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Abstract. Traditional biometric recognition systems rely on a single
biometric signature for authentication. While the advantage of using mul-
tiple sources of information for establishing the identity has been widely
recognized, computational models for multimodal biometrics recognition
have only recently received attention. We propose a novel multimodal
multivariate sparse representation method for multimodal biometrics
recognition, which represents the test data by a sparse linear combina-
tion of training data, while constraining the observations from different
modalities of the test subject to share their sparse representations. Thus,
we simultaneously take into account correlations as well as coupling in-
formation between biometric modalities. Furthermore, the model is mod-
ified to make it robust to noise and occlusion. The resulting optimization
problem is solved using an efficient alternative direction method. Exper-
iments on a challenging public dataset show that our method compares
favorably with competing fusion-based methods.

1 Introduction

Unimodal biometric systems rely on the evidence of a single source of information
such as a single iris or fingerprint or face for authentication. Unfortunately these
systems often have to deal with some of the following inevitable problems [1]: (a)
Noisy data (b) Non-universality: the biometric system based on a single source
of evidence may not be able to capture meaningful data from some users. (c)
Intra-class variations: in the case of iris recognition a user who wears artificial
contact lenses with various patterns can cause these variations. (d) Spoof attack:
hand signature forgery is an example of this type of attack. It has been observed
that some of the limitations of unimodal biometric systems can be addressed by
deploying multimodal biometric systems that essentially integrate the evidence
presented by multiple sources of information such as iris, fingerprints and face.

Classification in multibiometric systems is done by fusing information from
different modalities. The information fusion can be done at different levels, which
can be broadly divided into feature level, score level and rank/decision level fu-
sion. Due to preservation of raw information, feature level fusion can be more
discriminative than score or decision level fusion [2]. But, there have been very
little effort in exploring feature level fusion in the biometric community. This is
because of the different output formats of different sensors, which result in fea-
tures with different dimensions. Often the features have large dimensions, and
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fusion becomes difficult at feature level. The prevelant method is feature concate-
nation, which has been used for different multibiometric settings [3,4]. However,
in many scenarios, each modality produces high-dimensional features. In such
cases, the method is both impractical and non-robust. It also cannot exploit the
constraint that features of different modalities should share the identities.

In recent years, theories of Sparse Representation (SR) and Compressed Sens-
ing (CS) have emerged as powerful tools for efficiently processing data. This has
led to a resurgence in interest in the principles of SR and CS for biometrics
recognition. See [5,6] and the references therein for a survey of biometrics recog-
nition algorithms using SR and CS. Motivated by the success of SR in unimodal
biometric recognition, we propose a joint sparsity-based algorithm for multi-
modal biometrics recognition. Our method is based on the well known regular-
ized regression method, multi-task multivariate Lasso [7, 8]. Figure. 1 presents
an overview of our method.

This paper makes the following contributions:

– We present a robust feature level fusion algorithm for multibiometric recog-
nition tasks. Through the proposed joint sparse framework, we can easily
handle different dimensions of different modalities by forcing the different
features to interact through their sparse coefficients. Further, the proposed
algorithm can efficiently handle large dimensional feature vectors.

– We make the classification robust to occlusion and noise by introducing an
error term into the optimization framework.

– The algorithm is easily generalizable to handle multiple test inputs from a
modality.

Fig. 1: Overview of our algorithm
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2 Joint sparsity-based multimodal biometrics recognition

Consider a multimodal C-class classification problem with D different biometric
traits. Suppose there are pi training samples in each biometric trait. For each
biometric trait i = 1, . . . , D, we denote

