
IMAGE PHYLOGENY THROUGH DISSIMILARITY METRICS FUSION

A. Melloni], P. Bestagini], S. Milani], M. Tagliasacchi], A. Rocha[, S. Tubaro]

]Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy

[Institute of Computing, University of Campinas (UNICAMP)
Av. Albert Einstein, 1251, Cidade Universitária, 13083-852, Campinas, SP - Brazil

ABSTRACT

Nowadays, multimedia objects can be easily modified, shared,
and distributed, thus determining the widespread diffusion of
multiple near-duplicate versions, i.e., objects obtained apply-
ing a set of processing operations to original content. This
is the case of images downloaded from sharing platforms,
modified (e.g., by performing color correction, splicing, etc.)
and re-distributed. The evolution of a group of near-duplicate
images (i.e., their phylogeny) is a powerful clue to deter-
mine both image authenticity and its origin. For this reason,
the forensics community has proposed a set of possible so-
lutions to perform phylogenetic analyses based on image
dissimilarity computation. Here, we compare different image
dissimilarity metrics, and propose a set of original strategies
for image phylogeny tree reconstruction. The validation of
the proposed methods is performed on a dataset of image
phylogeny trees. Depending on the used evaluation metrics,
some approaches are preferable to others according to the
results. Hence, an analyst can choose the appropriate method
according to its needs.

Index Terms— Image phylogeny, near-duplicates, image
dissimilarity, phylogeny tree.

1. INTRODUCTION

With the widespread diffusion of cheap image capturing de-
vices (e.g., compact cameras, smartphones, etc.), image shar-
ing platforms such as Picasa and Flickr, are gaining the trend.
Anyway, a significant part of the uploaded content is created
by reusing already existing images. As an example, it is cus-
tomary to download a picture, modify it (e.g., by performing
color correction, object insertion, resize, etc.), and re-upload
it to a website. Such duplicate versions are typically referred
to as near-duplicates, since they are not perfect copies, in-
stead they are generated applying a set of processing steps to
an original object.

The project REWIND acknowledges the financial support of the Future
and Emerging Technologies (FET) programme within the Seventh Frame-
work Programme for Research of the European Commission, under FET-
Open grant number:268478.

Such near-duplicate images may be created either mali-
ciously or not, and their diffusion may have serious social
consequences. In other words, a user may choose to modify
a popular photo, such as the portrait of a famous person, or
related to an important event, to simply create a funny pic-
ture to share with friends, and gain some clicks on his blog.
However, newspapers may end up publishing such forged im-
ages (e.g., related to critical events), with the far more serious
consequence of conveying biased information.

In order to prevent similar situations, the multimedia
forensics community has proposed over the years a set of
tools to blindly uncover the past history of images [1], videos
[2] and audio [3]. These tools typically exploit specific traces
left by forgery operations, to detect the use of a particular
kind of manipulation (e.g., image resizing [4], multiple im-
age compression [5], object insertion in videos [6], audio
recapture [7], etc.).

However, the aforementioned methods do not take into
account the possibility of comparing digital objects within a
set of available near-duplicates, which is a common scenario
when dealing with user-generated content. In order to take ad-
vantage of this possibility, the forensics community has then
started to study techniques to understand and reconstruct the
evolution of groups of near-duplicate objects. These include
a few algorithms to deal with images [8, 9, 10], audio [11],
and video [12, 13]. Thanks to these methods, it is possible to
infer the causal relationship between near-duplicate objects in
a set, to understand which one has been used to generate the
others, eventually identifying the original object at the root of
the phylogeny.

Focusing on still images, the proposed approaches typi-
cally tackle the problem in two steps. The first, consists in
evaluating the dissimilarity between every pair of images in
a set. The second, in using dissimilarity measurements ob-
tained at the previous step to reconstruct the phylogeny tree,
i.e., to establish causal relationships between pairs of simi-
lar images, in order to infer which image has possibly been
used to generate the others. State-of-the-art methods differ in
the image dissimilarity metrics, and tree reconstruction algo-
rithms [10, 14, 15].

Fig. 1: Example of near-duplicate images found on the Web.

