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Abstract

Participatory Sensing combines the ubiquity of mobile phones with the sensing capabilities of Wireless
Sensor Networks. It targets the pervasive collection of information, e.g., temperature, traffic conditions, or
medical data. Users produce measurements from their mobile devices, thus, a number of privacy concerns
– due to the personal information conveyed by reports – may hinder the large-scale deployment of partic-
ipatory sensing applications. Prior work has attempted to protect privacy in participatory sensing, but it
relied on unrealistic assumptions and achieved no provably-secure guarantees. In this paper, we introduce
PEPSI: Privacy-Enhanced Participatory Sensing Infrastructure. We explore realistic architectural assump-
tions and a minimal set of formal requirements aiming at protecting privacy of both data producers and
consumers. We also present an instantiation that attains privacy guarantees with provable security at very
low additional computational cost and almost no extra communication overhead. Finally, we highlight
some problems that call for further research in this developing area.

1 Prelude

Participatory sensing is an emerging paradigm that targets the seamless collection of data from a large
number of user-carried devices. By embedding a sensor to a mobile phone, participatory sensing (also called
opportunistic or urban sensing) enables harvesting dynamic information about environmental trends, such as
ambient air quality [39], urban traffic patterns [33], monitoring Wi-Fi access points for place discovery appli-
cations [25], health-related information [28], parking availabilities [32], sound events [29], earthquakes [47],
data reported by automobiles [23], sharing consumer pricing information in offline market [16], etc. (For
more information on participatory sensing initiatives, please refer to our project page [1].)

To allow large-scale deployment, researchers are proposing platforms for application developers [14]
and devising innovative business models, based on incentive mechanisms, for the capitalization on sensed
data [27, 41]. In the last few years, participatory sensing initiatives have multiplied, ranging from research
prototypes [32, 25, 33, 37] to deployed systems [26, 39, 44, 34].

Participatory sensing combines the ubiquity of mobile phones with sensing capabilities typical of Wireless
Sensor Networks (WSNs). However, it differs in several aspects. Sensors are high-end mobile devices, such
as smartphones, with much greater resources than traditional WSN sensors. Their batteries can be easily
recharged and production cost constraints are not as tight. They are extremely mobile, as they leverage the
ambulation of their carriers. Moreover, in traditional WSNs, the network operator is assumed to own and
query all sensors, while this assumption does not apply to most participatory sensing scenarios. Indeed,
mobile devices are tasked to participate into gathering and sharing local knowledge; thus, different entities
co-exist and might not trust each other.

A typical participatory sensing infrastructure involves (at least) the following parties:
∗A preliminary version of this paper appears in the Proceedings of ACM WiSec 2011. This is the full version.
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• Sensors: Installed on smartphones or other wireless-enabled devices, they emit data reports and form
the basis of the participatory sensing infrastructure.

• Carriers: Usually envisioned as the people carrying their smartphones, they could also be vehicles,
animals or any other entity carrying the mobile sensing device. In the rest of the paper, we refer to a
sensor and its carrier as a Mobile Node.

• Network Operators: They manage the network used to collect and deliver reports, e.g., maintaining
the WiFi, GSM, or 3G network infrastructure.

• Queriers: They subscribe to specific information collected in a participatory sensing application (e.g.,
“temperature readings from all sensors in Irvine, CA”) and obtain corresponding data reports.

Motivation. The number and the heterogeneity of entities involved in participatory sensing prompts a range
of new challenges. Unlike in WSNs, sensing devices are no longer “dull” gadgets, owned by the network
operator; they are personal devices that follow users at all time, and their reports often expose personal infor-
mation. Thus, not only traditional security but also privacy issues must be taken into account, as concerns on
personal information disclosure are a fundamental obstacle to large-scale deployment. Participatory sensing
can pave the way to novel distributed computing scenarios and new business models. However, its success
is strongly related to the number of users willing to devote device resources to sensing applications. Thus,
relying on large and ubiquitous user participation [6], participatory sensing will become effective only if it
can protect privacy of participating entities.

Contribution. Prior work has focused on privacy concerns in participatory sensing and proposed a few solu-
tions to protect privacy of user locations and reports. that, however, introduce unrealistic network assumptions
and provide no provably-secure guarantees. On the contrary, we aim at a cryptographic treatment of privacy
protection in participatory sensing. We investigate realistic architectural assumptions and a minimal set of for-
mal requirements intended to protect privacy of both data producers (i.e., mobile nodes) and data consumers
(i.e., queriers). Finally, we provide an instantiation that attains privacy guarantees with provable security at
very low additional computational cost and almost no extra communication overhead.

Organization. The rest of the paper is organized as follows. Section 2 reviews previous privacy-enhancing
solutions and highlights their limitations. Section 3 presents the PEPSI infrastructure and its privacy require-
ments, while Section 4 yields an efficient instantiation with provable security. Finally, Section 5 concludes
the paper with a list of open problems. Appendix A reviews the Identity-Based Encryption cryptosystem
leveraged by our solutions, while Appendix B presents the details of our privacy analysis.

