, Stanford
University, Stanford, CA, 94305, USA (2001)

17. Pretorious, J.A.: Lexon visualization: Visualizing binary fact types in ontology bases. In:
IV. (2004) pp. 58–6310. Lambrix, P., Edberg, A.: Evaluation of ontology merging tools in
bioinformatics. In: Pacific Symposium on Biocomputing. (2003) pp. 589–600

18. Spyns P., Meersman R., & Jarrar M. (2002), Data modeling versus Ontology engineering.
SIGMOD Record: Special Issue on Semantic Web and Data Management, 31(4):12 - 17,
December 2002

19. Storey, M., Musen, M., Silva, J., Best, C., Ernst, N., Fergerson, R., Noy, N.: Jambalaya:
Interactive visualization to enhance ontology authoring and knowledge acquisition in
protégé (2001)

20. Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit:
Collaborative ontology development for the Semantic Web, LNCS 2342 (2002) pp. 221–
235

21. Tang, Y., Spyns, P. & Meersman, R. (2007), Towards Semantically Grounded Decision
Rules Using ORM+, Proc. of International RuleML Symposium on Rule Interchange and
Applications (RuleML'07), in, Adrian Paschke and Yevgen Biletskiy (eds.), Springer
Verlag, LNCS 4824

22. Tang, Y. and Meersman, R., On constructing semantic decision tables, in proc. of 18th
International Conference on Database and Expert Systems Applications (DEXA'2007),
LNCS 4653, Springer-Verlag, Berlin Heidelberg, 3~7th September, 2007, in, R. Wagner,
N. Revell, and G. Pernul (Eds.), Regensburg, Germany, p.34-44, 2007

23. Trog, D., Vereecken, J., Christiaens, S., De Leenheer, P., and Meersman, R., T-Lex: a
Role-based Ontology Engineering Tool, In proc. of ORM 2006, Springer-Verlag, Volume
4278, Montpellier, France, 2006

24. Trog, D., Tang, Y., and Meersman, R., Towards Ontological Commitments with O-RIDL
Markup Language, Proc. of International RuleML Symposium on Rule Interchange and
Applications (RuleML'07), in, Adrian Paschke and Yevgen Biletskiy (eds.), Springer
Verlag, LNCS 4824