In this work, we perform an analysis of different Im-
age Phylogeny Tree (IPT) reconstruction algorithms. More
specifically, we compare a well known state-of-the-art im-
age dissimilarity metric [14], and a novel modified version
based on an image de-noising step, inspired by the work in
[10]. Then, we propose tree reconstruction algorithms that
exploit the aforementioned dissimilarity computation, and
compare the achieved results with the algorithm proposed in
[14]. We finally show that it is possible to merge dissimilar-
ity measurements in order to reconstruct IPTs with different
proposed techniques.

The validation of the analyzed and proposed methods is
performed on a dataset of 1,000 near-duplicate trees, con-
taining up to 20 nodes each. The robustness of the methods
is evaluated considering the scenario of trees (17,000 in this
case) with missing nodes, i.e., phylogeny reconstruction when
we do not have the full set of images to rely upon. Results
show that, depending on the used evaluation metrics, some
approaches can be preferable to others. Therefore, an analyst
can choose the appropriate method according to its needs.

The rest of the paper is organized as follows. In Section 2
we formulate the IPT reconstruction problem. Section 3 out-
lines the IPT reconstruction algorithm steps, detailing every
different proposed technique as well as the state-of-the-art
method used as reference. Section 4 reports the conducted
experiments and the achieved results. Finally, in Section 5,
we draw some conclusion remarks.

2. PROBLEM FORMULATION

In this paper, we adopt a common near-duplicate definition al-
ready used in other state-of-the-art works [10, 14, 16]. That is,
two images are near-duplicates, if they are generated applying
a set of tolerated transformations to an originating image. An
example of near-duplicate images according to this definition
is shown in Fig. 1.

To provide a better insight into this definition, let us con-
sider an originating image I1. From this image, we can obtain
several descendant images applying one or more transforma-
tions Tj(I1), j ∈ {1, ..., J}, where J is the number of all pos-
sible admissible transformations. Iterating this process, we
can generate an Image Phylogeny Tree (IPT), whereby every
node represents a picture, and every branch a transformation,
or a combination of transformations (see Fig. 2). All the im-
ages in this tree are considered near-duplicates.

I1

I2 I3

I4 I5

T1 T2

T3

T2

I6

T1 + T3

Fig. 2: Example of IPT. Each node represents an image, each branch
a transformation, or a combination of transformations. The same
transformation can be applied several times.

This tree structure, intrinsically embeds all the informa-
tion concerning the causal relationship between all image
pairs. The originating image, used to generate all the others,
is the root of the tree. Leaves represent descendant images.
The depth of a node in the tree expresses the number of trans-
formations applied, starting from the root, to that node. Nodes
linked with a branch are images in a parent-child relationship.

Notice that the phylogeny tree is, by definition, a direc-
tional and acyclic graph. Directionality explains the causal re-
lationship between pairs of parent-child images. The acyclic
property constrains every image to only have one parent se-
quence.

The algorithms we present aim at reconstructing the IPT
from a set of near-duplicate images. In a real-world sce-
nario, the originating image could be the photo of an impor-
tant event officially released by a news agency. The descen-
dants are all the modified versions distributed online. The
reconstruction of the phylogeny tree allows to detect which
image was actually the original one, i.e., the root of the tree.
Moreover, it enables to shed very interesting insights on the
way content is reused. As an example, it is possible to reveal
how the original image was edited by different users, and how
it was spread over time.

3. RECONSTRUCTION ALGORITHM

The algorithm we propose for IPT reconstruction from a set
of near-duplicate images Im, m ∈ {1, ...,M}, is based on the
same pipeline followed by [14]. The rationale behind the al-
gorithm is that images are pairwise compared, to find which
one was used to generate any other image. After this compar-
ison step, the phylogeny tree can be estimated.

Fig. 3 depicts the pipeline of the method. The main steps
can be summarized as follows: i) image registration is per-
formed between every image pairs; ii) a dissimilarity value
is computed between every image pairs, taking into account
results obtained at the previous step; iii) all the dissimilarity
values are analyzed to estimate the phylogeny tree.

Image registration (i.e., step one) follows exactly the
method proposed in [14]. On the other hand, we propose an
alternative image dissimilarity measure (i.e., step two), and

. . .