Xi = [Xi
1,X

i
2, . . . ,X

i
C ]

as an n× pi dictionary of training samples consisting of C sub-dictionaries Xi
k’s

corresponding to C different classes. Each sub-dictionary

Xi
j = [xi

j,1,x
i
j,2, . . . ,x

i
j,pj

] ∈ R
n×pj

represents a set of training data from the ith modality labeled with the jth class.
Note that n is the feature dimension of each sample and there are pj number of

training samples in class j. Hence, there are a total of p =
∑C

j=1
pj many samples

in the dictionary Xi
C . In multimodal biometrics recognition problem given a test

samples (matrix) Y, which consists of D different modalities {Y1,Y2, . . . ,YD}
where each sample Yi consists of di observations Y

i = [yi
1,y

i
2, . . . ,y

i
d] ∈ R

n×di ,
the objective is to identify the class to which a test sample Y belongs to. In
what follows, we present a multimodal multivariate sparse representation-based
algorithm for this problem [7–9].

2.1 Multimodal multivariate sparse representation

We want to exploit the joint sparsity of coefficients from different biometrics
modalities to make a joint decision. To simplify this model, let us consider a
bimodal classification problem where the test sample Y = [Y1,Y2] consists of
two different modalities such as iris and face. Suppose that Y1 belongs to the jth
class. Then, it can be reconstructed by a linear combination of the atoms in the
sub-dictionary X1

j . That is, Y
1 = X1Γ 1+N1, where Γ 1 is a sparse matrix with

only pj nonzero rows associated with the jth class and N1 is the noise matrix.
Similarly, since Y2 represents the same subject, it belongs to the same class and
can be represented by training samples in X2

j with different set of coefficients

Γ 2

j . Thus, we can write Y2 = X2Γ 2 + N2, where Γ 2 is a sparse matrix that

has the same sparsity pattern as Γ 1. If we let Γ = [Γ 1,Γ 2], then Γ is a sparse
matrix with only pj nonzeros rows.

In the more general case where we have D modalities, if we denote {Yi}Di=1

as a set of D observations each consisting of di samples from each modality and
let Γ = [Γ 1,Γ 2, . . . ,ΓD] ∈ R

p×d be the matrix formed by concatenating the

coefficient matrices with d =
∑D

i=1
di, then we can seek the row-sparse matrix

Γ by solving the following ℓ1/ℓq-regularized least square problem

Γ̂ = argmin
Γ

1

2

D
∑

i=1

‖Yi −XiΓ i‖2F + λ‖Γ ‖1,q (1)
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where λ is a positive parameter and q is set greater than 1 to make the optimiza-
tion problem convex. Here, ‖Γ ‖1,q is a norm defined as ‖Γ ‖1,q =

∑p
k=1

‖γk‖q
where γk’s are the row vectors of Γ and ‖Y‖F is the Frobenius norm of matrix

Y defined as ‖Y‖F =
√

∑

i,j Y
2
i,j . Once Γ̂ is obtained, the class label associated

with an observed vector is then declared as the one that produces the smallest
approximation error

ĵ = argmin
j

D
∑

i=1

‖Yi −Xiδij(Γ
i)‖2F , (2)

where δij is the matrix indicator function defined by keeping rows corresponding
to the jth class and setting all other rows equal to zero. Note that the optimiza-
tion problem (1) reduces to the conventional Lasso [10] when D = 1 and d = 1.
For D = 1 (1), it is equivalent to multivariate Lasso [7].

2.2 Robust multimodal multivariate sparse representation

In this section, we consider a more general problem where the data is contami-
nated by noise. In this case, the observation model can be modeled as

Yi = XiΓ i + Zi +Ni, i = 1, . . .D, (3)

where Ni is a small dense additive noise and Zi ∈ R
n×di is a matrix of back-

ground noise (occlusion) with arbitrarily large magnitude. One can assume that

each Zi is sparsely represented in some basis Bi ∈ R
n×mi

. That is, Zi = BiΛi

for some sparse matrices Λi ∈ R
mi×di . Hence, (3) can be rewritten as

Yi = XiΓ i +BiΛi +Ni, i = 1, . . .D, (4)