2 Related Work

In the last years, research interest in participatory sensing has ramped-up. Many researchers have high-
lighted security and privacy challenges [46], [24], [11], but without proposing actual solutions.

Recent proposals in [12] and [22] are—to the best of our knowledge—the only results to address privacy-
related problems, hence, they are most related to our work. They aim at protecting anonymity of users, using
Mix Network techniques [10], and provide either k-anonymity [49] or l-diversity [31]. They rely on statistical
methods to protect privacy and do not achieve provably-secure guarantees. They also provide report integrity
using group signatures (i.e., all sensor share the same group keys to sign reports). Also, they only provide
limited confidentiality, as they reports are encrypted under the public key of a Report Service (RS), a trusted
party responsible for collecting reports and distributing them to queriers. That is, the RS learns both sensors’
reports and queriers’ interests.
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Additional research work focuses on somewhat related problems. [8] argues that privacy issues can be
addressed if each user has access to a private server (e.g., a virtual machine hosted by a cloud service) and
uses it as a proxy between her sensors and the application requesting her data. However, given the number
of contributors in a participatory sensing application, the requirement of per-user proxies would severely
limit the feasibility of this approach. [45] studies privacy-preserving data aggregation, e.g., computation
of sum, average, variance, etc. Similarly, [18] presents a solution for community statistics on time-series
data, while protecting anonymity (using data perturbation in a closed community with a known empirical
data distribution). Other proposals, such as [17] and [19], aim at guaranteeing integrity and authenticity of
user-generated contents, by employing Trusted Platform Modules (TPMs).

Finally, we remark that effective results have been obtained in somewhat related areas in the context of
wireless (sensor) networks and mobile communications, e.g., for location privacy [38, 51], query privacy [15,
50, 9], secure routing [21, 2], authentication [40, 43, 36], or key management [3, 48, 35].

2.1 Limitations of prior work

As discussed above, the research community has devised a few solutions to address privacy issues in
participatory sensing applications; We now discuss in details limitations and open problems of prior work on
security and privacy in participatory sensing.

Assuming an ubiquitous WiFi infrastructure. One common feature of existing proposals is the assumption
of an ubiquitous WiFi infrastructure used to collect and deliver reports [12, 22, 45]. In particular, [12, 22] use
standard MAC-IP address recycling techniques to guarantee user unlinkability between reports with respect
to WiFi access points. While there exists extensive research on privacy, anonymity, and unlinkability in
WiFi networks [7], Such an assumption imposes severe limitations on the scope of participatory sensing
applications, as an ubiquitous presence of open WiFi networks is not realistic today nor anticipated in the next
future. Therefore, such an assumption would heavily limit applications’ availability and accuracy.

Actually, the majority of existing participatory sensing applications operate from smartphones and use the
cellular network to upload reports [42, 39, 32]. Thus, one cannot use WiFi-based anonymization techniques
and, in particular, cannot leverage MAC-IP address recycling to guarantee unlinkability with respect to the
access point. In cellular networks, devices are identified through their International Mobile Subscriber Iden-
tity (IMSI), and ID recycling—besides being impossible with current technologies—would lead to denial of
service (e.g., the device would not receive incoming calls for its original ID). Thus, it seems not possible to
protect privacy of user locations with respect to the network operator. In fact, the regular usage of cellular
networks (e.g., including incoming/outgoing phone calls), as well as heartbeat messages exchanged with the
network infrastructure, irremediably reveal device’s location to the operator.

Using Mix Networks. Another limitation of prior work, such as [12, 22], concerns the use of Mix Net-
works [10] – anonymizing channels used to de-link reports submitted by sensors before they reach the appli-
cations. In other words, Mix Networks act as proxies to forward user reports only when some system-defined
criteria are met. Several metrics, such as k-anonymity [49] or l-diversity [31] have been defined to char-
acterize privacy through Mix Networks. Observe that a Mix Network may wait to receive k reports before
forwarding them to the application, e.g., to guarantee k-anonymity. However, the anonymity level directly
depends on the number of reports received and “mixed” by the Mix Network. They rely on statistical methods
to protect privacy and do not guarantee provably-secure privacy. Moreover, there could be scenarios where a
relatively long time could pass before the desired level of anonymity is reached (when “enough” reports have
been collected). As a result, Mix Networks may remarkably decrease system throughput and cannot be used
in settings where timely reports are required.

Multiple Semi-Trusted Parties. Available techniques to protect privacy in participatory sensing often involve
many semi-trusted independent parties, that are always assumed not to collude. The solution in [12], besides
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Query Execution

Figure 1: Privacy-Enhanced Participatory Sensing Infrastructure: Mobile Nodes (MNs) register to the Reg-
istration Authority (RA) and, subsequently, report sensed data to a Service Provider (SP). Queriers, after
registering to RA, subscribe to queries offered by the SP and receive corresponding reports.