. . .

hIm, Ini
Im

In

m = 1, n = 2

m = 1, n = 3

m = M, n = M � 1

Îm!nR IPT

{I1, ..., IM}
Dm,n

Dm,n

PD

DM,M�1

D1,3

D1,2

Fig. 3: Block diagram of the tree reconstruction algorithm. Starting
from a set of M near-duplicate images, the block R performs regis-
tration, D dissimilarity computation, and P estimates the IPT from
dissimilarity measures Dm,n.

different approaches to reconstruct the tree (i.e., step three).
In the following, we show a detailed description of every step.

3.1. Image registration

The first step of the algorithm consists in performing the reg-
istration between every pair of images. This means, given a
reference image In, and an image to register Im, searching
for the transformation that possibly map Im to In. To this
purpose, as described in [14], we take into account the effect
of three possible processing operations: i) color correction;
ii) affine transformations (possibly with cropping); iii) JPEG
compression.

As first step, we perform color equalization of Im in the
RGB space. This is done by forcing the average and the stan-
dard deviation of pixel values in the red, blue, and green com-
ponent of Im, to be the same as In. More formally, let us de-
fine the red, blue, and green components of an image I as Ic,
c ∈ {R,G,B}. The equalized version of Im becomes Īm→n,
which is composed by the three components

Īcm→n = (Icm − µc
m)

σc
n

σc
m

+ µc
n, c ∈ {R,G,B}, (1)

where µc is the average of the c-th component, σc the standard
deviation, and the whole operation is applied pixel-wise.

Then, we estimate the affine transformation that projects
Īm→n to In. The transformation is estimated by matching
key-points computed using the Speeded-Up Robust Features
(SURF) algorithm [17]. After warping Īm→n to In, images
are cropped to the same dimension (if needed). Finally, we
apply JPEG compression to the warped, and cropped version
of Īm→n, using the quantization step adopted in In (available
from its bitstream).

After performing all these operations, we obtain the image
Îm→n, which is an estimate of In obtained from Im. If In
was actually obtained from Im, then Îm→n ' In. Otherwise,
Îm→n and In differ.

3.2. Image dissimilarity

In order to detect whether an image In could have possibly
been generated from Im, we need a dissimilarity measure
Dm,n to compare each registered image Îm→n with the ref-
erence image In. If Îm→n and In are slightly dissimilar, then
Im could be the parent of In.

In [14] the dissimilarity measure is computed as

D′m,n = ‖In − Îm→n‖, (2)

which is the l2-norm of the pixel-wise difference between the
two images.

Starting from this definition, we propose a different dis-
similarity measure. More specifically, according to [10], an
image can be described as the composition of two separable
and independent parts: i) a component part, conveying infor-
mation about the content of the depicted scene; ii) a random-
ness part, related to the peculiarities of the process that pro-
duced the image. These two parts can be obtained as the result
of a de-noising operation. The component part corresponds
to the de-noised image, whereas the randomness part corre-
sponds to the noise, obtained subtracting the de-noised image
from the input image. In our implementation, we adopted the
wavelet-based de-noising approach proposed in [18].

The intuition is that, the component part contains only in-
formation about the content, thus being very similar for many
near-duplicate images. On the other hand, randomness con-
tains traces left by the processing operations applied to the im-
age. Therefore, it can be used to characterize near-duplicates.

To exploit this intuition, the dissimilarity measure we pro-
pose is

D′′m,n = ‖I ′′n − Î ′′m→n‖, (3)

where I ′′ indicates the randomness part of an image. Notice
that this is different from what is proposed in [10], where dis-
similarity measure is based on correlation rather than l2-norm.

The obtained D′ or D′′ are known as dissimilarity matri-
ces. Notice that dissimilarity is computed only for m 6= n,
since self-dissimilarity (i.e., dissimilarity of an image with it-
self), is set by default to zero.

Notice that a dissimilarity matrix (eitherD′ orD′′) can be
analyzed column-wise to infer information about parent-child
relationships between image pairs. As an example, the n-th
column of D collects dissimilarities between every image Im
and the n-th one, i.e., how plausible is that In is child of each
Im. This is exploited by the tree reconstruction algorithm.

3.3. Tree reconstruction

A tree reconstruction algorithm takes as input a dissimilarity
matrix (or two in our proposed methods) and returns an esti-
mate of the IPT. For the sake of notation, we refer to a generic
dissimilarity matrix D from now on. This means that either
D′ or D′′ can be used.

