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Abstract. In this paper we present a method for finding general dependencies between
individual agents in a multi-agent system. We use mutual information as the general
measure for dependence and demonstrate how it can be used to estimate pair-wise cou-
pling in a 2 dimensional swarm. We then show that our technique of measuring local
coupling can find phase transitions in the global behaviour of the system.

1 Introduction
When analysing complex multi-agent systems it is often hard to determine which compo-
nents are coupled via the underlying system dynamics. We present a method of determining
general nonlinear correlations between different objects that can be described by a vector
of continuous variables. We use this local measure to analyse the global behaviour in a 2D
swarm model.

Wright et al. showed in [1] that a dynamical systems approach can characterise the global
behaviour of a swarm. The technique they developed required knowledge of the global state of
the swarm. The technique we propose approaches the problem from an information theoretic
perspective and looks for dependencies between the observable states of pairs of agents. The
proposed metric captures the spatial and temporal coupling between the motion of the agents
through state space. We then show that the mean and variance of these pair-wise dependencies
can characterise different behaviours is swarming groups of agents.

The dependencies are measured by estimating their mutual information[2, 3]. Mutual in-
formation is introduced in Sect. 2, along with the method used to estimate it. In Sect. 3 we
give an example of how mutual information can be used to calculate spatial and temporal
coupling in a multi-agent system. In this section we also present a sampling technique to
overcome issues such as non-stationarity and finite system run time, that is compatible with
the mutual information estimator. We then give our conclusions and future work in Sect. 4.

2 Information Theoretic Measures of Dependance
Information theory provides many measures of dependence. Lets consider two continuous
valued random vectors, x ∈ Rdx and y ∈ Rdy , with marginal probability density functions,
px(x) and py(y). The joint probability density function pxy(x, y), defined on the joint space
Rdxdy , is equal to the product of the marginal probability densities iff the two variables are
independent. Any differences between pxy(x, y) and px(x)py(y) are caused by some mutual
relationship between the variables. It is here that information theory provides many different
methods at comparing two probability density functions. The most common measure is the



Kullback-Leibler divergence[3] which corresponds to the Shannon mutual information when
the joint probability density is compared to the product of the marginal densities. It is defined
as

I(x;y) = DKL(pxy(x, y)‖px(x)py(y))

=
∫∫

pxy(x, y) log
pxy(x, y)

px(x)py(y)
dxdy. (1)

The base of the logarithm determines the units of the measure, for the work that follows we
will assume base 2 and hence our mutual information is measured in bits.

2.1 Estimation of Mutual Information
One of the main difficulties with using mutual information (MI), especially in the continuous
domain, has been trying to estimate it from sampled data. There are three main approaches
used to estimate MI. The most popular are the histogram based methods[4, 5], these partition
the continuous state state space into a number of bins. The probability densities are then
estimated by the frequency counts of the bins. These methods often introduce large biases
due to the discretisation. Another popular method relies on kernels to estimate the densities.
This method is more theoretically sound for a finite number of samples, but relies on many
tunable parameters and the final integration (in (1)) can be very difficult to compute. The final
method is parametric based, which can only be used if a parametric model of the data already
exists.

The method we will use here is most related to the histogram approach in the sense that
the probability densities are approximated by sets of piece-wise constants, but it does not
rely on specifying a partition on the state space. The MI is estimated by first estimating the
marginal and joint differential entropies[2] of the variables

Î(x;y) = Ĥ(y) + Ĥ(y)− Ĥ(x,y) (2)

where ·̂ refers to an estimate. Differential entropy differs from standard entropy since it is
defined for continuous probability density functions, i.e.

H(z) = −
∫

pz(z) log pz(z)dz. (3)

This corresponds to the marginal entropy if z = x or y and the joint entropy if z = [x,y]T .

2.2 Differential Entropy Estimation
The method used here was developed by Kozachenko and Leonenko in [6]. This method has
been reviewed in [7] and extended in [8]. For brevity, the full derivation of the estimator will
be omitted, for a detailed proof the reader should see the above references.