Mobile Nodes, Registration Authority, and WiFi Access Points, also assumes the presence and the non-
collusion of a Task Service (used to distribute tasks to users), a Report Service (to receive reports from
sensors), and several Mix Network nodes (i.e., a trusted anonymizing infrastructure). The assumption of
multiple non-colluding parties raises severe concerns regarding its practicality and feasibility. It appears
difficult to deploy all of the parties in a real world setting where entities provide services only in exchange
of some benefit. For instance, it is not clear how to deploy the Task and the Report services as two separate
entities having no incentive to collude. Whereas, we aim at minimizing the number of needed semi-trusted
parties (and, in general, the number of involved entities), and propose a participatory sensing infrastructure
that can be deployed with formal privacy guarantees.

3 Preliminaries

Following a cryptographic treatment of privacy in participatory sensing, in this section, we formalize: (i)
the entities involved in a privacy-enhanced participatory sensing infrastructure, (ii) involved operations, and
(iii) privacy requirements.

3.1 Infrastructure

We envision a participatory sensing infrastructure composed by the following entities:

Mobile Nodes (MNs). They are computing devices with sensing capabilities (i.e., equipped with one or more
sensors) and with access to a cellular network. They are carried by people or attached to mobile entities. We
assume that MNs run on smartphones and that users voluntarily engage into participatory sensing. We denote
with N a generic mobile node of a participatory sensing application.

Queriers. Queriers are end-users interested in receiving sensor reports in a given participatory sensing appli-
cation. A generic querier is denoted with Q.

Network Operator (NO). The Network Operator is responsible for the communication infrastructure. We
assume that the NO maintains, and provides access to, a cellular network infrastructure (e.g., GSM or 3G).

Registration Authority (RA). The Registration Authority handles the application setup, as well as the regis-
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tration of participating parties. In our solutions, the RA also contributes to privacy protection, by generating
cryptographic public parameters, handling the registration of MNs, and managing queriers’ subscription.

Service Providers (SP). The Service Provider acts as an intermediary between the nodes reporting readings
and queriers subscribed to them. We envision one or more SPs running participatory sensing applications that
offer different query types. (For example, a national service provider might run a pollution monitoring appli-
cation and define queries to retrieve reports of pollution levels in different cities). Service provider’s duties
may include listing available sensing services, micropayment, data collection, and notification to queriers.

3.2 Operations

We now describe the common operations performed within participatory sensing applications.

Setup. In this phase, the RA generates all public parameters and its own secret key.

MN Registration. Users register their sensor-equipped device to the RA and install participatory sensing
software.

Query Registration. Queriers approach the appropriate RA and request an authorization to query the partic-
ipatory sensing application to obtain a specific type of data reports, e.g., “Pollution level in Madrid, Spain”.
(A public list of available sensing services and query syntax may be available from the SP or the RA). Next,
they may subscribe to one or more (authorized) queries, by submitting a request to SP and awaiting for the
responses containing the desired readings. Ideally, only queriers authorized by the RA should receive the
desired reports. Also, no information about query interests should be revealed to the SP.

Data Report. MNs report to the SP their readings, using the network access provided by the NO. Ideally, this
operation should not reveal to the SP, the NO, or unauthorized queriers any information about reported data,
such as type of reading (e.g., pollution) or quantitative information (e.g., 35mg/m3 carbon oxide). Also, the
SP and any querier should not learn the identity of the source MN.

Query Execution. With this operation, the SP matches incoming data reports with query subscriptions.
Ideally, this should be done blindly, i.e., the SP should learn nothing beyond the occurrence of an (unspecified)
match, if any.

In Figure 1, we illustrate our participatory sensing infrastructure. In the depicted scenario, one may en-
vision that a phone manufacturer (e.g., Nokia) acts as the RA and embeds a given type of sensor (e.g., air
pollution meter) in one or more of its phone models, operated by smartphone users, i.e., the MNs. A service
provider (such as Google, Microsoft, Yahoo, or a non-profit/academic organization) offers participatory sens-
ing applications (used, for instance, to report and access pollution data), and acts as an intermediary between
queriers and mobile nodes. Finally, queriers are users or organizations (e.g., bikers) interested in obtaining
readings (e.g., pollution levels).

Note that—similar to related work—we do not address the problem of encouraging mobile phone users
to run participatory sensing applications, nor we focus on business incentives for phone manufacturers or for
service providers. Nonetheless, it is reasonable to envision that queriers are willing to pay small fees (or
receive advertisement) in return to obtaining measurements of interest.

3.3 Privacy Requirements

Before entering the details of our privacy requirements, observe that the main purpose of a participatory
sensing application is to allow queriers to obtain MNs reports. While our main goal is to protect the privacy of
both data producers and consumers, entities registered as a querier should still be able to subscribe to a query
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and receive desired measurements, thus, techniques to identify legitimate parties before registering them are
beyond the scope of our work.