Oriented Kruskal (OK-D). In [14], the authors proposed
the Oriented Kruskal algorithm, whose input is only a dis-
similarity matrix D. In a nutshell, the algorithm initializes a
completely disconnected graph, where each node represents
an image. At every step, D is inspected and the minimum
value Dm,n is detected (not considering the trivial case of
self-dissimilaritym = n). Image In is then directionally con-
nected as child of Im, if this does not create loops. Iteratively,
the IPT is built, skipping all the links that create cycles in the
graph.

Ordered Oriented Kruskal (OOK-DA-DB). OK as pro-
posed in [14] uses only dissimilarity as criterion for linking
nodes. This means that the first images to be linked are those
whose dissimilarity is the lowest. However, it is possible that
an image In has low dissimilarity with more than one im-
age. This means that there is a high probability that In is son
of more than one image, which is clearly not possible. Our
algorithm aims at penalizing this behavior, including as first
nodes in the IPT, those images whose parent-child relation-
ship is unambiguous, i.e., images slightly dissimilar only to
one parent.

To this purpose, we introduce a ranking value that defines
in which order the dissimilarity matrix is scanned. This al-
lows us to also merge information from two different dissimi-
larity matrices: i) DA is used to compute the ranking; ii) DB

is scanned and used to estimate the IPT. Notice that DA and
DB can be either D′ or D′′ in every possible combination.

The ranking value is defined for every column ofDA (i.e.,
for each child) as

rn =
min1(DA

m,n)

min2(DA
m,n)

, (4)

where min1 and min2 are the first and second minimum val-
ues computed on the n-th column of DA, respectively (dis-
carding the case m = n). Low values of rn indicate images
In that are clearly little dissimilar to only one parent (i.e.,
min2 >> min1).

The algorithm then scans DB , and selects the column n
with the lowest rn value. Image In is connected as child of
the image with the lowest dissimilarity with it, if this does not
create loops. Iteratively the whole IPT is built.

A detailed description is provided in Algorithm 1. In this
algorithm, IPT is defined as a vector of M elements, whose
n-th value is the index of the parent associated to In. The
function descendant(n) returns the indexes of all the im-
ages that descend from In, while argsort(.) returns the
indexes of sorted elements in ascending order. Notice, that the
last step of the algorithm is needed to avoid loops, i.e., once
Im is established as the parent of In, none of the progenies of
In can be the parent of Im.

Recursively-Ordered Oriented Kruskal (ROOK-DA-DB).
We also propose another slightly different algorithm, which
comes from a modification of the presented OOK, and that

Algorithm 1: Ordered Oriented Kruskal
Data: Disimilarity matrices DA and DB

Result: IPT

IPT(1:M) = 0 ; // init tree structure
compute r1:M according to (4);
r idx = argsort(r1:M) ; // idx of sorted vector
for i = 1 : M do

n = r idx(i) ; // n-th column has the highest rn

D idx = argsort(DB
1:M,n) ; // idx of sorted column

m = D idx(2) ; // 1st less dissimilar is n itself
IPT(n) = m ; // Im is parent of In
loop idx = descendant(n) ; // idx of In progenies
Dm,loop idx =∞ ; // avoid loops at next iteration

end

makes use of two dissimilarity matrices DA and DB as well.
In this version, we re-compute the vector rn at every iteration.
This allows to update rn to take into account links that would
cause loops.

3.4. Fusion

Since the proposed algorithms work iteratively, tracing one
link at a time, it is possible to switch from one algorithm to
another one, after a few iterations.

As an example, it is possible to reconstruct a few nodes
of the IPT using ROOK-D′-D′′ as already described. After
a few iterations, it is possible to stop using the ROOK-D′-
D′′ algorithm, and continue the IPT reconstruction procedure
switching to OK-D′, simply removing fromD′ the contribute
given by the nodes already reconstructed. We refer to this case
as ROOK-D′-D′′ + OK-D′.

Fusion is useful since some algorithms prove to be more
accurate in reconstructing the first nodes of the IPT, while
others perform better during the last iterations. This fusion
method allows to exploit the best characteristics of two dif-
ferent algorithms. This effect will be clarified during the ex-
perimental validation in Section 4.

