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Two new recursive approaches have been developed to provide accurate estimates for posterior moments of both

parameters and system states while making use of the generalized polynomial-chaos framework for uncertainty

propagation. The main idea of the generalized polynomial-chaos method is to expand random state and input

parameter variables involved in a stochastic differential/difference equation in a polynomial expansion. These

polynomials are associated with the prior probability density function for the input parameters. Later, Galerkin

projection is used to obtain a deterministic system of equations for the expansion coefficients. The first proposed

approach provides means to update prior expansion coefficients by constraining the polynomial-chaos expansion to

satisfy a specified number of posteriormoment constraints derived fromBayes’s rule. The secondproposed approach

makes use of the minimum variance formulation to update generalized polynomial-chaos coefficients. The main

advantage of the proposed methods is that they not only provide a point estimate for the states and parameters, but

they also provide the associated uncertainty estimates along these point estimates. Numerical experiments involving

four benchmark problems are considered to illustrate the properties of the proposed methods.

I. Introduction

N UMEROUS fields of science and engineering require the study
of the relevant stochastic dynamic system since mathematical

models used to represent physical processes and engineering systems
have errors and uncertainties associated with them. The major
sources of error inherent in any mathematical model prediction
consist of errors in model parameters and errors in initial conditions.
These uncertainties cause overall accuracy of computations to
degrade as the model states evolve. To alleviate this problem,
assimilating the available observation data to correct and refine the
model forecast in order to reduce the associated uncertainties is a
logical improvement over purely initial-condition model-based
prediction. However, sensor model and data inaccuracies can lead to
imprecise measurement data, which could lead to inaccurate
estimates. Hence, the optimal solution should be a weighted mixture
of model forecast and observation data. This approach had its birth
with the development of the Kalman filter [1].
TheKalman filter (KF) is the optimal Bayesian estimator for linear

systems with initial condition, model errors, and measurement errors
assumed to be Gaussian. However, the performance of the KF can
deteriorate appreciably due to model parameter uncertainty [2–4].
The sensitivity of the KF to parametric modeling errors has led to the
development of several robust filtering approaches; robust in the
sense that they attempt to limit, in certain ways, the effect of
parameter uncertainties on the overall filter performance. Various
approaches to state-space estimation in this regard [5] have focused
on H∞ filtering [6,7], set-valued estimation [8,9], and guaranteed
cost designs [8,10]. Alternatively, when the model parameters are
uncertain, the estimation is carried out through the simultaneous

estimation of states and parameters (viewed as augmented states),
which results in a nonlinear filtering problem even for otherwise
linear systems [11]. Methods like the extended Kalman filter (EKF)
[2] or unscented Kalman filter (UKF) [12,13] have been used to
estimate model parameters along with state estimates. In the EKF
approach, the original nonlinear model is converted to a linearized
model by using the Jacobian of the nonlinear model about current
state and parameter estimates. A major drawback of the EKF
approach is that it may result in poor performance when the state
transition or observation models are highly nonlinear or even if state
estimates are highly sensitive to parametric errors in the case of a
linear system. UKF is one of the approaches that can be used to
overcome this deficiency. UKF performs the estimation process by
making use of a deterministic sampling technique known as the
unscented transformation. The unscented transformation provides a
set of sample points around the mean (known as σ points) that are
propagated through the nonlinear functions, from which the mean
and covariance of the estimate are then recovered. This process
results in a filter that estimates the mean and covariance better than
the EKF.
Although both the EKF- andUKF-based filters arewidely used for

simultaneous state and parameter estimation problems, bothmethods
are based upon a very restrictive Gaussian error assumption for both
parameter and state uncertainty. Clearly, the Gaussian assumption
can work well for moderately nonlinear systems, but it might not
be appropriate for certain problems based upon the physical model.
For example, Gaussian distribution is not an ideal distribution
to represent errors in uncertain, positive spring coefficients. This
suggests the need for filters that can incorporate the knowledge about
non-Gaussian uncertainty. Various researchers have endeavored to
exploit knowledge of statistics, dynamic systems, and numerical
analysis to develop nonlinear filtering techniques [14–20] that cater
to the various classes of state and parameter estimation problems. For
low-order nonlinear systems, the particle filter (PF) [18,19] has been
gaining increasing attention. However, Daum and Huang in their
seminal work [21] discuss that various factors like volume of state
space, in which the conditional probability density function (PDF) is
nonvanishing; rate of decay of the conditional PDF in state space;
stationarity of the problem; analytical structure of the problem (e.g.,
linear dynamics, bilinear dynamics, unimodal PDFs, etc.); effective
dimensionality of the problem; etc.; strongly affect the computational
complexity and performance of the particle filter.
For linear systems with parametric uncertainties, the multiple-

model estimation [22] method has been very popular. This method
assumes the uncertain parameters belong to a discrete set. The

Received 21 March 2012; revision received 5 October 2012; accepted for
publication 19 November 2012; published online 5 June 2013. Copyright ©
2012 by RezaMadankan. Published by the American Institute of Aeronautics
andAstronautics, Inc., with permission. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00 per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code 1533-3884/13 and $10.00 in correspondence
with the CCC.

*Ph.D. Student, Department of Mechanical and Aerospace Engineering;
rm93@buffalo.edu.

†Associate Professor, Department of Mechanical and Aerospace
Engineering; psingla@buffalo.edu. Senior Member AIAA.

‡Professor, Department of Mechanical and Aerospace Engineering;
tsingh@buffalo.edu. Associate Fellow AIAA.

§Professor, Department of Computer Science and Engineering; peter@
buffalo.edu.

1058

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 36, No. 4, July–August 2013

D
ow

nl
oa

de
d 

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 Y

O
R

K
 o

n 
Ju

ly
 9

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.5

83
77

 

http://dx.doi.org/10.2514/1.58377


uncertain parameter vector is quantized to a finite number of grid
pointswith knownprior probabilities. The state conditionalmean and
covariance are propagated for each model corresponding to a grid
point using KF equations, and the first two moments of system states
are computed by a weighted average of the moments corresponding
to various prior models. The prior probability values for parameter
samples are also updated by making use of Bayes’s theorem.
Although this method works well for linear systems and provides a
mean estimate for both state and parameter, the performance of this
method is strongly affected by the number of parameter samples like
any sampling algorithm such as the PF [23]. A detailed review on
classical approaches applied in online parameter estimation can be
found in [24].
All the methods mentioned before have some restrictions for

application. As mentioned before, all the Kalman-based filters
(like KF, EKF, and UKF) have a restrictive assumption about the
distribution of the parameters and states. Also, application of the
PF encounters expensive computational cost for a large number of
samples applied during the estimation process, particularly for high-
dimensional models. A useful alternative is to employ spectral
representations of uncertain parameters and system states, specif-
ically generalized polynomial-chaos (GPC) expansions for random
variables, and stochastic processes.
GPC is an extension of the polynomial-chaos (PC) idea of Wiener

[25],which is extensively being used to quantify forward propagation
of uncertainty in uncertain dynamic systems. The main principle of
the PC approach is to expand random variables using polynomial
basis functions that are orthogonal with respect to the PDF
of the parameters (Hermite polynomials for normally distributed
parameters, Legendre for uniform distributions, etc.) and trans-
form stochastic equations into deterministic equations in higher-
dimensional projection space using Galerkin collocation. The
GPC-based methods have emerged as powerful tools to propagate
time-invariant parametric uncertainty through an otherwise deter-
ministic system of equations to predict a distribution of outputs
[25–27]. The GPC method can efficiently characterize the state
uncertainty due to time-invariant randomparameters having arbitrary
probability distributions.
GPC has been recently used in the Bayesian framework for the

parameter estimation problem, also referred to as the inverse problem
in the literature [28–32]. All these referenced methods make use of
the GPC formulation for the propagation of state or parameter
uncertainty through the forward system dynamic model. Pence
et al. [28] found a point estimate for the parameter of interest by
substituting for GPC expansion in the likelihood function and
making use of gradient-based optimization algorithms to solve the
resulting maximum likelihood problem. Blanchard et al. [29]
proposed a recursive Bayesian approach that makes use of a
(suboptimal) EKF to recalculate the PC expansions for the uncertain
states and parameters whenever measurement data are available.
Marzouk et al. [31] made use of the GPC expansion in conjunction
with the Markov chain Monte Carlo (MCMC) to find a maximum
posteriori estimate for an uncertain source parameter. More recently,
the GPC expansion has been used in a maximum-entropy framework
for recursive estimation purposes. Dutta and Bhattacharya [32]
developed a nonlinear estimation algorithm based on the combina-
tion of the GPC expansion theory, maximum-entropy principle, and
higher-ordermoments updates. However, similar to Schmidt [4], they
considered state estimation in the presence of parametric uncertainty.
Furthermore, the approximation byGaussian kernels requires special
tuning, which can be cumbersome for many real problems.
In summary, the GPC expansion method has been successfully

