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The search for novel drug targets relies, essentially,
on computational methods that prioritize proteins
based on inferences from sequence and structure
similarities, commonly followed by time-consuming
manual examination of information contained in
databases and biomedical literature.

Large-scale experimental techniques such as micro-
arrays, two-hybrid systems, protein chips and complex
purification methods provide large data collections
and add a rich source of additional information.
However, the increased volume, complexity and 
variety of data also generate additional complications
for their interpretation.

All of these methods require detailed analysis by
experts in the field. Current knowledge of protein
function is based on extrapolation of the information
accumulated for a relatively small set of proteins for
which direct functions have been determined exper-
imentally (<10% of the proteins in well-annotated
databases such as SwissProt).

Automated analysis of protein function has addi-
tional limitations because protein function is less
conserved than protein sequence, and annotations
and descriptions in databases do not necessarily 

reflect all of the available information about protein
function [1].

A new generation of applications aims to assist 
researchers in obtaining and managing additional
information by incorporating text-mining and nat-
ural-language processing (NLP) tools for the extrac-
tion and compilation of functional characteristics
of individual genes and proteins.

Furthermore, there is increasing interest in linking
unstructured data extracted from free text to infor-
mation stored in genome and annotation databases
such as SwissProt [2] and the Saccharomyces Genome
Database (SGD) [3]. In this article, we will address
some of the methods employed in the processing of
complex textual information and discuss their appli-
cation to the field of bioinformatics and drug discov-
ery (for additional reviews relating to text mining
and NLP in the biomedical and molecular biology
domain, see Refs [4–6]). 

Information resources for text mining
Text-mining applications integrate a broad spectrum
of heterogeneous data resources, providing tools 
for the analysis, extraction and visualization of 
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information, with the aim of helping biologists to transform
available data into usable information and knowledge.

In molecular biology, the information resources available
are, essentially, a vast collection of databases that covers a
broad range of source types such as keywords, protein 
sequences, abstracts and structural information [2]. In 
addition, some databases focus on specific aspects of 
protein function, as in the case of protein-interaction
databases such as INTACT [7], BIND [8], DIP [9] and MINT
[10], whereas others focus on model organisms such as
yeast (SGD) [3], Drosophila [11] or mouse [12]. The primary
source of free textual data information in molecular biol-
ogy and biomedicine is Medline, which is a collection 
of more than 12 000 000 abstracts maintained by the
National Library of Medicine (NLM) [13] that is com-
monly accessed by biologists using the PubMed suite.

The main entry points in biological databases are genes
and proteins; consequently, the databases contain lists of
the names and symbols of genes and proteins, and many
of their synonyms. These lists are commonly used as dic-
tionaries for text-mining tools, to index documents and
tag genes within free text. The keywords and annotations
manually linked to this information in the databases are
also used as the benchmark for text-mining and informa-
tion-extraction tools. In addition, ontologies and thesauri

have been developed to classify concepts
in protein function, providing a formal
framework for the representation of knowl-
edge. A range of text-mining and knowl-
edge-discovery tools has been developed to
make use of these classifications.

Gene ontology (GO) [14] is the most
widely used classification in molecular bi-
ology. The principal use of the concepts
encompassed by GO has been in the man-
ual annotation of proteins from model 
organisms [15]. Several experiments have
used GO as a benchmark for text-mining
and information-extraction approaches. The
drug ontology developed by the Manchester
Medical Informatics Group [16] is another
ontology applied in biomedicine.

For the analysis of medical text using
NLP approaches, medical ontologies such
as the Unified Medical Language System
(UMLS) metathesaurus [17], with more
than 2 000 000 names for ~900 000 con-
cepts (as of June 2004), is of special impor-
tance. UMLS was developed as a standard for
medical pathological terms [18]. Currently,
it integrates ~8 800 000 concepts from 100
biomedical terminologies. Among the re-
sources used for indexing PubMed articles
are the Medical Subject Headings (MeSH)
terms, which are composed of controlled vo-
cabulary, and the National Cancer Institute

ontology of cancer concepts [19].
The development of text-mining technology, largely

based on automated learning methods, depends crucially
on the availability of repositories of properly annotated
text. Currently, the field has a few data corpora available
that are widely used. The GENIA corpus [20] is a collec-
tion of semantically annotated documents principally 
related to transcription factors and human blood cells.
This corpus has been used in approaches such as the
shared task (bioentity recognition) of the JNLPBA work-
shop [21]. A different dataset was obtained through the
BioCreative evaluation [22]. This dataset contains a large
collection of text passages related to protein function (GO
terms), including their manual classification by the GO
curators [23].