4. EXPERIMENTS AND RESULTS

In order to validate the analyzed and proposed methods, we
considered the pool of near-duplicate images generated from
the Uncompressed Color Image Database (UCID) [19]: this
database contains a huge variety of uncompressed images
with 512×384 pixel resolution. We randomly selected 10
images, and for each image we created trees of 10 and 20
nodes, using 10 different tree topologies. Each tree with M
nodes contains an original image and M − 1 near-duplicates.
Each near-duplicate is generated using a set of different trans-
formations: JPEG compression with different quality factors,
global scaling, different scaling for horizontal and vertical
image axes, rotation, cropping, contrast adjustment, bright-
ness adjustment, and nonlinear gamma correction. Table 1
shows the parameters ranges used for these transformations.

Table 1: Parameters of transformations implemented using Im-
ageMagick1.

Transformation Range

JPEG compression [50%,100%]
Global scaling [90%,110%]
Scaling by axis [90%,110%]
Rotation [-5◦,5◦]
Cropping [0%,5%]
Contrast adjustment [-10%,10%]
Brightness adjustment [-10%,10%]
Gamma correction [0.9,1.1]

The experimental dataset has a total of 1000 test trees (i.e.,
500 trees of 10 nodes, and 500 trees of 20 nodes).

The metrics used to compare the different strategies relies
on Dias et al. [14] quantitative metrics: i) edges - correct ori-
entation of children-parents relationships; ii) leaves - correct
identification of the furthest sons in the tree; iii) ancestry -
correct reconstruction of all children-relatives relationships,
from root to the most distant sons. In [14], another metric
is also defined, i.e., root, which measures the correct iden-
tification of the tree root. However, we do not report here
root results, since we were able to identify the correct root for
almost all the cases, thus making non informative the com-
parison of this metric for the proposed algorithms. Instead,
we introduced another metric, tree, which evaluates the per-
centage of nodes correctly placed into the IPT vector. More
formally, these metrics can be defined as

Edges: E(IPT1, IPT2) = |E1∩E2|
N−1

Leaves: L(IPT1, IPT2) = |L1∩L2|
|L1∪L2|

Ancestry: A(IPT1, IPT2) = |A1∩A2|
|A1∪A2|

Tree: T (IPT1, IPT2) = |IPT1 = IPT2|
M

To better understand these definitions, let us consider the tree
depicted in Fig. 2. In this case, computing the aforementioned
quantities according to the definition given in [14] leads to

IPT1 = {1, 1, 1, 3, 3, 4},
E1 = {(2→ 1), (3→ 1), (4→ 3), (5→ 3),

(6→ 4)},
L1 = {2, 5, 6},
A1 = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (3, 4),

(3, 5), (3, 6), (4, 6)}.

(5)

First, we considered the case of IPT reconstruction, when
the analyst analyzes all the images that compose the tree un-
der analysis. Fusion methods clearly achieve different results
according to the number of iteration steps performed before
switching from the first, to the second fused algorithm. An ex-
ample is given in Fig. 4, where the fusion was adopted switch-
ing from OOK-D′-D′′ to OK-D′. Depending on the metric,

1http://www.imagemagick.org/

2 4 6 8
84

85

86

87

88

89

90
Metrics

Iterations

S
c
o

re
 [

%
]

Edges
Leaves
Ancestry

2 6 10 14 18
84

85

86

87

88

89

90
Metrics

Iterations

S
c
o

re
 [

%
]

Edges
Leaves
Ancestry

Fig. 4: Metrics scores [%] for fusion technique OOK-D′′-D′ + OK-
D′. Left: 10 nodes trees. Right: 20 nodes trees.

the analyst must apply a different number of iterations before
switching, to achieve the best result.

Table 2 reports results for the first three metrics on the
best performing algorithms and the state-of-the-art one [14].
Concerning fusion methods, we report only the best achiev-
able results, i.e., those obtained after the optimal number of
iterations. Notice that we report fusion results only consider-
ing the case in which the second algorithm is OK. This is due
to the fact that this configuration led us to better results, since
OOK and ROOK reconstruct well the nodes during the first
iterations, while OK performs better during last iterations.
From Table 2 it is possible to notice that the best results are
always achieved using a fusion method.