With this model, one can simultaneously recover the coefficients Γ i and Λi

by taking advantage of that fact that Λi are sparse

Γ̂ , Λ̂ = argmin
Γ ,Λ

1

2

D
∑

i=1

‖Yi −XiΓ i −BiΛi‖2F +

λ1‖Γ ‖1,q + λ2‖Λ‖1, (5)

where λ1 and λ2 are positive parameters and Λ = [Λ1,Λ2, . . . ,ΛD] is the sparse
coefficient matrix corresponding to occlusion. The ℓ1-norm of matrix Λ is defined
as ‖Λ‖1 =

∑

i,j |Λi,j|. Note that the idea of exploiting the sparsity of occlusion
term has been studied by Wright et al. [5].

Once Γ ,Λ are computed, the effect of occlusion can be removed by setting
Ỹi = Yi−BiΛi. One can then declare the class label associated to an observed
vector as

ĵ = argmin
j

D
∑

i=1

‖Yi −Xiδi
j(Γ

i)−BiΛi‖2F . (6)
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2.3 Optimization algorithm

In this section, we present an algorithm to solve (5) based on the classical alter-
nating direction method of multipliers (ADMM) [11], [12]. Note that the opti-
mization problem (1) can be solved by setting λ2 equal to zero. Let

C(Γ ,Λ) =
1

2

D
∑

i=1

‖Yi −XiΓ i −BiΛi‖2F .

In ADMM the idea is to decouple C(Γ ,Λ), ‖Γ ‖1,q and ‖Λ‖1 by introducing
auxiliary variables to reformulate the problem into a constrained optimization
problem

min
Γ ,Λ,U,V

C(Γ ,Λ) + λ1‖V‖1,q + λ2‖U‖1 s. t.

Γ = V,Λ = U. (7)

Since, (7) is an equally constrained problem, the Augmented Lagrangian method
(ALM) [11] can be used to solve the problem. This can be done by minimizing
the augmented lagrangian function fαΓ ,αΛ

(Γ ,Λ,V,U;AΛ,AΓ ) defined as

C(Γ ,Λ) + λ2‖U‖1 + 〈AΛ,Λ−U〉+
αΛ

2
‖Λ−U‖2F+

λ1‖V‖1,q + 〈AΓ ,Γ −V〉+
αΓ

2
‖Γ −V‖2F , (8)

where AΛ and AΓ are the multipliers of the two linear constraints, and αΛ, αΓ

are the positive penalty parameters. The ALM algorithm solves fαΓ ,αΛ
(Γ ,Λ,V,U;

AΛ,AΓ ) with respect to Γ ,Λ,U and V jointly, keeping AΓ and AΛ fixed and
then updating AΓ and AΛ keeping the remaining variables fixed. Due to the
separable structure of the objective function fαΓ ,αΛ

, one can further simplify
the problem by minimizing fαΓ ,αΛ

with respect to variables Γ ,Λ,U and V,
separately. Different steps of the algorithm are given in Algorithm 1. In what
follows, we describe each of the suboptimization problems in detail.

Algorithm 1: Alternating Direction Method of Multipliers (ADMM).

Initialize: Γ 0,U0,V0,AΛ,0,AΓ,0, αΓ , αΛ

While not converged do

1. Γ t+1 = argminΓ fαΓ ,αΛ(Γ ,Λt,Ut,Vt;AΓ,t,AΛ,t)
2. Λt+1 = argminΛ fαΓ ,αΛ(Γ t+1,Λ,Ut,Vt;AΓ,t,AΛ,t)
3. Ut+1 = argminU fαΓ ,αΛ(Γ t+1,Λt+1,U,Vt;AΓ,t,AΛ,t)
4. Vt+1 = argminV fαΓ ,αΛ(Γ t+1,Λt+1,Ut+1,V;AΓ,t,AΛ,t)
5. AΓ,t+1

.
= AΓ,t + αΛ(Γ t+1 −Ut+1)