Text mining and NLP
The field of NLP is concerned with the analysis of free tex-
tual information and has been applied recently in the
context of molecular biology. Text-mining approaches 
involve analyzing and extracting information from large
collections of free textual data by using automatic or semi-
automatic systems. Currently, text-mining applications
are being employed in the identification of biological 
entities such as protein or gene names, automated protein

REVIEWS

FIGURE 1

Historical perspective of the use of NLP in biomedicine and molecular biology. The hits are divided into
different categories: dark-blue boxes show the different community-wide evaluations, whereas orange boxes
refer to applications of text-mining strategies in biomedicine and molecular biology. Methods used for text
mining and information extraction, such as artificial intelligence (AI), ML and statistical NLP techniques, are
shown in green boxes, whereas relevant data resources are depicted in red boxes. Abbreviation: CRF,
conditional random fields.
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annotation, analysis of microarrays and extraction of 
protein–protein interactions (Figure 1).

In general, text-mining applications take advantage of
a range of domain-independent methods such as part-of-
speech (POS) taggers, which label each word with its corre-
sponding part of speech (e.g. noun, verb or adjective), or
stemmers, which are algorithms that return the morpholog-
ical root of a word form. Also, domain-specific tools and re-
sources such as protein taggers and ontologies are employed.

Tagging biological entities
The identification of entity types (e.g. company names
and places) in textual data is known as ‘named entity
recognition’ or ‘semantic tagging’, and has been an area
of interest in NLP for many years. In biomedical literature,
the identification of biological entities such as gene and
protein names, chemical compounds and diseases is crucial
for facilitating the retrieval of relevant documents and the
identification of relationships between those biological
entities (e.g. between proteins and diseases). Biomedical
language and vocabulary is highly complex and rapidly
evolving, making the identification of entities a cumber-
some task, especially in the case of protein and gene names.
When labeling text relative to the occurrence of genes or
proteins, several obstacles are encountered [24]. First, a
variety of alternative expressions that refer to the same
protein object are often encountered; proteins might be
mentioned in documents in terms of gene symbols, pro-
tein names, synonymous gene names and typographical
variants. Moreover, some gene symbols are ambiguous
and might correspond to disease names or experimental
methods. The only way to tag these genes is by taking into
account the context in which they are referred to. For 
example, ‘EGFR’ might correspond to ‘epidermal growth
factor receptor’ or ‘estimated glomerular filtration rate’,
depending on the context. A range of different approaches
for handling this problem has been developed, and vari-
ous community-wide assessments have been carried out
to estimate the accuracy of such tools.

Among the strategies adopted to tag proteins and genes
are methods such as ad hoc rule-based approaches [25],
approaches using dictionaries of genes with subsequent
exact or inexact pattern matching [26], various machine-
learning (ML) techniques and hybrid approaches that take
advantage of different techniques [27]. ML techniques
refer to statistical and probabilistic models that estimate
dependencies between data to make predictions. In this
context, support vector machines (SVMs) [28] and hidden
Markov models (HMMs) [29] have been applied. The use
of naive Bayesian learning, decision trees and inductive
rule learning has also been explored [30].

Several approaches to the problem of chemical-name
identification have been implemented [31], with one of
the main difficulties being the conjunctive nature of the
names (i.e. several concepts are contained within a single
unbroken string).

Information retrieval of biomedical articles
Information retrieval (IR) is concerned with the recovery
of textual information from document collections (e.g. all
the documents relevant to a certain protein or disease).
In the biomedical domain, IR technologies are in wide-
spread use. Most experimental biologists take advantage
of the PubMed information-retrieval system available at
the NCBI, which runs on the PubMed database [32]. This
system incorporates simple Boolean query searches based
on indexed look-up techniques, and a document-similarity
search engine based on word-frequency similarities (word-
vector neighboring relationships) [33].