Turning our attention to the metric tree, we also consid-
ered the case of possibly missing nodes, i.e., the analyst ana-
lyzes only a subset of the images that compose the tree. As an
example, with reference to Fig. 2, the analyst might not have
image I4. In this case we expect that the best achievable result
is obtained by linking I6 to I3. In this scenario, we kept fixed
the root node, and studied the behavior of tree reconstruction
algorithms with K = 1, 2, 4, 6 missing nodes, on trees of 20
nodes. We considered all the possible tree combinations, with
only one node missing. In case of K > 1, we fixed five sets
of possible deleted nodes combinations for each value of K.
Therefore, the created test set included 17000 trees of up to
20 nodes each.

Table 3 reports results for metric tree in both scenarios
of missing and non-missing nodes. Notice that the algorithm
that performs better on this metric is ROOK-D′′. The state-
of-the-art OK-D′ outperforms the others only in case of 6
missing nodes out of 20.

As a result, depending on the considered metric, the ana-
lyst should prefer an algorithm to another. Anyway, notice
that the state-of-the-art algorithm proposed in [14] outper-
forms the proposed solutions only in one case.

5. CONCLUSIONS

In this paper we proposed a set of solutions to reconstruct an
image phylogeny tree, starting from a set of near-duplicate
images. The methods are validated using different metrics on

Table 2: Metric scores [%] for the best algorithms computed on 10
and 20 nodes trees. Baseline method is highlighted.

Metric Edges Leaves Ancestry
Number of nodes 10 20 10 20 10 20

OK-D′ (baseline) [14] 85.01 86.50 85.07 84.63 87.25 86.91
OOK-D′ 82.30 84.66 84.25 85.44 83.16 82.68
OOK-D′′ 86.77 87.74 85.28 86.53 85.86 85.48
ROOK-D′ 82.95 84.32 83.88 83.22 83.84 82.74
ROOK-D′′ 87.34 86.76 85.97 84.08 86.71 84.29
OOK-D′-D′ + OK-D′ 85.59 86.88 86.11 85.82 87.95 86.83
OOK-D′-D′′ + OK-D′′ 85.96 87.55 86.37 87.78 84.30 85.93
OOK-D′′-D′ + OK-D′ 87.05 86.97 87.32 85.61 88.04 87.13
OOK-D′′-D′′ + OK-D′′ 87.19 86.90 85.79 85.51 85.70 85.39
ROOK-D′-D′ + OK-D′ 85.63 87.10 86.01 86.05 87.97 86.92
ROOK-D′-D′′ + OK-D′′ 86.70 87.90 86.64 87.75 85.04 86.46
ROOK-D′′-D′ + OK-D′ 87.19 86.96 87.13 85.38 87.94 87.13
ROOK-D′′-D′′ + OK-D′′ 87.48 87.12 85.71 85.38 86.27 84.47

Table 3: Tree scores [%] for all the algorithms, with and without
missing nodes. Baseline method is highlighted.

Number of nodes 10 20
Missing nodes 0 0 1 2 4 6

OK-D′ (baseline) [14] 35.60 10.02 8.03 9.82 5.69 5.73
OOK-D′ 26.60 9.22 7.27 8.45 5.61 3.85
OOK-D′′ 38.60 28.06 18.55 17.52 7.86 2.73
ROOK-D′ 30.60 7.61 6.55 8.42 5.29 3.53
ROOK-D′′ 43.60 30.86 19.90 16.91 7.98 3.97
OOK-D′-D′ + OK-D′ 35.40 10.62 1.88 4.09 0.88 0.32
OOK-D′-D′′ + OK-D′′ 36.80 23.45 2.50 4.69 1.00 0.52
OOK-D′′-D′ + OK-D′ 40.60 24.45 6.15 7.09 3.13 0.96
OOK-D′′-D′′ + OK-D′′ 42.00 27.86 6.07 7.69 3.05 0.96
ROOK-D′-D′ + OK-D′ 35.40 10.62 1.84 4.21 0.88 0.32
ROOK-D′-D′′ + OK-D′′ 38.80 23.45 2.99 5.09 1.24 0.68
ROOK-D′′-D′ + OK-D′ 41.00 23.05 4.83 6.65 3.05 1.04
ROOK-D′′-D′′ + OK-D′′ 43.40 30.86 5.08 6.69 2.57 1.32

a huge dataset of near-duplicate images. Our analysis high-
lights the fact that an analyst, depending on the evaluation
metric adopted, must carefully choose the appropriate strat-
egy. In particular, methods using the proposed ranking vec-
tor (i.e., OOK and ROOK) tend to reconstruct very well the
tree during the first iterations, justifying their use as first al-
gorithms in fusion techniques. Future works will be devoted
to the study of the proposed algorithms when more than two
solutions are used for fusion, with the goal of automatically
choosing the methods to be combined, depending on the an-
alyzed scenario. Moreover, other strategies to compute the
ranking vector used in OOK and ROOK will be investigated.