used to find point estimates by making use of the maximum-
likelihood or maximum-posteriori framework. However, most of
these methods just provide a point estimate rather than a complete
description of the posterior PDF for both states and parameters.
Furthermore, it should be noted that all these methods are either
applied to the state or parameter estimation problem, and most of
them are being applied as an offline estimation approach.
This paper presents two new recursive approaches to provide

estimates for posterior moments of both parameters and system states

in the presence of parametric and initial-condition uncertainty by
making use of the GPC expansion and the Bayesian framework. The
main advantage of the proposedmethods is that they not only provide
the point estimate (mean) for the state and parameters, but they also
provide statistical confidence bounds associated with these estimates
described in terms of higher-order posterior moments. Furthermore,
these moments have been applied in the construction of posterior
coefficients of the GPC expansion for both states and parameters.
The remainder of this paper is structured as follows. In Sec. III, we

briefly review the generalized polynomial-chaos theory and its
application to the model stochastic differential equations. In Sec. IV,
we describe the problem statement and formulation of the estimation
process by using Bayes’s rule and the minimum variance estimator.
Also, detailed formulations of the measurement update process are
developed. Next, we illustrate the efficacy of this approach by some
numerical examples in Sec. V. Finally, the conclusion and discussion
of the results are mentioned.

II. Problem Statement

Consider a general n-dimensional continuous-time dynamic
system with uncertain initial conditions and parameters and a
discrete-time measurement model, given as

_x�t;Θ� � f�t;Θ;x;u� (1)

yk ≜ y�tk� � h�xk;Θ� � νk (2)

where xk � x�tk� represents the n-dimensional state vector, the m-
dimensional vectorΘ consists of all uncertain time-invariant system
and measurement model parameters, and u represents deterministic
forcing terms. The nominal initial state estimates are given by x0,
which may also be uncertain. The generally nonlinear function h�:�
captures the measurement model, and the random vector νk denotes
the measurement noise with the prescribed distribution p�νk�, which
is generally assumed to be a zero mean Gaussian PDF. Instead of
solving for the point estimates for the state and parameter variables,
we are interested in probability distribution for their values. The total
uncertainty associated with the state vector x�t� and parameter vector
Θ is characterized by the PDF p�t;x�t�;Θ�, and a nonlinear filtering
problem corresponds to finding the a posteriori joint density function
for xk andΘ given the measurement data Yk � fyiji � 1; 2; : : : ; kg
[i.e., p�t;x�t�;ΘjYk�] and a prior PDF p�t0;x0;Θ�.
As discussed in the last section, several approximate techniques

exist in the literature to approximate the posterior state PDF. In the
following, we discuss the GPCmethod for solving the time evolution
of the state PDF for systems that include initial-condition and
parametric uncertainty.

III. Generalized Polynomial Chaos: Theory
and Methodology

This section presents the mathematical details for the GPC
methodology to examine the effects of input parameter and initial-
condition uncertainty on the forward model outcome. The
propagation of uncertainty due to uncertain input parameters
and initial conditions can be approximated by a generalization of
polynomial-chaos theory. GPC is an extension of the homogenous
chaos idea of Wiener [33] and involves a separation of random
variables from deterministic ones in the solution algorithm for a
stochastic differential equation. The random variables are expanded
in a polynomial expansion. These polynomials are associated with
the assumed PDF for the input variables (Hermite polynomials for
normally distributed parameters, Legendre for uniform distributions,
etc. [34]). Galerkin projection is used to generate a system of
deterministic differential equations for the expansion coefficients.

A. Linear Systems

To describe theGPC process in detail, let us first consider a generic
first-order stochastic linear system:
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_x�t;Θ� � A�Θ�x�t;Θ� �B�Θ�u�t� (3)

where A ∈ Rn×n and B ∈ Rn×p. The vector of input signals is
u ∈ Rp×1, and Θ ∈ Rm is a vector of uncertain parameters that is a
function of the random vector ξθ � �ξθ1 ; ξθ2 ; · · · ; ξθm �T ∈ Rm,
defined by a PDF p�ξθ� over the support Ωθ. Similarly, initial
conditions x�t0� are a function of random vector ξ0 �
�ξ01 ; ξ02 ; · · · ; ξ0n �T defined by a PDF p�ξ0� over the support Ω0.
The random vector ξθ is assumed to be independent of random vector
ξ0. Please note that each element of random vector ξ � �ξθ; ξ0�T ∈
Rm�n can be viewed as a component of m� n-dimensional
stochastic space of random variables. It is assumed that the uncertain
state vector x�t;Θ� and system parameters Aij and Bij can be written
as a linear combination of basis functions ϕk�ξ� that span the
stochastic space of random variables ξ � �ξθ; ξ0�T

xi�t;ξ� �
XN
k�0

xik�t�ϕk�ξ� � xTi �t�Φ�ξ�⇒ x�t;ξ� �Xpc�t�Φ�ξ� (4)

Aij�ξ� �
XN
k�0

aijkϕk�ξ� � aTijΦ�ξ� (5)

Bij�ξ� �
XN
k�0

bijkϕk�ξ� � bTijΦ�ξ� (6)

where Φ�:� ∈ RN is a vector of polynomial basis functions
orthogonal to the PDF p�ξ� � p�ξθ�p�ξ0�, which can be constructed
using the Gram–Schmidt orthogonalization process. Table 1
represents different types of polynomial basis functions correspond-
ing to different distributions of random variable ξ [34].
The coefficients xik �t0�, aijk , and bijk are obtained by making use

of following normal equations:

xik�t0� �
hxi�t0; ξ�;ϕk�ξ�i
hϕk�ξ�;ϕk�ξ�i

(7)

aijk �
hAij�Θ�ξ��;ϕk�ξ�i
hϕk�ξ�;ϕk�ξ�i

(8)

bijk �
hBij�Θ�ξ��;ϕk�ξ�i
hϕk�ξ�;ϕk�ξ�i

(9)

where

hu�ξ�; v�ξ�i �
Z
Rr
u�ξ�v�ξ�p�ξ� dξ

represents the inner product induced by the PDF p�ξ�.
Note that the total number of terms in the GPC expansion �N� is

determined by the chosen highest order of basis polynomials ϕk�ξ�,
denoted by l, and the dimension of the vector of the uncertain
parameter ξ, which is represented by m� n:

N �
�
l�m� n
m

�
� �l�m� n�!�m� n�!l! (10)

Now, substitution of Eqs. (4–6) in Eq. (3) leads to

ei�ξ� �
XN
k�0

_xik �t�ϕk�ξ� −
Xn
j�1

�XN
k�0

aijkϕk�ξ�
��XN

k�0
xjk�t�ϕk�ξ�

�

−
Xp
j�1

�XN
k�0

bijkϕk�ξ�
�
uj; i � 1; 2; · · · ; n (11)

Equation (11) represents the error of the approximate GPC solu-
tion of Eq. (3), which contains n�N � 1� time-varying unknown
coefficients xik�t�. These unknown coefficients can be obtained by
using theGalerkin process, i.e., projecting the error of Eq. (3) onto the
space of the basis functions ϕk�ξ�,

hei�Xpc; ξ�;ϕk�ξ�i � 0; i � 1; 2; · · · ; n; k � 1; 2; · · · ; N

(12)

This leads to following set of n�N � 1� deterministic differential
equations:

_xpc�t� � Axpc�t� � Bu�t� (13)

where xpc�t� � fxT1 �T�;xT2 �T�; · · · ;xTn �T�g is a vector of n�N � 1�
unknown coefficients, A ∈ Rn�N�1�×n�N�1� and B ∈ Rn�N�1�×p.
Let P and Tk, for k � 0; 1; 2; · · · ; N, denote the inner product

matrices of the orthogonal polynomials, defined as follows:

Pij � hϕi�ξ�;ϕj�ξ�i; i; j � 0; 1; 2; · · · ; N (14)

Tkij � hϕi�ξ�ϕj�ξ�;ϕk�ξ�i; i; j � 0; 1; 2; · · · ; N (15)

Then, A can be written as an n�N � 1� × n�N � 1� block-diagonal
matrix, each on-diagonal block being an �N � 1� × �N � 1�matrix.
The matrix A consists of blocks Aij ∈ R�N�1�×�N�1�:

Aij � AijP; i; j � 1; 2; · · · ; n (16)

if matrix A is not uncertain; otherwise, it is given by

Aijk � aTijTk; i; j � 1; 2; · · · ; n (17)

where Aijk represents the kth row of Aij.
The matrix B consists of columns Bij ∈ R�N�1�×1:

Bij � Pbij i � 1; 2; · · · ; n; j � 1; 2; · · · ; p (18)

if matrix B is not uncertain; otherwise, it is given by

Bijk � bTijTk; i � 1; 2; · · · ; n; j � 1; 2; · · · ; p (19)

where Bijk denotes the kth row of Bij.
Equation (4), along with Eq. (13), define the uncertain state vector

x�t; ξ� as a function of random variable ξ and can be used to compute
any order moment or cumulant of a function of the uncertain state
variable. For example, the first two moments for state vector x�t� can
be written as

E�xi�t�� � xi1�t�; i � 1; · · · ; n (20)

E�xi�t�xj�t���
XN
k�0

xik�t�xjk�t�hϕk�ξ�;ϕk�ξ�i; i;j�1; ···;n (21)

B. Nonlinear Systems with Parametric Uncertainty

In this section, we extend the GPC process to propagate the state
uncertainty for a generic nonlinear system given by

_x�t;Θ� � f�t;Θ;x;u�; x�t0� � x0 (22)

Table 1 Correspondence of polynomial basis
functions with their underlying random variables ξ

Random variable ξ Basis polynomials ϕ�:� Support

Gaussian Hermite �−∞;�∞�
Gamma Laguerre �0;�∞�
Beta Jacobi �a; b�
Uniform Legendre �a; b�
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where u�t� is the input to the dynamic system at time t, x�t;Θ� �
�x1�t;Θ�; x2�t;Θ�; · · · ; xn�t;Θ��T ∈ Rn represents the stochastic
system state vector, and the uncertain parameter vector Θ ∈ Rm is a
function of the random vector ξθ � �ξθ1 ; ξθ2 ; · · · ; ξθm �T ∈ Rm

defined by a PDF p�ξθ� over the support Ωθ. Similarly, initial
conditions x�t0� are a function of random vector ξ0 �
�ξ01 ; ξ02 ; · · · ; ξ0n �T defined by a PDF p�ξ0� over the support Ω0.
The random vector ξθ is assumed to be independent of random vector
ξ0. Please note that f�t;Θ;x;u� can be a nonlinear function, in
general.
Once again, the GPC expansion for the state vectorx and uncertain

parameter Θ can be written as

xi�t;Θ� �
XN
k�0

xik�t�ϕk�ξ� � xTi �t�Φ�ξ� ⇒ x�t; ξ� � Xpc�t�Φ�ξ�

(23)

θi�ξ� �
XN
k�0

θikϕk�ξ� � θTi Φ�ξ� ⇒ Θ�t; ξ� � ΘpcΦ�ξ� (24)

where ξ is a m� n dimensional vector consisting of all random
variables, i.e., ξ � �ξθ; ξ0�. Xpc and Θpc are matrices composed of
coefficients of the GPC expansion for state x and parameter Θ,
respectively. Similar to the linear case, coefficients xik�t0� and θik are
obtained by making use of following normal equations:

xik�t0� �
hxi�t0; ξ�;ϕk�ξ�i
hϕk�ξ�;ϕk�ξ�i

(25)

θik �
hθi�ξ�;ϕk�ξ�i
hϕk�ξ�;ϕk�ξ�i

(26)

Now, substitution of Eqs. (23) and (24) into Eq. (22) leads to

ei�Xpc; ξ� �
XN
k�0

_xik�t�ϕk�ξ� − fi�t;Xpc�t�Φ�ξ�;ΘpcΦ�ξ�;u�;

i � 1; 2; · · · ; n (27)

From Eq. (12), n�N � 1� time-varying coefficients xik can be
obtained using the Galerkin process, i.e., projecting the error
captured in Eq. (27) onto the space of basis functions ϕk�ξ�.
For polynomial or rational state nonlinearity, the Galerkin process

will lead to a set of n�N � 1� nonlinear deterministic differential
equations. For nonpolynomial nonlinearity, such as transcendental or
exponential functions, difficulties may arise during the computation
of the projection integrals of Eq. (12) . To overcome this issue in
the nonlinear case, the polynomial-chaos quadrature technique will
be used.

C. Polynomial-Chaos Quadrature

To manage the difficulties in integrating nonpolynomial
nonlinearities, Dalbey et al. [35] have proposed a formulation
known as the polynomial chaos quadrature (PCQ). PCQ replaces the
projection step of the GPC with numerical quadrature. The resulting
method can be viewed as a Monte-Carlo-like evaluation of system
equations, but with sample points selected by quadrature rules. To
illustrate this, consider Eq. (22), which, by substitution of Eqs. (23)
and (24), can be written as

XN
k�0

_xik�t�ϕk�ξ� − fi�t;Xpc�t�Φ�ξ�;ΘpcΦ�ξ�;u� � 0;

i � 1; · · · ; n (28)

The projection step of PC yields

XN
k�0
hϕk�ξ�;ϕj�ξ�i _xik − hfi�t;Xpc�t�Φ�ξ�;ΘpcΦ�ξ�;u�;ϕj�ξ�i � 0

i � 1; · · · ; n; j � 0; · · · ; N (29)

In the case inwhich f�t;x;Θ;u� is linear, it is possible to evaluate the
projection integrals of Eq. (29) analytically. More generally, the
starting point of PCQmethodology is to replace the exact integration
with respect to ξ by numerical integration. The familiar Gauss
quadrature method [36] is a suitable choice for most cases. This
yields

hϕi�ξ�;ϕj�ξ�i �
Z

ϕi�ξ�ϕj�ξ�p�ξ� dξ ≃
XM
q�1

wqϕi�ξq�ϕj�ξq� (30)

hϕi�ξ�;ϕj�ξ�ϕk�ξ�i �
Z

ϕi�ξ�ϕj�ξ�ϕk�ξ�p�ξ� dξ

≃
XM
q�1

wqϕi�ξq�ϕj�ξq�ϕk�ξq� (31)

hfi�t;Xpc�t�Φ�ξ�;ΘpcΦ�ξ�;u�;ϕj�ξ�i

�
Z

fi�t;Xpc�t�Φ�ξ�;ΘpcΦ�ξ�;u�ϕj�ξ�p�ξ� dξ

≃
XM
q�1

wqfi�t;Xpc�t�Φ�ξq�;ΘpcΦ�ξq�;u�ϕj�ξq� (32)

whereM is the number of quadrature points used. Substitution of the
aforementioned approximation of the stochastic integral in Eq. (29)
and interchanging summation and differentiation leads to

d

dt

XM
q�1

XN
k�0

wqϕj�ξq�ϕk�ξq�xik

−
XM
q�1

wqfi�t;Xpc�t�Φ�ξq�;ΘpcΦ�ξq�;u�ϕj�ξq� � 0 (33)

which can be simplified as

d

dt

XM
q�1

ϕj�ξq�xi�t; ξq�wq

−
XM
q�1

wqfi�t;Xpc�t�Φ�ξq�;ΘpcΦ�ξq�;u�ϕj�ξq� � 0 (34)

Integrating with respect to time t yields

XM
q�1
�xi�t; ξq� − xi�t0; ξq��ϕj�ξq�wq

−
Z
t

t0

XM
q�1

wqfi�t;Xpc�t�Φ�ξq�;ΘpcΦ�ξq�;u�ϕj�ξq� dt � 0 (35)

Interchanging the order of the time integration and quadrature
summation leads to

XM
q�1

�
xi�t; ξq� − xi�t0; ξq� −

Z
t

t0

fi�t;Xpc�t�Φ�ξq�;ΘpcΦ�ξq�;u� dt
�

× ϕj�ξq�wq � 0 i � 1; · · · ; n (36)

Note that the integral expression in Eq. (36) can be evaluated by an
integration of the model equation with a specific instance of the
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random variable ξq. Thus, the process of evaluating the statistics of
the output of the system reduces to sampling the chosen input points
guided by the quadraturemethod. Finally, the coefficients of theGPC
expansion can be obtained as

xik�t� �
1

d2k

XM
q�1

X i�t0; t; ξq;u�ϕk�ξq�wq;

k; j � 0; 1; · · · ; N; i � 1; 2; · · · ; n (37)

where

X i�t0; t; ξq;u� � xi�t0; ξq� �
Z
t

t0

fi�t;Xpc�t�Φ�ξq�;ΘpcΦ�ξq�;u�

(38)

d2k �
Z
Ω
ϕk�ξ�ϕk�ξ�p�ξ� dξ (39)