Information extraction
Information extraction attempts to identify biologically
meaningful semantic structures within free text using
strategies based on POS information, ontologies or the
identification of patterns. An example of the use of in-
formation-extraction applications in molecular biology
is the identification of protein interactions.

In the biomedical domain, extracted entities often cor-
respond to proteins, genes, diseases or chemical compounds,
for which automated identification methods are often 
incorporated. For the extraction of entities (in addition
to relationships between entities of interest), parsing tools
and POS taggers that can detect verbs of interest are also
often useful [34].

Knowledge discovery
The volume of scientific literature makes it increasingly
difficult to focus on relevant information. Techniques
such as pattern matching and syntactic analysis can high-
light relevant text passages from large abstract collections.
However, generating new insights to direct future research
is far more complex. The goal of knowledge discovery is
to find hidden information in the literature by exploring
the internal structure of the knowledge network created
by the textual information. Knowledge discovery could
be of major help in the discovery of indirect relationships,
which might imply new scientific discoveries. Such new
discoveries might provide hints for experts working on
specific biological processes.

Applications of text mining
Functional annotation
Annotation of the function of genes and proteins is the
principal goal of genome analysis. Classical computational
approaches relied on protein-sequence similarity and data-
base annotations. A typical example is the EUCLID system
[35] for the classification of proteins into functional groups
based on SwissProt database keywords. Other systems
[36–39] rely on rules for transferring database information
according to the relationships between proteins in families.

Information-extraction techniques have been developed
with the aim of obtaining information that is not imme-
diately available from biological databases. For example,
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Andrade et al. [40] developed one of the first systems in
this area by detecting terms in the scientific literature that
are statistically associated with literature linked to protein
families.

Although keyword-based approaches can cover varying
degrees of functional description, they have extremely lim-
ited expressivity. Thus, other approaches use ontologies such
as GO as a better way of structuring knowledge. For exam-
ple, Raychaudhuri et al. [41] explored the use of different
document-classification methods for this task, and Xie et al.
[42] combined sequence-similarity scores and textual 
information to support functional annotation using GO.

Along similar lines, text mining has also been used to
assist the identification of remote homolog proteins by
combining similarity scores and document similarity [43].

Cellular location
Protein activity is associated with specific cellular envi-
ronments. Several experimental techniques can determine
the subcellular localization of a protein, and several recent
studies have addressed the extraction of this information
from the literature. For instance, Nair and Rost [44] ex-
ploited lexical information present in annotation database
records to predict the location of proteins, and Stapley et al.
[45] used a system based on SVMs to classify proteins 
according to their subcellular localization, extracted from
PubMed abstracts.

DNA-expression arrays
Data generated from expression-array experiments are 
increasing in both volume and complexity. The corre-
sponding analyses focus on the statistical detection of
groups of genes with similar expression patterns. Literature-
analysis tools provide an alternative insight into the in-
terpretation of array experiments by enabling analysis of
the statistical properties of the words present in the 
abstracts that are associated with genes displaying simi-
lar expression patterns (gene clusters). Oliveros et al. [46]
and Blaschke et al. [47] developed the GEISHA method,
which uses this type of statistical approach. Shatkay et al.
[48] also used statistical methods to extract characteristic
content-bearing terms for a set of gene-associated docu-
ments. Thus, statistical analysis of gene-indexed articles
might be useful for the extraction of relevant words and
terms for gene clusters.

A new perspective on the problem has been adopted
by Raychaudhuri et al. [49], who quantified the difference
between terms associated with different gene clusters by
scoring them according to the functional coherence of
the corresponding gene group.

Other approaches use manually annotated keywords or
concepts (derived, for instance, from GO) to the expression-
array genes to analyze which concepts are relevant to the
different gene groups. The FatiGO system [50] extracts 
relevant GO terms for a group of genes, with respect to
the reference set of genes. In the case of the PubGene [51]

system, the analysis of microarray data is based on a pre-
viously constructed literature network for human genes
that are linked to terms from the MeSH database and GO.