6. REFERENCES

[1] A. Piva, “An overview on image forensics,” ISRN Signal Pro-
cessing, vol. 2013, pp. 22, 2013.

[2] S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva,
M. Tagliasacchi, and S. Tubaro, “An overview on video foren-
sics,” APSIPA Transactions on Signal and Information Pro-
cessing, vol. 1, pp. e2, 2012.

[3] R.C. Maher, “Overview of audio forensics,” in Intelligent
Multimedia Analysis for Security Applications. Springer Berlin
Heidelberg, 2010.

[4] M. Kirchner, “Fast and reliable resampling detection by spec-
tral analysis of fixed linear predictor residue,” in ACM Work-
shop on Multimedia and Security (MM&Sec), 2008.

[5] S. Milani, M. Tagliasacchi, and S. Tubaro, “Discriminating
multiple jpeg compression using first digit features,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2012.

[6] P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro, “Lo-
cal tampering detection in video sequences,” in IEEE Inter-
national Workshop on Multimedia Signal Processing (MMSP),
2013.

[7] P. Bestagini, M. Zanoni, L. Albonico, A. Paganini, A. Sarti,
and S. Tubaro, “Feature-based classification for audio bootlegs
detection,” in IEEE International Workshop on Information
Forensics and Security (WIFS), 2013.

[8] L. Kennedy and S.-F. Chang, “Internet image archaeology:
automatically tracing the manipulation history of photographs
on the web,” in ACM International Conference on Multimedia
(ACM-MM), 2008.

[9] Z. Dias, A. Rocha, and S. Goldenstein, “First steps toward
image phylogeny,” in IEEE International Workshop on Infor-
mation Forensics and Security (WIFS), 2010.

[10] A. De Rosa, F. Uccheddu, A. Piva, M. Barni, and A. Costanzo,
“Exploring image dependencies: A new challenge in image
forensics,” in SPIE Conference on Media Forensics and Secu-
rity (MFS), 2010.

[11] L. Nucci, M. Tagliasacchi, and S. Tubaro, “A phylogenetic
analysis of near-duplicate audio tracks,” in IEEE International
Workshop on Multimedia Signal Processing (MMSP), 2013.

[12] Z. Dias, A. Rocha, and S. Goldenstein, “Video phylogeny:
Recovering near-duplicate video relationships,” in IEEE In-
ternational Workshop on Information Forensics and Security
(WIFS), 2011.

[13] S. Lameri, P. Bestagini, A. Melloni, S. Milani, A. Rocha,
M. Tagliasacchi, and S. Tubaro, “Who is my parent? re-
constructing video sequences from partially matching shots,”
in 2014 IEEE International Conference on Image Processing
(ICIP), 2014.

[14] Z. Dias, A. Rocha, and S. Goldenstein, “Image phylogeny by
minimal spanning trees,” IEEE Transactions on Information
Forensics and Security (TIFS), vol. 7, pp. 774–788, 2012.

[15] Z. Dias, S. Goldenstein, and A. Rocha, “Large-scale image
phylogeny: Tracing image ancestral relationships,” IEEE Mul-
tiMedia (MM), vol. 20, pp. 58–70, 2013.

[16] A. Joly, O. Buisson, and C. Frelicot, “Content-based copy re-
trieval using distortion-based probabilistic similarity search,”
IEEE Transactions on Multimedia (TMM), vol. 9, pp. 293–306,
2007.

[17] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up
robust features (SURF),” Computer Vision and Image Under-
standing (CVIU), vol. 110, pp. 346–359, 2008.

[18] M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin,
“Low-complexity image denoising based on statistical model-
ing of wavelet coefficients,” IEEE Signal Processing Letters
(SPL), vol. 6, pp. 300–303, 1999.

[19] G. Schaefer and M. Stich, “UCID - an uncompressed colour
image database,” in SPIE Storage and Retrieval Methods and
Applications for Multimedia (SPIE-SRMAM), 2004.