Hence, the resulting method can be viewed as a Monte-Carlo-like
evaluation of system equations, but with sample points selected by
quadrature rules. PCQ approximates the moment of system state
_x � f�t;x;Θ; u� as

E�xi�t�N ��
Z
Ω

�Z
t

t0

_xidt

�
N

p�ξ�dξ

�
Z
Ω

�
xi�t0;ξ��

Z
t

t0

fi�t;x;Θ;u�dt
�
N

p�ξ�dξ i�1;2; · ··;n (40)

For a fixed value of parameter Θ � Θq, the time integration can be
performed using deterministic integration. Integration (by PCQ) over
the uncertain inputs determines the state PDF. This yields moment
evaluations

E�xi�t�N � �
XM
q

wq�X i�t0; t; ξq;u��N i � 1; 2; · · · ; n (41)

Thus, the output moments can be approximated as aweighted sum of
the outputs of simulation runs at selected values of the uncertain input
parameters (the quadrature points). The natural choice for these
quadrature points is the set of Gaussian quadrature points that is
defined by choosing the points optimally in the sense of maximiz-
ing the degree of the polynomial function that integrates exactly.
The classic method of Gaussian quadrature exactly integrates
polynomials up to degree 2N � 1 with N � 1 quadrature points.
The tensor product of one-dimensional quadrature points is used to
generate quadrature points in general n-dimensional parameter
space. As a consequence of this, the number of quadrature points
increases exponentially as the number of input parameters increases.
Note that other numerical integration methods like the sparse grid

[37] and conjugate unscented transform [38] can also be used to
evaluate Eq. (12) . It should be noted that all of these approaches can
still suffer from integration error if an insufficient number of samples
is used. This necessitates the need for an adaptive or nested
quadrature scheme to successively refine the accuracy by increasing
the number of sample points such as the Clenshaw–Curtis quadrature
method [39] for numerical integration.

IV. Estimation Process

In the previous section, the GPC theory is presented as a tool to
propagate the state and parameter uncertainty through a nonlinear
dynamic model. The use of sensor data to correct and refine the
dynamicalmodel forecast so as to reduce the associated uncertainty is
a logical improvement over a purely model-based prediction.
However, mathematical models for various sensors are generally
based upon the “usefulness” rather than the “truth” and do not
provide all the information that onewould like to know. Care must be
taken when assimilating the observational data to account for its

uncertainties and incompleteness. As discussed in Sec. I, there is
currently no generic theoretical framework that solves the nonlinear
filtering problem accurately and in a computationally efficient
manner. Hence, there is a need to develop statistically and computa-
tionally efficient nonlinear filtering algorithms while appropriately
accounting for the uncertainty in process and measurement models.
In this section, two different GPC-based approaches have been

developed to design finite-dimensional nonlinear filtering algorithms
to integrate multiple sources of complementary information with
system dynamics to help reduce the uncertainty of the output. Both
the approaches make use of the GPC methodology to compute
accurate prediction between two measurement updates. The first
proposed method makes use of Bayes’s formula to update the GPC
series expansion, while the second method updates the GPC series
expansion using the minimum variance technique.

A. Fusion of Measurement Data and Model Estimates

Given a prediction model of Eq. (22), let us consider the sensor
model of Eq. (2) . Using the GPC uncertainty evolution as a
forecasting tool, the joint PDF of state and parameter can be updated
using Bayes’s rule on the arrival of a measurement data:

p�Θ;xjYk� �
p�Θ;xjYk−1�p�ykjΘ;x�

p�yk�
(42)

where Yk represents the measurement data up to and including time
tk. The joint prior PDF (solution of the GPC approach) of x and Θ at
time tk given all observations up to time tk−1 is p�Θ;xjYk−1�,
p�ykjΘ;x� is the likelihood that we observe yk given x andΘ at time
tk, and p�Θ;xjYk� represents the joint posterior PDF of x and Θ at
time tk given all previous observations, including yk. Furthermore,
p�yk� is the total probability of observation at time tk, which can be
evaluated as follows:

p�yk� �
ZZ

p�Θ;xjYk−1�p�ykjΘ;x� dΘ dx (43)

Aswe concluded in the previous section, the GPC approach provides
us a tool to determine equations of evolution for the conditional
moments for the prior joint PDF p�Θ;xjYk−1�. We now seek to
develop equations of evolution for the posterior conditional
moments. As a step toward this goal, let us consider a continuously
differentiable scalar function ϕ�Θ;x� and define posterior and prior
conditional moments as

ϕ̂�k � E��ϕ�Θ;x�� ≜
ZZ

ϕ�Θ;x�p�Θ;xjYk� dΘ dx (44)

ϕ̂−
k � E−�ϕ�Θ;x�� ≜

ZZ
ϕ�Θ;x�p�Θ;xjYk−1� dΘ dx (45)

Now, multiplying Eq. (42) with ϕ�Θ;x� and integrating over Θ and
x, we get

ϕ̂�k �
E−�ϕ�Θ;x�p�ykjΘ;x��

p�yk�
(46)

Note that yk is fixed with respect to the expectation operator, and,
thus, the right-hand side of Eq. (46) is a function of yk only. Notice
that Eq. (46) is not an ordinary difference equation, and the evaluation
of the right-hand side of Eq. (46) requires the knowledge of the prior
density function. Thus, even the computation of the posterior mean
for Θ and x, i.e., ϕ � Θ or x, depends upon all the other moments.
In the next section, we shall present the details to obtain a
computationally realizable filter in the general nonlinear case while
making use of the GPC expansion series. For the sake of simplicity,
we shall assume the likelihood function to be a normal density
function, although the development presented in the next section is
applicable to any generic likelihood function,
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p�ykjΘ;x� � N �ykjh�x�t�;Θ�;Rk�

≜
1��������������������

�2π�kjRkj
p e−�1∕2��yk−h�x�t�;Θ��

TR−1
k
�yk−h�x�t�;Θ��

(47)

B. GPC–Bayes Approach

As discussed in the last section, the main challenge during the
measurement update process lies in evaluating expectation integrals
involved in Eq. (46) in a computationally efficient way. Although the
GPC process does not provide us a closed-form expression for the
state or parameter PDF, it can be used effectively in computing
the expectation integrals. As discussed in the previous section, all
moments of randomvariablesΘ andx are just a function of their GPC
expansion coefficients, i.e., Θpc andXpc. Hence, one can update the
GPC coefficients on the arrival of measurement data based upon
Eq. (46). So, if we defineΘ−

pc andX
−
pc to be the priorGPC coefficients

and Θ�pc and X�pc to be posterior GPC coefficients, then we can
evaluate ϕ̂−�Θ;x� and ϕ̂��Θ;x� as

ϕ̂−
k � ϕ̂−�Θ;x� � E−�ϕ�Θ;x��

�
Z

ϕ�Θ−
pcΦ�ξ�;X−

pc�t�Φ�ξ��p�ξ� dξ (48)

ϕ̂�k � ϕ̂��Θ;x� � E��ϕ�Θ;x��

�
Z

ϕ�Θ�pcΦ�ξ�;X�pc�t�Φ�ξ��p�ξ� dξ (49)

Similarly, the E−�ϕ�Θ;x�p�ykjΘ;x�� can be evaluated as

Mr�Θ−
pc;x

−
pc; yk� � E−�ϕ�Θ;x�p�ykjΘ;x��

�
Z

ϕ�Θ−
pcΦ�ξ�;X−

pc�t�Φ�ξ��N �ykjh�X−
pc�t�

×Φ�ξ�;Θ−
pcΦ�ξ��;Rk�p�ξ� dξ (50)

For the moment-evaluation purpose, ϕ�Θ;X� is a polynomial
function, and one can obtain a closed-form expression for ϕ̂−

k and ϕ̂
�
k .