We now define the requirements of a Privacy-Enhanced Participatory Sensing Infrastructure (PEPSI). Our
definitions here are concise, whereas, formal adversarial games can be found in Appendix B.

Soundness. We say that PEPSI is sound if, upon subscribing to a query, a querier in possession of the
appropriate authorization obtains the desired readings (if any).

Node Privacy. We say that PEPSI is node-private if neither the NO, the SP, nor any unauthorized querier,
learn any information about the type of reading or the data reported by the MN. Also, other MNs should
not learn any information about a given node’s reports. In other words, only queriers in possession of the
corresponding authorization obtain MN’s readings.

Query Privacy. We say that a PEPSI is query-private if neither the NO, the SP, nor any mobile node or any
other querier, learn any information about the query subscribed by a querier. We leave as part of future work
how to guarantee query privacy also w.r.t. the RA.

Report Unlinkability. Report unlinkability prevents any party from linking two or more reports as originating
from a given mobile node. PEPSI provides report unlinkability if different reports originating by the same
MN cannot be linked to the source by the RA, the SP, the queriers or any other MN1.

As discussed earlier, it seems unlikely to provide node location privacy w.r.t. NO, as the NO knows
phone’s position at any time. We still consider node location privacy as for the RA, the SP, or unauthorized
queriers.

4 PEPSI

We now present our PEPSI instantiation, in accordance to the architectural design in Figure 1 and that
complies with privacy definitions of Section 3.3. We also discuss arguments of its provable security and
estimate its performance.

4.1 PEPSI Instantiation

In PEPSI, data reports are always labeled using keywords that identify the nature of the information an-
nounced by MNs. Similarly, queriers subscribe to given queries by specifying the corresponding keywords. In
the rest of the paper, we use the term identifier, and the notation ID (or ID∗) to identify the data report/query
type. Examples of such identifiers include: “Temperature in Irvine, CA” or “Pollution in Madrid, Spain”. The
list of identifiers – depending on the application – can be obtained either from the SP or the RA. In particular,
the RA defines which services (i.e., queries) will be available for MNs to contribute and for users to query.
However, as these identifiers can be public, they can be downloaded from the SP or any bulletin board. For
ease of presentation, in the rest of the paper, we assume that query identifiers are available at the RA.

4.1.1 High Level Description

One of the main goals of PEPSI is to hide reports and queries to unintended parties. Thus, those cannot be
transmitted in-the-clear, but need to be encrypted. In the rest of this section, we discuss how to achieve, at the
same time, (1) secure encryption of reports and queries, and (2) efficient and oblivious matching performed
at the Service Provider.

1Observe that we cannot guarantee user anonymity and report unlinkability with respect to the NO, thus, we do not consider the
NO in our definition.
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Report/Query Encryption. One naı̈ve possibility is to let each querier and each mobile node share a unique
pairwise secret key and employ a symmetric-key cipher, such as AES [13]. This approach requires queriers
and MNs to interact and establish a shared secret. On the contrary, participatory sensing requires no contact
(nor mutual knowledge) between them: that is, MNs provide reports obliviously of (any) potential receiver.
Similarly, queries subscribe to measurements without knowing the identity of MNs producing reports poten-
tially matching their interests. Even if we allow interaction between each mobile node and queriers, we would
still need MNs to encrypt reports under each key shared with queriers (recall that MNs do not know which
queriers are interested in their reports). This would generate a number of ciphertexts quadratic in the number
of measurements. Alternatively, we could use a public key encryption scheme and provide MNs with the
public keys of the queriers. Still, scalability would be an issue as each report would be encrypted under the
public key of each querier.

Using Identity-based Encryption. PEPSI’s main building block is Identity-Based Encryption (IBE) [4],
specifically, the construction given by Boneh and Franklin in [4], which we review in Appendix A. The main
advantage in using IBE, as opposed to standard public-key cryptography, is to enable non-interactivity in our
query protocol design. This is crucial in participatory sensing scenarios, where MNs and queriers have no
direct communication nor mutual knowledge. that enables asymmetric encryption using any string (“iden-
tity”) as a public key. Recall that, In IBE, anyone can derive public keys from some unique information about
recipient’s identity. Private decryption keys are generated by a third-party, called the Private Key Generator
(PKG).
Our idea is to use labels (i.e., keywords) that define the type of reports as identities in an IBE scheme. For ex-
amples labels “Temperature” and “Central Park, New York” can be used to derive a unique public encryption
key, associated to a secret decryption key. Mobile Nodes encrypt sensed data using report’s labels as the (pub-
lic) encryption key. Query registration then consists in obtaining the private decryption keys corresponding to
the labels of interest. Decryption keys are obtained, upon query registration, from the Registration Authority
– which acts like a PKG.