Common problems associated with all of these statistical
approaches include the unequal distribution of genes in
clusters and the number of publications associated with
the genes. The non-homogeneous distribution of functional
references in the corresponding articles is also an issue.

Protein interactions
High-throughput experiments can generate large-scale
protein-interaction networks such as the recently pub-
lished map of interactions for the Drosophila genome [52],
thus constituting an amazing new source of information
about protein function and potential new drug targets.
Information-extraction methods are well positioned to
participate in the analysis of this information by connect-
ing the new experiments to the information previously 
accumulated in the literature, complementing bioinfor-
matics approaches for the prediction of protein interactions
[53]. 

Syntactic predicational structures and semantic propo-
sitions referring to binding relationships were used by
Rindflesch et al. [54] to extract macromolecular-binding
terminology. Blaschke et al. [55] developed an approach
that encapsulated representative relationships between pro-
teins in common descriptions, called ‘frames’. Examples
of such frames are ‘protein X binds to protein Y’ and
‘…complex between protein A and protein B’. The effec-
tiveness of each of the frames was evaluated against a large
data collection [56] and embedded in a visualization,
analysis and manipulation system for the representation
of the network (the SUISEKI system [57]).

Ng et al. [58] developed a similar, rule-based model with
which to detect protein-activation or -inhibition relation-
ships. Ono et al. [59] developed a system to handle long
phrases in the literature related to Escherichia coli. The
method is based on word patterns and manually established
POS rules. Recent approaches apply dynamic programming
to mine automatically for verbs in sentences in which pro-
tein names have been identified previously [60].

Donaldson et al. [61] constructed PreBIND and Textomy
– an information-extraction system that uses SVMs to
evaluate the importance of protein–protein interactions.

More recently, Hoffmann et al. [62] implemented a new
public server to facilitate access to protein-relationship
extractions from the literature (iHOP). Here, the presence
of protein names in text sentences is used to hyperlink
the corresponding articles, and the densely connected
network created by the ubiquitous presence of gene
names in scientific abstracts enables fast navigation be-
tween different areas of the literature. The incorporation
of this concept, together with database and graphical 
facilities, makes iHOP the first open-access large-scale 
system for literature navigation based on the concept of
protein interactions.
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Molecular medicine
Several text-mining, NLP and knowledge-discovery appli-
cations have been developed for the biomedical domain.
They include tools that discover new relationships between
relevant entities such as chemical substances and diseases,
NLP systems that extract and structure information con-
tained in clinical records, and systems that identify and
visualize interactions between molecular substances of 
interest. 

Automated textual analysis to discover new, so-called
‘undiscovered’, public knowledge and to test proposed
hypotheses was first carried out by Swanson and colleagues.
They established an indirect connection between dietary
fish oil and the circulatory disorder known as Raynaud’s
disease [63]. A collection of articles on both subjects was
available at the time, but no suggestions about using dietary
fish oil to treat this disease had been proposed before. The
starting point of such approaches is a given concept ‘A’
(e.g. disease, compound or gene). If A is associated with a
second concept ‘B’, and B is related to a third entity ‘C’,
then A might be related to C even though there is no direct
association between them. The proposed relationship
should then be further confirmed or rejected using human
judgment, laboratory methods or clinical investigations,
depending on the nature of the concepts (Figure 2). This
principle was also adopted by others to extract indirect 
associations between estrogen and Alzheimer’s disease [64].
Such systems have been used not only to propose new ther-
apeutic strategies but also to extract potentially adverse drug
effects or even animal models for certain human disorders.

NLP systems have also been constructed to aid the pro-
cessing of clinical information contained in medical

records. The evaluation of these systems is especially del-
icate owing to data-privacy issues. MedLEE [65] is a system
that processes medical records to extract and structure clin-
ical information, and has been used for years by the New
York Presbyterian Hospital Clinical Information System.
The GENIES approach [66], contained in the integrated
GeneWays system [67], carries out automatic analysis, and
extraction of molecular-interaction data and pathways
from full-text journals.