For example, the posterior mean and covariance are given as

E�x�i �t�� � xi1�t�; i � 1; · · · ; n (51)

E�x�i �t�x�j �t�� �
XN
k�0

x�ik �t�x
�
jk
�t�hϕk�ξ�;ϕk�ξ�i;

i; j � 1; · · · ; n (52)

The main challenge lies in evaluatingMr�Θ−
pc;x

−
pc; yk�. One can use

the quadrature scheme to evaluate Eq. (50):

Mr�Θ−
pc;x

−
pc; yk� ≈

XNq
q�1

wqψ�Θ−
pcΦ�ξq�;X−

pc�t�Φ�ξq�; yk;Rk�

�
XNq
q�1

wqψ�Θ−
q ;x

−
q ; yk;Rk� (53)

where

ψ�Θ−
pcΦ�ξ�;X−

pc�t�Φ�ξ�; yk;Rk� � ϕ�Θ−
pcΦ�ξ�;X−

pc�t�Φ�ξ��
×N �ykjh�X−

pc�t�Φ�ξ�;Θ−
pcΦ�ξ��;Rk� (54)

Notice thatMr�Θ−
pc;x

−
pc; yk� is completely known since prior values

of coefficients are known from the GPC solution of the system. Also,
ϕ�Θ;x� takes the following form to match all joint moments up to
order Nm:

ϕ�Θ;x� � Θs1
i x

s2
j ; s1 � s2 ≤ Nm (55)

Now, substitution of Eqs. (49) and (53) in Eq. (46) leads to

gs1;s2�Θ�pc;X�pc� � ϕ̂��Θ�pc;x�pc� −
1

α
Mr�Θ−

pc;x
−
pc; yk�;

α � p�yk�; s1 � s2 ≤ Nm (56)

where Nc is given as

Nc �
XNm
k�1

�m� n�!
k!�m� n − k�!

�Nm�!
k!�Nm − k�! (57)

and n and m are the dimension of state x and parameter Θ,
respectively. Notice that Eq. (56) is a set of Nc nonlinear coupled
equations that defines posterior GPC coefficients Θ�pc and X�pc in
terms of prior information that is available from measurement and
GPC propagation, to match all joint moments up to order Nm. One
can pose the following minimization problem to find a solution for
posterior coefficients Θ�pc and X�pc:

min
Θ�pc;X�pc

� X
s1�s2≤Nm

g2s1;s2�Θ�pc;X�pc�
�

(58)

Different algorithms like trust-region-reflective optimization
[40,41], the Levenberg–Marquardt optimization [42–44], and the
Gauss–Newton approach [44,45] can be used to solve this
optimization problem. In this paper, we have used the Levenberg–
Marquardt optimization to solve this optimization problem. For a
special case for matching just the posterior mean, i.e., Nm � 1, we
get the following analytical solution for the posterior coefficients:

Θ�pc1 � κ1;0 (59)

X�pc1 � κ0;1 (60)

where Θ�pc1 and X�pc1 represent the first column of Θ�pc and X�pc,
respectively. Also, κ1;0 and κ0;1 are given as

κ1;0 �
XNq
q�1

wq�Θ−
pcΦ�ξ��N �ykjh�Xpc�t�Φ�ξq�;Θ−

pcΦ�ξq��;Rk�

(61)

κ0;1 �
XNq
q�1

wq�X−
pc�t�Φ�ξ��N �ykjh�Xpc�t�Φ�ξq�;Θ−

pcΦ�ξq��;Rk�

(62)

Since the only moment constraint is the expected value of states and
parameters, the GPC–Bayes approach just updates coefficient of just
the first term in the GPC expansion of state x and parameter Θ and
retains the prior value of the rest of the coefficients.

C. GPC-Minimum Variance Estimator

In the previous section, we developed an estimation algorithm to
estimate posterior moments and GPC expansion coefficients by
making use of Bayes’s rule. In this section, we present an alternative
development based upon the minimum variance estimator to find an
expression for posterior GPC coefficients Θ�pc and X�pc. The main
advantage of this approach is that it is less computationally
demanding than the Bayesian approach described in the last section.

D. Minimum Variance Estimation with A Priori Information

For estimation purposes, we define the concatenated vector z as

z�t; ξ� �
�
x�t; ξ�
Θ�ξ�

�
(63)
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Prior and posterior means for both the state and parameter can be
written as

ẑ−k ≜ E−�zk� �
�
X−

pc1
�t�

Θ−
pc1

�
(64)

ẑ�k ≜ E��zk� �
�
X�pc1�t�
Θ�pc1

�
(65)

Similarly, assuming orthonormality of basis functions ϕi�ξ� in the
GPC expansion of x and Θ, prior and posterior covariance matrices
can be written as

Σ−
k ≜ E−��zk− ẑ−k ��zk− ẑ−k �T � �

 P
N
i�1X

−2

pci

P
N
i�1X

−
pci
Θ−

pciP
N
i�1X

−
pci
Θ−

pci

P
N
i�1Θ−2

pci

!

(66)

Σ�k ≜E���zk− ẑ−k ��zk− ẑ−k �T ��
 P

N
i�1X

�2

pci

P
N
i�1X

�
pci
Θ�pciP

N
i�1X

�
pci
Θ�pci

P
N
i�1Θ�

2

pci

!

(67)

where X−
pci

and Θ−
pci

are the ith column of the PC expansion
coefficient matrices X−

pc and Θ−
pc, respectively. Similarly, X�pci and

Θ�pci are the ith column of unknown PC expansion coefficient
matrices X�pc and Θ�pc, respectively. According to the minimum
variance formulation, the posterior mean and covariance can be
computed given an estimate of the prior mean and covariance [3]:

ẑ�k � ẑ−k �Kk�~yk − E−�h�xk;Θ��� (68)

Σ�k � Σ−
k �KkΣzy (69)

Kk � ΣTzy�P−
hh �Rk�−1 (70)

It should be noted that the minimum variance formulation is valid
for any PDF, although it makes use of only mean and covariance
information. The sensor output at time tk is denoted by ŷk, while the
function h�x;Θ� provides a true model between sensor output y and
state x, and parameter Θ. Rk denotes the measurement noise error
covariance matrix. Kk is known as the Kalman gain matrix, and
matrices Σzy and Σzz are defined as

ĥ−
k ≜ E−�h�xk;Θ�� �

XM
q�1

wqh�xk�ξq��|����{z����}
hq

(71)

Σzy ≜ E−��zk − ẑk��h�xk� − ĥ−
k �T �

�
XM
q�1

wq�zk�ξq� − ẑ−k ��hq − ĥ−
k �T (72)

Σ−
hh ≜ E−��h�xk� − ĥ−

k ��h�xk� − ĥ−
k �T �

�
XM
q�1

wq�hq − ĥ−
k ��hq − ĥ−

k �T (73)

Notice that Eqs. (65) and (68) provide a closed-form solution forX�pc1
andΘ�pc1 , while one can solve for the rest of the posterior coefficients
by making use of Eqs. (67) and (69).

V. Numerical Examples

In the previous section, we have developed two algorithms based
upon the GPC expansion for state and parameter estimations. Here,
we consider four different numerical experiments to demonstrate
the performance of these methods. We also employ the EKF and
bootstrap PF algorithms to compare the performance of the proposed
methodology. All the simulations are performed in the MATLAB
environment and on a dual-core desktop computer with a 2.13 GHz
Intel Core 2 CPU.

A. First-Order System

As the first example, we consider the forced first-order system

_x� Kx � Uin; x�0� � 0 (74)

y�tk� � x�tk� � νk (75)

where Uin � 2e−t∕10 sin�2t� and the prior uncertainty in K is
assumed to be uniformly distributed over the interval �0.5; 1.5�. For
simulation purposes, the measurement data are assumed to be
available at a sampling frequency of 1 Hz. A random sample of K
is taken from the prior distribution to generate the noise-free
measurement data. The noise-free measurement data are corrupted
with a Gaussian white noise of zero mean and variance being 0.05. It
should be mentioned that this simulation is performed for different
realizations of measurement noise and values of parameter K. The
results presented here correspond to the true value ofK being 1.3659
(Kact � 1.3659). To represent uncertainty in state and parameter, a
ninth-order GPC expansion is considered, and the total simulation
time interval is assumed to be 10 s. The initial GPC expansion for K
and x�0� can be written as

x�0; ξ� �
X9
k�0

xk�0�ϕk�ξ� xk�0� � 0 (76)

K�ξ� �
X9
i�0
kiϕi�ξ� k0� 1; k2� 0.5 and ki� 0 (77)

where ϕk�ξ� are Legendre polynomials that correspond to the
uniform distribution of parameterK. Using the procedure outlined in
Sec. III, Eq. (74) can be converted into the following deterministic
form:

M _Xpc�t� �KXpc �

0
BB@
2e−t∕10 sin�2t�

0

..

.