PEPSI Overview. PEPSI works as follows. The RA runs the Setup algorithm to generate public parameters
and secret keys. In order to pose a query, e.g., identified by ID, queriers first need to register to the RA
and obtain the corresponding authorization (Query Authorization). Then, they subscribe their queries to the
SP (Query Subscription): in PEPSI, this process reveals nothing about queriers’ interests. At the same time,
before starting reporting data, MNs need to authenticate to the RA, and obtain: (i) the identifier ID corre-
sponding to the type of their reports, and (ii) a token that allows them to announce data (MN Registration).

The on-line part of PEPSI includes two operations: Data Report and Query Execution. With the former,
MNs upload encrypted reports to the SP. In the latter, the SP blindly matches received reports with queries
and forwards (matching) reports to all subscribed queriers. Only authorized queriers obtain query responses,
can decrypt data reports, and retrieve original measurements. Finally, we let the RA periodically run a Nonce
Renewal procedure to evict malicious MNs from the participatory sensing application.2 This procedure is run
periodically (e.g., once a week or once a month) and the new nonce is securely delivered to honest MNs using
broadcast encryption [5].

4.1.2 Algorithms Specification

Setup. The Registration Authority (RA), given a security parameter λ, generates a prime q, two groups
G1,G2 of order q, a bilinear map e : G1 × G1 → G2.3 Next, a random s ∈ Z∗q and a random generator
P ∈ G1, are chosen; Q is set such that Q = P s. (P,Q) are public parameters. s is RA’s private master key.

2Techniques to identify malicious MNs are beyond the scope of this work.
3Recall that the map e is bilinear if e(Ua, V b) = e(U, V )ab.
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Also, a nonce z ∈ Z∗q is selected and R is set such that R = P z . Finally, three cryptographic hash function,
H1 : {0, 1}∗ → G1, H2 : {0, 1}G2 → {0, 1}λ, and H3 : {0, 1}G2 → {0, 1}λ are chosen.

MN Registration. The MN registration is run between MN and RA. We assume that, after being identified
by RA, (e.g., using the IMSI number), the Mobile Node N obtains the pair (z, ID), where z is the nonce
generated by RA during setup, and ID identifies the nature of the readings for which N provides reports.

Query Registration. The query registration is as follows:

1. Query Authorization: Querier Q registers to RA to get an authorization to receive readings for
a given query, identified by ID∗. Q obtains:

sig = H1(ID
∗)s.

2. Query Subscription: Querier Q—subscribing to readings identified by ID∗—sends to the SP:

T ∗ = H2[e(R, sig)].

Data Report. Mobile node, N . periodically submits data reports to SP, using NO’s infrastructure. In
our protocol, to upload a reading, D, related to query ID, N sends SP (using NO’s infrastructure) the pair
〈T,CT 〉, such that:

T = H2[e(Q,H1(ID)z)]
CT = ENCk(D)

for k = H3[e(Q,H1(ID)z)].

Query Execution. The query execution is as follows:

1. Blind Matching: The Service Provider matches T with stored T ∗’s and returns Q all matching
T ’s, alongside associated CT ’s.

2. Notification: On receiving (T,CT ), Q computes k∗ = H3[e(R, sig)] and obtains:

D = Deck∗(CT )

Nonce renewal. We assume a dynamic set of subscribed MNs where new sensors can register and malicious
ones are evicted. In order to ban misbehaving sensors, the RA periodically generates and distributes a fresh z
to sensors and R = P z to queriers. The former can be securely distributed to honest sensors using broadcast
encryption [5].

4.2 Privacy Analysis

We now consider privacy properties of PEPSI. We hereby provide concise proofs, whereas, the reader can
find detailed proofs in Appendix B. We assume that the system is immune to eavesdropping. In fact, 3G
networks encrypt communication between mobile phones and the network operator. Communication between
other parties (i.e., RA � MN , Querier � SP , etc.) are encrypted using standard techniques, e.g., using
SSL.

Soundness. Our PEPSI solution is sound, since: for any (ID∗, sig) held by a querier Q, and ID held by a
node N , if: (1) sig = H1(ID

∗)s, where s is RA’s secret key, and (2) ID∗ = ID, we obtain :

T = H2[e(Q,H1(ID)z)] = H2[e(P
z, H1(ID

∗)s)]

= H2[e(R, sig)] = T ∗
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and, similarly, also k = k∗. Therefore, (1) SP correctly matches Q’s (authorized) request T ∗ with the appro-
priate sensor report 〈T,CT 〉, and (2) Q can correctly decrypt CT and recover D.