6. AΛ,t+1
.
= AΛ,t + αΓ (Γ t+1 −Vt+1)
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Update step for Γ : The first suboptimization problem involves the mini-
mization of fαΓ ,αΛ

(Γ ,Λ,V,U;AΛ,AΓ ) with respect to Γ . It has the quadratic
structure, which is easy to solve by setting the first-order derivative equal to
zero, and has the following solution

Γ i
t+1 = (XiT Xi + αΓ I)

−1(XiT (Yi −Λi
t) + αΓV

i
t +Ai

V,t),

where I is p× p identity matrix and Λi
t,V

i
t and Ai

V,t are submatrices of Λt,Vt

and AV,t, respectively.

Update step for Λ : The second suboptimization problem is similar in nature,
whose solution is given below

Λi
t+1 = (1 + αΛ)

−1(Yi −XiΓ i
t+1 + αΛU

i
t −Ai

Λ,t),

where Ui
t and Ai

Λ,t are submatrices of Ut and AΛ,t, respectively.

Update step for U : The third suboptimization problem is with respect to U,
which is the standard ℓ1 minimization problem which can be recast as

min
U

1

2
‖Λt+1 + α−1

Λ AΛ,t −U‖2F +
λ2

αΛ

‖U‖1. (9)

Equation (9) is the well-known shrinkage problem whose solution is given by

Ut+1 = S

(

Λt+1 + α−1

Λ AΛ,t,
λ2

αΛ

)

,

where S(a, b) = sgn(a)(|a| − b) for |a| ≥ b and zero otherwise.

Update step for V : The final suboptimization problem is with respect to V

and can be formulated as

min
V

1

2
‖Γ t+1 + α−1

Γ AΓ,t −V‖2F +
λ1

αΓ

‖V‖1,q. (10)

Due to the separable structure of (10), it can be solved by minimizing with
respect to each row of V separately. Let γi,t+1, aΓ,i,t and vi,t+1 be rows of
matrices Γ t+1,AΓ,t and Vt+1, respectively. Then for each i = 1, . . . , p we solve
the following sub-problem

vi,t+1 = argmin
v

1

2
‖z− v‖22 + η‖v‖q, (11)

where z = γi,t+1 − aΓ,i,tα
−1

Γ and η = λ1

λ2

. One can derive the solution for (11)
for any q. In this paper, we only focus on the case when q = 2. The solution of
(11) has the following form

vi,t+1 =

(

1−
η

‖z‖2

)

+

z,
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where (v)+ is a vector with entries receiving values max(vi, 0).
Our algorithm for multimodal biometrics recognition is summarized in Algo-

rithm 2.

Algorithm 2: Sparse Multimodal Biometrics Recognition (SMBR).

Input: Training samples {Xi}
D
i=1, test sample {Yi}

D
i=1, Occlusion basis {B}Di=1

Procedure: Obtain Γ̂ and Λ̂ by solving

Γ̂ , Λ̂ = argmin
Γ ,Λ

1

2

D∑

i=1

‖Yi −X
i
Γ

i −B
i
Λ

i‖2F + λ1‖Γ ‖1,q + λ2‖Λ‖1,

Output: identity(Y) = argminj

∑D

i=1
‖Yi −Xi

δ
i
j(Γ̂

i
)−Bi

Λ̂
i‖2F .

3 Experiments

We evaluated our algorithm for different multi-biometric settings. We tested on
a publicly available dataset - the WVU Multimodal dataset [13]. The WVU
dataset is one of the few publicly available datasets which allows fusion at image
level, hence the proposed feature level fusion technique can be tested. In all the
experiments, Bi was set to be identity for convenience, i.e., we consider error to
be sparse in image domain.

3.1 WVU Multimodal Dataset

WVU multimodal dataset is a comprehensive collection of different biometric
modalities such as fingerprint, iris, palmprint, hand geometry and voice from
subjects of different age, gender and ethnicity. It is a challenging dataset and
many of these samples are of poor quality corrupted with blur, occlusion and
sensor noise as shown in Figure 2. Out of these, we chose iris and fingerprint
modalities for testing the algorithm, giving a total of 6 modalities (4 fingerprint
+ 2 iris). The evaluation was done on a common subset of 219 subjects having
samples in all the modalities.