0

1
CCA (78)

where

Mi�1;j�1 � hϕi�ξ�;ϕj�ξ�i �
1

2i� 1
δij; i; j � 0; 1; · · · ; N

(79)

Ki�1;j�1 � hϕi�ξ�;ϕj�ξ�i � 0.5hϕ1�ξ�ϕi�ξ�;ϕj�ξ�i;
i; j � 0; 1; · · · ; N (80)

where δi;j � 1 if i � j and δi;j � 0, otherwise.K can be simplified as
the following:

K �

8>><
>>:

1
2i�1 ; i � j
i

�2i�1��2i�3� ; j � i� 1
i

�2i−1��2i�1� ; j � i − 1

As well, the initial condition of Eq. (78) is given by
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xi�0� � 0 i � 0; · · · ; N (81)

whereN is the number of terms used in the GPC expansion of x. The
solution of this system of ordinary differential equations yields the
coefficients of GPC expansion of x�t�, which can be used in Eq. (23)
to construct the solution of Eq. (74).
After studying the convergence of first three central moments vs

number of Monte Carlo (MC) runs [46], 100,000 MC runs are
considered to be the reference truth for this example to verify the
efficacy of the GPC method in forward propagation. Table 2 shows
the relative error in approximating the first three central moments

using the PCQ framework for x at t � 2 s. It should be noted that one
needs only four quadrature points or model runs according to the
PCQ formulation to capture the first threemoments with less than 1%
error while 1000 MC runs result in an order-of-magnitude-higher
error when compared against 100,000MC runs. These results clearly
show the efficacy of the GPC framework in accurately propagating
the parameter uncertainty through the dynamical system.
The mean estimates for parameter K and state x by using different

estimation algorithms (PF, EKF, GPC-based minimum variance
estimator, and the GPC–Bayes method for different moment
matching constraints (different values of Nm)) have been shown in
Figs. 1a and 1b, respectively. As expected, the GPC–Bayes method
results in more accurate results as we increase Nm and assume the
PF approximated posterior mean to be the reference truth. Also,
when Nm � 2, the GPC–Bayes and GPC-based minimum variance
estimators perform very similarly in finding the posterior mean
estimates for both K and x. Both the EKF and the GPC–Bayes
method with Nm � 1 perform poorly in the estimation of the first
posterior moment of K and x.
Figures 1c and 1d show the posterior variance for parameterK and

state x corresponding to different filters, respectively. As expected,
the GPC–Bayes approach with Nm � 1 cannot capture the posterior
variance for parameter K and state x. However, the performance of

Table 2 Relative error ofmoments of state xwith respect to
100,000 Monte Carlo runs at t � 2 s

Number of
quadrature points

Mean, % Second central
moment, %

Third central
moment, %

1 9.10 100 100
2 0.0617 6.0777 100
3 0.0300 0.0472 5.0230
4 0.0304 0.0557 0.0883

1000 MC simulations 1.2310 3.7051 7.8948
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Fig. 1 Posterior central moments for parameter K and state x for the first-order system.
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the GPC–Bayes method improves significantly in capturing the
posterior variance as compared to the PF by increasing Nm, i.e., the
number ofmatchingmoment constraints. Once again, both theGPC–
Bayes method and GPC-based minimum variance estimator perform
equally well in capturing the posterior variance given by the PF, and
their performance is much better than the EKF.
Figures 1e and 1f show the performance of applied methods in

capturing the third posterior central moment for parameter K and
state x, respectively. It is clear that the GPC–Bayesmethod is not able
to capture the third central moment for Nm < 3. However, there is a
significant improvement in capturing the posterior third central
moment assuming the PF approximated third central moment to be
the reference truth when Nm ≥ 3. This is due to the fact that, for
capturing the posterior third central moment, the minimum order of
matching moment constraints should be at least three. As expected,
both theGPC-basedminimumvariance estimator and the EKF do not
perform well in capturing the third central moment for both K and x.
Tables 3 and 4 show the root mean square error (RMSE) over

time in capturing central moments for parameter K and state x,
respectively. We assume the PF estimated posterior central moment
to be the reference truth to compute the RMSE.Although, one should
be careful about this comparison as the PF does not provide the truth
posteriormoments due to various assumptions involved regarding the
selection of the importance function in the measurement update
part. As expected, the GPC–Bayes method results in less error in
estimation of the posterior moments for both parameterK and state x
as one increases the number of matching moment constraints, i.e.,
Nm. Also, the GPC-based minimum variance estimator performs
almost 10 times better than the EKF in the estimation of the first two
central moments for x.
Finally, Table 5 represents the processor time corresponding to the

implementation of different algorithms. Clearly, the EKF performs
faster than all the other methods. However, due to nonlinearities
involved in the augmented dynamical system, it results in poor
estimation results. The GPC-based minimum variance estimator
performs slower than the EKF, but it results in much more accurate

estimates than the EKF. From these results, it is clear that the GPC–
Bayes method with low values of Nm is much faster than the PF. As
expected, the computational cost corresponding to the GPC–Bayes
method increases as one increases the number of matching moment
constraints (Nm). This increase in computational cost can be
attributed to solving the optimization problem at every measurement
update step.
In summary for this example, it is clear that the proposed methods

perform well as compared to the PF results in capturing not only the
posterior mean but also the higher moments. The main advantage of
the GPC–Bayes approach is that one can vary the number of moment
matching constraints depending upon the desired accuracy in
capturing the higher-order posteriormoments. The poor performance
of the EKF algorithm can be attributed to the strong nonlinearity
involved due to the simultaneous state and parameter estimation
problem.

B. Duffing Oscillator

We next consider the Duffing oscillator

�x� η _x� αx� βx3 � sin�3t� (82)

y�tk� �
�
x�tk�
_x�tk�

�
� νk (83)

For simulation purposes, nominal parameter values are assumed to be
given as

η � 1.3663; α � −1.3761 β � 2

The initial states are assumed to be normally distributed:

x�0� � N �x0j − 1; 0.52�; _x�0� � N � _x0j − 1; 0.52�

Hence, ψk�ξ� are chosen to be Hermite polynomials to describe the
Gaussian distribution of states. As well, the fourth-order GPC
expansion is considered to analyze the effect of the initial-condition
uncertainty. To corroborate the efficacy of the PCQ approach to
capture the evolution of the statistics of the states of Eq. (82), a
relative error in the Frobenius norm of the difference between
different moments of states with respect to 100,000Monte Carlo runs
at t � 2 s is evaluated. Table 6 shows that the relative error decreases
as the number of quadrature points increases. It is clear that one can
obtain a better approximation for three central moments using only
16 quadrature points, relative to the 1000 MC runs.
To verify the efficiency of our method, we compared the

performance of the proposed methods with the EKF and PF results.
The measurement data are assumed to be available at a sampling
frequency of 1Hz. A random sample of initial conditions is taken from
initial-condition distribution to generate the noise-free measurement
data. The noise-free measurement data are then corrupted with a
Gaussian white noise of zero mean and variance being

R �
�
σ2 0

0 σ2

�

where σ is assumed to be 0.05 in our simulations. Figures 2a and 2b
illustrate the state estimation error for x and _x by using the EKF

Table 3 RMSE in the first three posterior central moments for
parameterK assumingPFwith 100,000 particles to be the reference truth

Nm Mean Second central
moment

Third central
moment

1 4.1827e� 000 2.3343e� 000 1.7592e − 002
2 3.2244e − 001 2.5930e − 002 1.4137e − 002
3 1.5010e − 001 2.5059e − 002 3.7661e − 003

Minimum
variance

3.6602e − 001 6.9057e − 002 1.4929e − 002

EKF 4.5070e� 000 5.6481e − 001 1.4602e − 002

Table 4 RMSE in the first three posterior centralmoments for state x
assuming a PF with 100,000 particles to be the reference truth

Nm Mean Second central
moment

Third central
moment

1 5.7567e − 001 1.6527e − 001 6.9901e − 003
2 5.1621e − 002 2.2547e − 003 1.5859e − 003
3 2.0171e − 002 8.8121e − 004 3.9529e − 005

Minimum
variance

1.3997e − 001 8.5417e − 003 1.2629e − 003

EKF 1.4636e� 000 3.6966e − 002 1.9292e − 003

Table 5 Processor time (in seconds) required for
different estimation approaches for the first-order

system

Nm EKF PF Minimum variance GPC–Bayes

1 — — — — — — 464.46
2 0.8 2541.4 112.09 681.52
3 — — — — — — 8162.8

Table 6 Relative error in the Frobenius norm of the

difference between moments of the states and 100,000
Monte Carlo runs at t � 2 s

Number of
quadrature points

Mean, % Second central
moment, %

Third central
moment, %

12 4.5526 100 100
22 0.3217 20.3050 98.3149
32 0.0329 3.9559 28.5219
42 0.0537 0.5202 2.5084