Node Privacy. Our PEPSI solution is node-private since only authorized queriers in possession of a valid
sig can learn any information about the report 〈T,CT 〉. Privacy w.r.t. the NO, the SP, other MNs and non-
authorized queriers, stems from the security of the underlying Identity-based Encryption scheme [4]. The
main intuition is that this kind of adversary could obtain information about a node’s report only if she was in
possession of the appropriate sig or—assuming that ID’s have low entropy—the nonce z. Assuming a CPA-
secure and key-private IBE system, the resulting PEPSI scheme is trivially node-private w.r.t. the NO, the SP,
and non-authorized queriers. Indeed, one can easily sketch a proof of this claim by contradiction. (Detailed
proof is deferred to Appendix B.) Assuming our claim is not true, then there exists a polynomial-bounded
adversary A that violates node privacy of PEPSI. A is given ID and the IBE-encryption of D under the key
ID but not the corresponding sig = H1(ID)s. If A decrypts D with non-negligible probability, then we can
construct a polynomial-bounded adversary B which usesA to break the CPA-security of IBE. This contradicts
our assumption.
Note that the RA could use its secret key to “test” an arbitrary ID∗ against an eavesdropped report 〈T,CT 〉.
That is, the RA could learn whether ID∗ = ID and violate node privacy. However, since we assume that
reports 〈T,CT 〉 are encrypted under SP’s public key, the RA can access nodes’ reports only if it colludes with
the SP.

Query Privacy. PEPSI is query-private since neither the NO, the SP, other queriers, nor any mobile node,
learn any information about query interests of a querier Q. Query privacy stems from the security of the
underlying Identity-based Encryption scheme [4]. Arguments behind this claim mirror those outlined above
for node privacy, thus, we do not repeat them here. Again, detailed proof is reported in Appendix B. Observe
that the privacy of a querier Q, subscribed to ID∗ (i.e., in possession of sig = H1(ID

∗)s), could be violated
by a malicious party, subscribed to ID′ (i.e., in possession of sig′ = H1(ID

′)s), only if: (1) she obtains T =
H2[e(R, sig)] sent from Q to the SP during Query Execution and (2) ID∗ = ID′. Since the communication
between Q and the SP is encrypted, (1) happens only if such a malicious party colludes with the SP.

Report Unlinkability and Location Privacy. As argued above, it is not possible to guarantee report unlink-
ability with respect to the network operator. However, one could trust the NO to remove privacy-sensitive
metadata from each report (such as mobile nodes’ identifiers, the cell from which the report was originated,
etc.), before forwarding it to the SP. Nonetheless, this would not require the NO to act as a Mix Network.
Also, the NO never delays message forwarding, e.g., until “enough” reports to protect privacy are collected,
but forwards “the payload” of each report (i.e., 〈T,CT 〉) as soon as it is received. More details are reported
Appendix B.

Trust Assumptions. The security of PEPSI only relies on the assumption that the SP is not colluding with
either the RA or queriers — on the contrary, prior work assumed the presence of several non-colluding and/or
fully-trusted parties [12, 22, 17, 19]. Specifically, if the RA and the SP colluded, they could violate node
privacy using RA’s secret key, s, and pairs 〈T,CT 〉 received by the SP. Also, recall that any party registered
as a querier could potentially collude with the SP and try violating query privacy: it could test a given sig
(obtained during the Query Authorization) against messages sent by the victim querier to the SP (during
Query Subscription). We argue that assuming a non-colluding SP is realistic since in participatory sensing,
SPs often capitalize on the services they provide, thus, they have no incentive to deviate from an honest-but-
curious behavior.

Furthermore, PEPSI needs to trust the NO to remove sensitive MN information from reports before for-
warding to the SP. Recall that this assumption is essential since anonymity w.r.t the NO is not achievable in
3G networks.
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4.3 Performance Evaluation

Even if resources in participatory sensing are not as constrained as in WSNs, we aim at minimizing the
overhead incurred at mobile nodes. This section provides preliminary figures on the cost of cryptographic
operations used to achieve intended privacy features.

We implemented protocol operations executed by MNs on a Nokia N900 (equipped with a 600 MHz ARM
processor and 256 MB RAM) running the libpbc cryptographic library [30]. We selected Type-A pairings
and 160-bit prime q. Computation overhead is due to the computation of T , the encryption key k, and the
encrypted report CT . Note that the first two values can be computed off-line, independently of the sensed
data. Communication overhead is merely due to the transmission of T , which is the output of a hash function
(e.g., SHA-1), and can be as small as 160-bit. Indeed, using available symmetric-key cryptosystems (e.g.,
AES), the length of CT is almost the same as a reading D.

Without leveraging off-line precomputation, we measured the time to compute and transmit 〈T,CT 〉, us-
ing integers as data reports. Over 100 experiments, we experienced an average time of 93.47ms to compute
〈T,CT 〉 and around 80ms for transmission over the 3G network. Note that a naı̈ve (non-private) solution
would save in computation (since data would not be encrypted) but would spend roughly the same transmis-
sion time to send the report. Finally, remark that the SP incurs no communication nor computational overhead:
its task is limited to forwarding and hash comparisons. Similarly, the only additional operation that queriers
perform during query execution is the symmetric decryption of received readings, which incurs a negligible
overhead.