Fig. 2: Examples of challenging images from the WVU Multimodal dataset, suf-
fering from various artifacts as sensor noise, blur, occlusion and poor acquisition.
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Preprocessing Robust pre-processing of images was done before feature extrac-
tion. Iris images were segmented following the recent method proposed in [14].
Following the segmentation, 25× 240 iris templates were formed by re-sampling
using the publicly available code of Masek et al. [15]. Fingerprint images were
enhanced using the filtering based methods described in [16], and then the core
point was detected using the enhanced images [17]. Features were then extracted
around the detected core point.

Feature Extraction Gabor features were extracted on the processed images
as they have been shown to give good performance on both fingerprints [17] and
iris [15]. For fingerprints, the processed images were convolved with Gabor filters
at 8 different orientations. Circular tesselations were extracted around the core
point for all filtered images. The mean values for each sector were concatenated
to form 3600× 1 feature vectors. For iris, the templates were convovled with a
log-Gabor filter, and vectorized to give 6000× 1 dimensional feature.

Experimental Set-up The dataset was randomly divided into 4 training sam-
ples per class (1 sample here is 1 data sample each from 6 modalities) and the
rest 519 for testing. The recognition result was averaged over 5 runs. The pro-
posed methods were compared with compared with state-of-the-art classification
methods such as sparse logistic regression (SLR) [18] and SVM [19]. Although
these methods give superior performance on individual modalities, they cannot
handle multimodal data. One possible way to handle multimodal data is to use
feature concatenation. But, this resulted in feature vectors of size 26400 × 1
when all 6 modalities are used, and is not useful. Hence, two techniques were ex-
plored for fusion. In the first technique, a score-based fusion was followed where
the probability outputs for test sample of each modality, {yi}

6
i=1 were added to-

gether to give the final score vector. Classification was based upon the final score
values. For the second technique, the subject chosen by the maximum number
of modalities was taken to be from the correct class.

Observations The recognition performances of SMBR-WE (without error) and
SMBR-E (with error) were compared with linear SVM and linear SLR classi-
fication methods. In the experiments, λ1 and λ2 were set to 0.01. Figures 3
and Table 1 demonstrate recognition performance of different methods on three
fusion settings - (1) two irises, (2) four fingerprints and (3) all combined.

SMBR-WE SMBR-E SLR-Sum SLR-Major SVM-Sum SVM-Major

4 Fingerprints 97.9 97.6 96.3 74.2 90.0 73.0
2 Irises 76.5 78.2 72.7 64.2 62.8 49.3
Overall 98.7 98.6 97.6 84.4 94.9 81.3

Table 1: Rank one recognition performance for WVU Multimodal dataset.
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Fig. 3: CMC (Cumulative Match Curve) for multimodal fusion using (a) four
fingerprints, (b) two irises and (c) all modalities.

Comparsion of Methods: Clearly, the proposed SMBR approach outperforms
existing techniques for all the fusion settings. Both SMBR-E and SMBR-WE
have similar performance, though the latter seems to give a slightly better per-
formance. This may be due to the penalty on the sparse error, though the error
may not be sparse in image domain. Further, sum-based fusion shows a superior
performance over voting-based methods, and SLR performs better than SVM
on all the modalities. However, by jointly classifiying all the modalities, SMBR
achieves the best performance.

4 Conclusion

We have proposed a novel multimodel multivariate joint sparsity-based algo-
rithm for multimodal biometrics recognition. The algorithm is robust as it ex-
plicitly accounts for both noise and occlusion. An efficient algorithm based on
alternative direction was proposed for solving the optimization problem. Vari-
ous experiments show that our method is robust and significantly improves the
overall recognition accuracy.
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