1000 MC simulations 0.1199 6.0715 99.2219
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method, respectively. The solid line represents the difference between
the true value and its mean estimate, while the dashed lines show the
�3σ bounds. From these plots, it is clear that the state estimation error
increases significantly with time although it is always bounded by 3σ
bounds. The poor performance of the EKF can be attributed to strong
nonlinearities and sparse data resulting from sampling at 1 Hz.
The state estimation error for x and _x by using the particle filter has

been shown in Figs. 3a and 3b, respectively. The solid line represents
the difference between the true value and its mean estimate, while the
dashed lines show the minimum and the maximum bounds. These
plots show that the state estimation error decreases with time, while
using the PF.
Furthermore, Fig. 4 shows the error in the state estimates along

with its 3σ bounds using the GPC-based minimum variance
estimator. Once again, the estimation error along with 3σ bounds
converge to zero over the time, which can be again attributed to the
posterior density function converging to a delta function as the
number of measurements increases.
Figure 5 shows the error in the state estimates using the GPC–

Bayes method for various values ofNm. The solid line represents the

difference between the true value and its mean estimate, while
the dashed lines represent the minimum and maximum bounds on
the estimation errors. It is clear that the estimation error and
corresponding 3σ bounds for the estimation error converge to zero
over time. This is due to the fact that the posterior density function
finally converges to a Dirac-delta function around the truth, which is
expected as the number ofmeasurements increases over time. Also, it
should be noticed that 3σ bounds become tighter and tighter as one
increases the number ofmatchingmoment constraints, i.e.,Nm. From
these results, it is clear that the proposed methods perform very well
in not only estimating the posterior mean but the posterior density
function also.
To summarize, the RMSE over time between the mean estimate of

states and their true value has been shown in Table 7. As this table
represents, the GPC–Bayes, PF, and GPC-based minimum variance
method perform very well in the estimation of both states x and _x,
while the EKF results in high error between themean estimate and the
actual value of the states. It is clear from Table 7 that, by increasing
the number of matching moment constraints (Nm) in the GPC–Bayes
method, the error in the estimation of the states decreases.
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Fig. 2 Error and 3σ bounds for the EKF approximated posterior mean for the Duffing oscillator.
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Fig. 3 Error and 3σ bounds for PF approximated posterior mean for the Duffing oscillator.
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Fig. 4 Error and 3σ bounds for the minimum variance approximated posterior mean for the Duffing oscillator.
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Finally, Table 8 shows the processor time required for various
algorithms. As expected, the EKF implementation is the fastest,
but it results in erroneous estimates. Both the GPC-based mini-
mum variance estimator and the GPC–Bayes filter require less
computational effort than the PF implementation, while both
methods perform well in estimating the system states.

C. Falling Body Problem

We now consider the benchmark problem of the falling body with
the nonlinear observation model as originally described by Athans
et al. [47]:

_x1 � −x2 _x2 � −x22pe−λx1 (84)

y�tk� �
������������������
M2 � x21

q
� νk (85)

where x1 represents the altitude of the body in feet and x2 represents
the downward velocity in feet/second. The ballisitc coefficient p is
defined as follows:

p ≜ CD
Aρ0
2m
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Fig. 5 Estimation error and 3σ bounds for the GPC–Bayes approximated posterior mean for the Duffing oscillator.

Table 7 RMSE in themean estimate of states x
and _x while using different estimation methods

Method ex e _x

EKF 0.1307 0.3858
PF 0.0408 0.0508

Minimum variance 0.0359 0.0527
Nm � 1 0.1173 0.0695

GPC–Bayes Nm � 2 0.0347 0.0531
Nm � 3 0.0336 0.0528

Table 8 Processor time (seconds) required
for the different estimation approaches

Method Processor time, s

EKF 1.2399
PF 26,411

Minimum variance 53.4602
Nm � 1 65.8251

GPC–Bayes Nm � 2 64.6385
Nm � 3 108.9398
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where CD, A, ρ0, andm represent the drag coefficient, reference area
for drag evaluation, mass density of the atmosphere, and mass of the
falling object, respectively. The measurements are assumed to be the
range of the body as measured from a radar location located at a
horizontal distanceM � 100; 000 ft away from the falling body. For
simulation purposes, the initial states and parameter are assumed to
be uniformly distributed as follows:

x1�0� � U�2.9 × 105; 3.1 × 105�;
x2�0� � U�1.9 × 104; 2.1 × 104�;
p � U�5 × 10−4; 1.5 × 10−3�

Table 9 Relative error in the Frobenius norm of the difference
between the moments of the states and 100,000 Monte Carlo

runs at t � 2 s

Number of
quadrature points

Mean, % Second central
moment, %

Third central
moment, %

13 3.2802 100 100
23 2.43e − 007 0.0020 0.0979
33 2.189e − 008 0.0020 0.0004

1000 MC simulations 0.0331 2.3890 94.5458
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Fig. 6 Posterior expected value of the states and parameter for the falling body model.
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Please note that, due to large initial values of altitude and velocity, the
effect of gravity is negligible and has not been considered in the
model [47]. Legendre polynomials ϕk�ξ� are chosen to describe
the uniform distribution of states. A third-order GPC expansion is
considered to analyze the effect of the initial-condition uncertainty.
To compare efficacy of the PCQ approach to capture the evolution of
the statistics of the states of Eq. (84), a relative error in the Frobenius
norm of the difference between different moments of the first two
states with respect to 5 × 104 Monte Carlo runs at t � 2 s is
evaluated. Table 9 shows that the relative error decreases as the
number of quadrature points increases. It is clear that one can obtain a
better approximation for three central moments using only eight
quadrature points, relative to the 1000 MC runs.
We compared the performance of the proposed methods with the

EKF and PF results. The measurement data are assumed to be
available at a sampling frequency of 1 Hz. The following initial
conditions are randomly taken from initial conditions and parameter
distribution to generate the noise-free measurement data:

x1act �0� � 2.9195 × 105; x2act�0� � 2.0265 × 104;

pact � 9.8859 × 10−4

The noise-free measurement data are then corrupted with a Gaussian
white noise of zero mean and variance R � 1002.
Figure 6 represents themean and variance estimates corresponding

to various filters for the states. Also, the Frobenius normof theRMSE
over time in approximating the first three central moments for states
are listed in Table 10. The PF-estimated posterior central moment
is considered to be the reference truth while computing the RMSE.
As expected, the accuracy of the GPC–Bayes method in capturing
the first three central moments improves as the number of matching
moment constraints is increased. The performance of the GPC–
Bayes filter in approximating the central moments degrades over
time, especially for parameterp, which can be attributed to the finite-
order GPC approximation. The EKF performs the worst among all
the filters as it even fails to capture the posterior mean. Similar to
the previous examples, the GPC-based minimum variance filter
performs significantly better than the EKF in capturing the first two
central moments. For detailed comparison between GPC–Bayes,
PF, and minimum variance method, please see Fig. 7.
Table 11 shows the processor time required for the implementation

of various algorithms in theMATLAB simulation environment. Once
again, the EKF is faster than all other approaches but results in
erroneous estimates. As expected, the computational cost for the
GPC–Bayes method increases as one increases the number of
matching moment constraints (Nm). However, both the GPC-based
minimum variance estimator and the GPC–Bayes method are faster
than the PF and also provide good estimates for the posterior
moments as illustrated in Table 10.

D. Hovering Helicopter Model

As the last example, we examine the efficiency of the proposed
approach on a hovering helicopter model given by0
BB@
_x1
_x2
_x3
_x4

1
CCA�

0
BB@
p1 p2 −g 0

1.26 −1.765 0 0

0 1 0 0

1 0 0 0

1
CCA
0
BB@
x1
x2
x3
x4

1
CCA−

0
BB@

0.086

−7.408
0

0

1
CCAKlqr

0
BB@
x1
x2
x3
x4

1
CCA

(86)

y�tk� �

2
664
x1�tk�
x2�tk�
x3�tk�
x4�tk�

3
775� νk (87)

where Klqr and the initial conditions are given as

Klqr � � 1.989 −0.256 −0.7589 1 �;
Xin � � 0.7929 −0.0466 −0.1871 0.5780 �T

The state vector x describes the horizontal velocity x1 in feet/second,
the pitch angle of the fuselage x2 in centiradians, its derivative x3 in
centiradians/s, and perturbation x4 in feet from a ground point
reference. Coefficientg corresponds to the acceleration due to gravity
given by 0.322. Parameters p1 and p2 are assumed to be uniformly
distributed over the intervals �−0.2; 0� and �0; 0.2�, respectively. For
simulation purposes, measurement data are assumed to be available
at a sampling frequency of 1 Hz. A random sample of unknown
parameters is taken from their prior distributions to generate the
noise-free measurement data. The noise-free measurement data are
corrupted with a Gaussian white noise of zero mean and standard
deviation being 0.15 times an identity matrix. To represent
uncertainty in the state and parameter, a seventh-order GPC
expansion is considered, and the total simulation time interval is
assumed to be 10 s.
To verify the efficiency of the PCQ framework in the simulation of

the forward propagation of Eq. (86), a relative error in the Frobenius
norm of the difference between different moments of all states with
respect to 100,000Monte Carlo runs at t � 2 s is evaluated. Table 12
shows that the relative error decreases as the number of quadrature
points increases. It is clear that only nine quadrature points result in
better approximation for three central moments, in comparison with
1000 MC runs.
Figures 8 and 9 show the posterior mean estimate corresponding to

various filters for the parameters and states, respectively. Further-
more, the Frobenius norm of the RMSE over time in approximating
the first three central moments for parameters and states are listed in
Tables 13 and 14. We assume the PF estimated posterior central
moment to be the reference truth to compute the RMSE.As expected,
the accuracy of the GPC–Bayes method in capturing the first three
central moments improves as the number of matching moment
constraints is increased. The performance of the GPC–Bayes filter in
approximating the third central moment degrades over time, which
can be attributed to the finite-order GPC approximation. The EKF