5 Conclusion

The Participatory sensing paradigm bears an irrefutably great potential. However, its success depends on
the number of users willing to report measurements from their mobile devices. Clearly, a wide-scale user
participation is bound to effective protocols that preserve privacy of both data producers (i.e., mobile nodes)
and data consumers (i.e., queriers). In this paper, we have highlighted shortcomings of previous solutions and
we embarked toward a cryptographic treatment of privacy in participatory sensing. To this aim, we analyzed
which are the privacy features that can be guaranteed with provable security and introduced a participatory
sensing protocol that attains them. Finally, we provided figures of the incurred overhead at mobile nodes.

As often happens, deploying actual solutions based on our proposal requires addressing additional (poten-
tial) security issues, such as authentication, data integrity, DoS prevention, active attacks, Sybil attacks, etc.
Our next step is to deploy testing applications using the PEPSI infrastructure, as well as to devise a large-scale
evaluation of its global overhead. Our future work also includes extending the protocols to efficiently support
query privacy w.r.t. the RA (i.e., queriers can register without the RA learning their interests). Interesting
open challenges remain in how to provide location privacy with respect to cellular network operator, address-
ing potential collusion between different parties, and supporting more complex queries (e.g., aggregate and
conjunctive queries).
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A Boneh and Franklin’s IBE

We recall that Boneh and Franklin’s IBE [4] is composed by four algorithms: setup, extract,
encrypt, decrypt:

• Setup, given a security parameter k, is used to generate a prime q, two groups G1,G2 of order q, a
bilinear map e : G1 × G1 → G2. Then a random s ∈ Z∗q , a random generator P ∈ G1, P are chosen
and Q is set such that Q = sP . (P,Q) are public parameters. s is the private master key. Finally, two
cryptographic hash function, H1 : {0, 1}∗ → G1 and H2 : {0, 1}n → G2 for some n, are chosen.

• Extract, given a string ID ∈ {0, 1}∗, is used to compute the corresponding private key H(ID)s.

• Encrypt is used to encrypt a message M under a public key ID: for a picked random r ∈ Z∗q the
ciphertext is set to be C = 〈rP,M ⊕H2(e(Q,H1(ID)r)〉.

• Decrypt is used to decrypt a ciphertext C = 〈U, V 〉, by computing M = V ⊕H2(e(U,H(ID)s).

B Detailed PEPSI Privacy Analysis

In this section, we formally analyze the privacy properties of PEPSI. Observe that PEPSI’s intuition lies
in the application of a key-private IBE system—where query identifiers are used as identities—to protect
privacy in the participatory sensing setting. Therefore, its privacy requirements rely on the security and the
key-privacy of the underlying IBE system.

Recall that we assume communication over cellular networks, thus, the system is immune to external
adversaries. (In 3G/4G networks, communication betweeen mobile phones and the network operator is en-
crypted). Further, communication between other parties (i.e., RA � MN , Querier � SP , etc.) is en-
crypted using SSL.
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B.1 Soundness

PEPSI is sound if, at the end of Query Execution, querier Q outputs D, given that:
(1) Q registered query ID∗ to the RA.
(2) ∃ node N such that N reports (ID,D).
(3) ID∗ = ID.

Our PEPSI solution is sound, since, for any registered query (ID∗, sig) held by querier Q, and ID
reported by a node N , if: (1) sig = H1(ID

∗)s, where s is RA’s secret key, and (2) ID∗ = ID, we obtain:

T = H2[e(Q,H1(ID)z)] = H2[e(P
z, H1(ID

∗)s)]

= H2[e(R, sig)] = T∗

and, similarly, also k = k∗. Therefore, (1) SP correctly matches Q’s (authorized) request T ∗ with the appro-
priate node report 〈T,CT 〉, and (2) Q can correctly decrypt CT and recover D. �

B.2 Node Privacy

Informally, PEPSI is node-private if neither the NO, the SP, nor any unauthorized querier, learn any
information about the type of reading or the data reported by the MN. Also, other mobile nodes in the infras-
tructure should not learn any information about a given node’s reports. That is, only queriers in possession of
the corresponding authorization obtain MN’s readings.

Formally, privacy of node N , running on input (ID,D), is guaranteed if no information about (ID,D) is
leaked to unauthorized parties.

We distinguish between node privacy w.r.t. the NO and the SP and w.r.t. unauthorized queriers.

Node Privacy w.r.t. the NO and the SP. Privacy is considered as the probabilistic advantage that an adver-
sary A gains from obtaining encrypted reports. We say that PEPSI is node-private w.r.t. the NO/SP if no
polynomially bounded adversaryA can win the following game with non-negligible probability above 1

2 . The
game is between A and a challenger Ch:

1. Ch executes setup operations and computes public parameters (e, q,G1,G2, P,Q,R,H1(·), H2(·), H3(·))
and private parameters (s, z).

2. A, on input the public parameters, selects two inputs ((ID0,D0), (ID1,D1)) and gives them to Ch.

3. Ch picks a random bit b ∈R {0, 1} and interacts with A executing the role of the node N , on input the
public parameters and private input (IDb,Db).