Of special interest for drug discovery are relationships
between genes and drugs in the context of certain patholo-
gies. This has been addressed by Rindflesch et al. [68], who
developed EDGAR, a system that extracts relationships
between drugs and genes involved in cancer using syn-
tactic analysis and UMLS terms. 

Several commercial biomedical-text analysis platforms
are currently available. Some of them have been devel-
oped directly by pharmaceutical companies, such as the
Novartis Knowledge Space Portal (http://www.novartis.
com/). Also, bioinformatics companies have constructed
biomedical-text-mining applications such as the Alma
Knowledge Discovery system (http://www.almabioinfo.
com/) (Figure 2), which incorporates powerful database
systems, version control, security systems and integrated
representation mechanisms. There are also other com-
mercial text-mining and knowledge-discovery applications,
including Biovista (http://www.biovista.com/), BioWisdom
(http://www.biowisdom.com/), SAS® Text Miner (http://
www.sas.com/technologies/analytics/datamining/textminer/)
and TextSense (http://www.inforsense.com/products/

textsense.html). Biovista, for example, exploits the use of
different views or representations of biological knowledge,
taking into account context information, and can extract
interactions between genes and proteins from free text.
BioWisdom uses an extensive ontology of pharmaceuti-
cally relevant concepts within its knowledge-discovery
platform. 

Evaluation of text-mining strategies
As in other areas of text mining and bioinformatics, the
field is still in an early phase and, therefore, these and
other developments will benefit greatly from the availabil-
ity of open standards and community-accepted evaluations
(Figure 1). For instance, the text-retrieval conference (TREC)
genomics track [69] was concerned with the evaluation of
ad hoc retrieval and information-extraction approaches
applied to biological articles. The aim of the knowledge-
discovery and data-mining (KDD) challenge cup [70] was
to study how text-mining tools can assist biological data-
bases by evaluating how they can support the process of
database curation (in this case, the FlyBase database). The
identification of biological entities (e.g. proteins and
genes) using the GENIA corpus was evaluated at the
JNLPBA shared task [21].

The BioCreative evaluation [22] comprised a more 
biologically inspired evaluation in which biologically

REVIEWS

FIGURE 2

Sample output of Alma Knowledge Discovery system. ‘Breast cancer’ is used as an
initial query concept. All the disease-related compounds and their respective
relationships with genes are displayed.This visualization enables the discovery of
new insights regarding associations between breast-cancer-related genes.They are
either associated through a common compound or a new relationship to breast
cancer is shown directly. Some of them might have relevant implications for the
disease and can be considered for a more detailed study.
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http://www.almabioinfo.com/
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http://www.inforsense.com/products/textsense.html
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meaningful tasks were prioritized. Both the problem of
extraction and normalization of protein and gene names
in scientific texts [71] and the extraction of protein anno-
tations from full-text scientific articles were addressed.
Both subtasks resulted in the BioCreative corpus, which
serves as a gold standard with which to train and test 
biomedical-text-mining tools. The combination of sentence-
classification and pattern-matching techniques, and the use
of the information content associated with the words that
form query concepts seem promising for the achievement
of high precision and recall, respectively, in the second
BioCreative task. The combination of different ML tech-
niques obtained good results in the first BioCreative subtask
and the JNLPBA shared task.

The future of biomedical-text mining
The increasing interest in the unification of efforts in 

biomedicine and molecular biology will require access to
well-established text sources and data repositories. Other
areas in which concerted effort will be required are the
development of evaluation systems, the organization of
common standards and the organization of the community
in the face of common challenges that have been a key 
factor in the rapid development of text mining in molec-
ular biology and other areas of information extraction.
Similar efforts will be required in the domain of molecular
medicine to focus community efforts to take advantage of
the possibilities provided by the databases and text sources
available in molecular biology. In the future, biomedical-
text mining might provide new approaches for drug 
discovery that exploit efficiently indirect relationships 
derived from bibliographic analysis of entities contained
in biological databases (e.g. genes, proteins and chemical
compounds). 
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