Table 10 Frobenius norm ofRMSE in the first three scaled posterior
central moments for states x1, x2 and parameter p

Nm Mean Second central
moment

Third central
moment

1 6.5620e − 001 1.3327e − 001 1.2258e − 004
2 2.0491e − 001 4.9733e − 003 6.5058e − 005
3 5.8985e − 001 1.8427e − 002 1.1854e − 004

Minimum
variance

1.2564e − 001 4.2480e − 003 7.3951e − 005

EKF 4.1950e� 001 8.8058e − 003 7.0741e − 005

Table 11 Computational time (seconds) required for different
estimation approaches for the falling body problem

Nm EKF PF Minimum variance GPC–Bayes

1 1.2240 8.6144e� 003 4.0782e� 001 1.1376e� 002
2 3.5331e� 002
3 2.4081e� 003

Table 12 Relative error in the Frobenius norm of the difference
between the moments of the states and 100,000 Monte Carlo runs at

t � 2 s

Number of
quadrature points

Mean, % Second central
moment, %

Third central
moment, %

12 2.9776 100 100
22 0.0121 2.5408 69.1695
32 0.0013 0.0268 0.8993
42 7.2606 × 10−6 1.5195 × 10−4 0.0082

1000 MC
simulations

19.3794 57.6130 86.2600
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performs the worst among all filters as it even fails to capture the
posterior mean. The GPC-based minimum variance filter performs
better than the EKF in capturing the first two central moments.
Finally, Table 15 shows the processor time required for the

implementation of different algorithms. Once again, the EKF is the
fastest algorithm, but it performs very poorly in estimating the states
and parameters. The GPC-based minimum variance estimator
performs slower than the EKF, but it results in much more accurate
estimates than the EKF. Furthermore, it is clear that the GPC–Bayes
method with low values of Nm is much faster than the PF. As
expected, the computational cost corresponding to the GPC–Bayes
method increases as one increases the number of matching moment
constraints (Nm). This increase in computational cost can be
attributed to solving the optimization problem at every measurement
update step which can be reduced with the help of more efficient
optimization routines.
As we noticed in the last example, after some time, the posterior

distribution/moments approximated by the GPC–Bayes method do
not match well with those approximated by the PF, especially for the
third central moment approximation. In order to analyze this issue in
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Fig. 7 Closer view for posterior expected value of parameter p for the
falling body model, using the PF, minimum variance, and GPC–Bayes
method (Nm � 1;2;3).
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Fig. 8 Posterior expected value of parameters for the hovering helicopter model.
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Fig. 9 Posterior expected value of the states (x1, x2, x3, and x4) for the hovering helicopter model.
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more detail, let us reconsider one of the states, e.g., x3. As Fig. 10
represents, given identical realizations of applied random variables,
both the GPC andMonte Carlo methods results in identical empirical
distribution for x3 at t � 1 s.
Notice that all three posterior centralmoments for x3 approximated

by the GPC–Bayesmethodmatch well with the PF approximation up
to the first measurement update, i.e., t � 1 s for Nm � 3. To make
this pointmore clear, the first three posterior centralmoments for x3 at
t � 1 s are listed in Table 16. Furthermore, Fig. 11 shows histograms
corresponding to the posterior distribution for x3 after the first
measurement update at t � 1 s for theGPC–Bayes (Nm � 3) and the
PF. From Fig. 11, it is clear that, even though the first three central
moments of x3 are the same at t � 1 s, the posterior distributions
approximated by using the PF and the GPC–Bayes method are
bit different due to a mismatch in the higher-order moments. This
discrepancy between the PF and theGPC–Bayesmethod growswhen
we propagate these two distributions to the next measurement update
interval as shown in the histogram plots of Fig. 12 and the moment
data in Table 17. Ideally, one can overcome this error by increasing
the number ofmomentmatching constraints and the order of theGPC
expansion, which leads to a higher computational load. In practice,
one needs to compromise between the computational load and
accuracy in approximating the higher-order moments.

Table 13 Frobenius norm of RMSE in the first three posterior
central moments for parameters p1 and p2

Nm Mean Second central
moment

Third central
moment

1 1.2788e − 003 9.7578e − 005 1.1902e − 006
2 1.5801e − 004 1.3676e − 005 1.2375e − 006
3 2.8708e − 004 2.5960e − 005 2.9830e − 006

Minimum
variance

3.8147e − 004 1.3044e − 005 1.2020e − 006

EKF 4.1991e − 002 9.2605e − 005 1.1919e − 006

Table 14 Frobenius norm of RMSE in the first three posterior
central moments for states x1, x2, x3, and x4

Nm Mean Second central
moment

Third central
moment

1 3.9557e − 003 1.1085e − 002 6.3803e − 003
2 4.7443e − 004 7.4849e − 005 2.0311e − 005
3 1.2053e − 003 8.1340e − 005 1.8096e − 005

Minimum
variance

4.8027e − 004 5.3403e − 005 9.2885e − 006

EKF 2.8215e − 003 7.8116e − 004 4.3769e − 005

Table 15 Processor time (seconds) required for different
estimation approaches applied to the hovering helicopter example

Nm EKF PF Minimum variance GPC–Bayes

1 1.1454 8.8284e� 003 2.5649e� 001 2.6441e� 002
2 6.0449e� 002
3 3.4292e� 004
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Fig. 10 Histograms of state x3 before the measurement update at t � 1 s.

Table 16 First three posterior central moments of state x3 at t � 1 s
by using the PF and GPC–Bayes method (Nm � 3)

Method Mean Second central
moment

Third central
moment

PF 2.4302 2.341e − 003 1.1603e − 005
GPC–Bayes
(Nm � 3)

2.4300 3.503e − 003 1.4304e − 005

2.1 2.2 2.3 2.4 2.5 2.6
0

200

400

600

800

1000

1200

1400

1600

1800

x
3

2.2 2.3 2.4 2.5 2.6 2.7
0

500

1000

1500

2000

x
3
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Fig. 11 Histograms of state x3 after the measurement update at t � 1 s.
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VI. Conclusions

In this research, two new recursive approaches have been
developed to provide accurate estimates for the posterior moments
of both parameters and system states while making use of the
generalized polynomial-chaos framework for the uncertainty
propagation. The main advantage of the proposed methods is that
they not only provide a point estimate for the state and parameters, but
they also permit the calculation of statistical confidence bounds
associated with these estimates.
The numerical results show that the proposed methodologies

perform better than the extended Kalman filter in capturing the
posterior moments for both the state and parameter. Furthermore, it
is demonstrated that one can converge to the particle filter estimates
for not only the posterior mean but also the higher-order moments
by increasing the number of matching moment constraints in the
generalized polynomial-chaos–Bayes method. The generalized
polynomial-chaos-based minimum variance method demonstrated
consistently valid estimates of the posterior mean and variance for
both the state and parameters. The numerical example results show
that the processor time associated with the polynomial-chaos-based
minimum variance estimator and the generalized polynomial-chaos–
Bayesmethod with one or twomatchingmoment constraints is much
lower than that associated with the particle filter, while consistently
providing accurate estimates for the posterior mean and variance.
Like any other nonlinear filtering approach, the computational
burden increases considerably as one increases the number of
matching moment constraints, which helps in providing better
spectral content of the posterior density function.
An open research issue is to associate the error in approximating

the moments with the order of the polynomial-chaos expansion. This
kind of error analysis can help one in selecting the order of the
polynomial-chaos expansion to match the desired order of moments.
However, this analysis is difficult due to the absence of any closure in
the moment space.
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