4. A outputs b′ and wins if b′ = b.

Assuming that the underlying IBE system is semantic secure against a chosen-plaintext attack (CPA) and
key-private (such as Boneh-Franklin IBE [4]), PEPSI is trivially node-private w.r.t. the NO and the SP in the
Random Oracle Model (ROM). Assuming that H2 and H3 are modeled as a random oracle, if our claim is not
true then there exists a polynomial-bounded adversary B that breaks the CPA-security of IBE.

Node Privacy w.r.t. unauthorized queriers. Privacy is considered as the probabilistic advantage that an
adversary A gains from submitting queries to the SP. We say that PEPSI is node-private w.r.t. unauthorized
queriers if no polynomially bounded adversaryA can win the following game with non-negligible probability
above 1

2 . The game is between A and a challenger Ch:

1. Ch executes setup operations and computes public parameters (e, q,G1,G2, P,Q,R,H1(·), H2(·), H3(·))
and private parameters (s, z)
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2. A, on input the public parameters, adaptively queries Ch a number n of times on a set of identifiers
L = {ID0, . . . , IDn}. For every IDi, Ch responds by giving A a signature sigi = H(IDi)

s.

3. A announces two new identifier strings (ID∗0, ID
∗
1) /∈ L and generates a data record D∗.

4. Ch picks a random bit b ∈R {0, 1} and interacts with A executing the role of the node N , on input the
public parameters and private input (ID∗b ,D∗).

5. A outputs b′ and wins if b′ = b.

Assuming an underlying IBE system semantically secure against a chosen-plaintext attack (CPA) and key-
private, the resulting PEPSI scheme is trivially node-private w.r.t. unauthorized queriers, in the random oracle
model. Indeed, to win the above game, A needs to forge signature on ID∗0 or ID∗1. Again, if this happens,
then there exists a polynomial-bounded adversary B that breaks the CPA-security of IBE.�

Remark. Observe that the RA could use its secret key, s, to “test” an arbitrary ID∗ against a report 〈T =
H2[e(Q,H1(ID)z)], CT = ENCk(D)〉. That is, the RA could learn whether ID∗ = ID and violate node
privacy. However, assuming that reports 〈T,CT 〉 are super-encrypted under SP’s public key, the RA can
access nodes’ reports only if it colludes with the SP.

B.3 Query Privacy

Informally, PEPSI is query-private if neither the NO, the SP, other queriers, nor any mobile node, learn
any information about query interests of a querier Q. Query privacy w.r.t. the NO, any mobile node, and any
other querier, is trivially guaranteed as none of them obtains any cleartext message fromQ. Thus, we focus on
privacy against a malicious SP, described as the probabilistic advantage that SP gains from obtaining queries.

Formally, PEPSI is query-private if no polynomially bounded adversary A can win the following game
with probability non-negligibly over 1/2. The game is between A and a challenger Ch:

1. Ch executes setup operations and computes public parameters (e, q,G1,G2, P,Q,R,H1(·), H2(·), H3(·))
and private parameters (s, z)

2. A, on input the public parameters, chooses two strings ID∗0, ID
∗
1.

3. Ch picks a random bit b ∈ {0, 1} and interacts withA playing the role of the querier on input the public
parameters and private input (ID∗b ).

4. A outputs b′ and wins if b′ = b.

Assuming that the underlying IBE system is semantic secure against a chosen-plaintext attack (CPA) and
key-private (such as Boneh-Franklin IBE [4]), PEPSI is trivially query-private in the Random Oracle Model
(ROM). Assuming that H2 and H3 are modeled as a random oracle, if our claim is not true then there exists a
polynomial-bounded adversary B that breaks the CPA-security of IBE.

Remark. Note that we do not address in this version, query privacy w.r.t. the RA. However, we anticipate
that this can be achieved if the query registration is performed blindly, using Blind-IBE [20]. Also, observe
that we do not address at this stage potential collusion between authorized queriers or RA and the SP.

B.4 Report Unlinkability and Location Privacy

Report unlinkability prevents any party from linking two or more reports as originating from a given
mobile node. We say that PEPSI provides report unlinkability since different reports originating by the same
MN cannot be linked to the source by the RA, the SP, the queriers or any other MN.
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We do not guarantee user anonymity and report unlinkability with respect to the network operator, given
the intristic nature of the underlying cellular network. Similarly, as discussed in our related work section, it
seems impossible to provide node location privacy w.r.t. the NO, since the NO knows phone’s position at any
time. Hence, PEPSI does not pursue MN location privacy.

Nonetheless, it is possible to modify our protocol to provide report unlinkability and location privacy
w.r.t. all other parties, if we assume that the NO removes privacy-sensitive metadata from each report (such as
mobile nodes’ identifiers, the cell from which the report was originated, etc.), before forwarding it to the SP.
Note that this would not need the use of MixNetworks, i.e., the NO does not have to delay message forwarding
(e.g., until “enough” reports to protect privacy are collected) but forwards “the payload” of each report (i.e.,
〈T,CT 〉) as soon as it is received.
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