It can be seen from (3) that differential entropy is proportional to the average of log pz(z),
regardless of whether it is a marginal entropy or the joint entropy. Thus for a finite set of in-
dependent and identically distributed (i.i.d.) samples, {zi}n

i=1, from pz(z) we could estimate
the entropy if we had a estimator for log pz(zi) by

Ĥ(z) = − 1
n

n∑

i=1

̂log pz(zi). (4)



Based on this approach Kozachenko et al. proposed the estimator for the differential entropy
based on the Euclidian distance, λi, between zi and its nearest neighbour (i.e. λi = min ‖zi−
zj‖, ∀j 6= i ). For a given set of samples in Rd the estimator is given by

Ĥ(z) =
d

n

n∑

i=1

E{log λi}+ log
[Sd(n− 1)

d

]
+

γ

ln(2)
. (5)

Here, E{log λi} is the expectation of the logarithm of the distance to zi’s nearest neighbour,
Sd is the surface area of a unit sphere in d-dimensional space, and γ is the Euler-Mascheroni
constant (= − ∫∞

0
e−ν ln νdν ≈ 0.5772156). In general the surface area can be written as

Sd = dπd/2

Γ (r/2+1) where Γ (·) is the gamma function.
The above estimator assumes that the density function is continuous and smooth, such

that the density can be approximated by a constant in the vicinity of each sample point. To
get a workable estimator a second approximation must be introduced, the expectation will be
replaced with the actual observed value, i.e. E{log λi} ≈ log λi. This estimator can now be
used to obtain the marginal and the joint entropies required in (2) to estimate the MI.

3 Detecting Correlations in a Swarm
This section develops a method of using MI for detecting correlations in complex multi-
agent systems. The system we will be analysing is a swarm model. We also show that the
phase transition found by Wright et al. in [1] can also be found by our approach.

3.1 System Description
The system we will consider consists of N agents in R2. The state of agent i is specified by
its position, xi = [xi, yi]T , and velocity, ẋi = [ẋi, ẏi]T . Each agent has a sensor that can
detect the relative position, rij , and velocity, ṙij , of all the other agents that are within its
local neighbourhood (i.e. maximum sensor range). The agents also have an actuator that can
apply an acceleration to the agent. The actuator is controlled with a onboard controller that
takes as inputs the relative position and velocity of all the other observed agents and outputs
a required acceleration. The controller implements two behaviours, an attraction/repusion
law (ARL) based purely on the relative positions of the neighbouring agents and a damping
law (DL) that is based on the relative velocity between the agent and its neighbours with a
magnitude determined by the agents separation.

From these control laws the motion of each agent can be specified as

ẍi =
∑

j 6=i

aARL(rij) +
∑

j 6=i

aDL(rij , ṙij). (6)

The acceleration component from the ARL is directed toward the neighbouring agent j with a
magnitude given in Fig. 1. The DL component is defined as aDL(rij , ṙij) = cDL(‖rij‖)× ṙij

where cDL(‖rij‖) is a damping coefficient that varies as a function of the separation between
agent i and j (see Fig. 1).

It can be seen from Fig. 1 that the controller is implicitly dependant on the neutral position
of the ARL (i.e. rARL) and on the boundary of the DL (i.e. rDL). If we fix the shape of these
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Fig. 1. LEFT: Magnitude of the ARL acceleration as a function of agent separation. RIGHT: Damping
coefficient as a function of agent separation. For this current setting ρ = rDL/rADL ≈ 0.6

curves relative to rARL and rDL, and scale all the distances by rARL, the global behaviour of
the system can be specified by the single dimensionless parameter ρ = rDL/rADL. Figure 2
shows typical system behaviours for different values of ρ. The system is initialised with a set
of random positions and velocities, with all values evenly distributed on the interval [−1, 1].
The velocities are then modified such that the mean velocity, vm, is always constant. This
standardises the systems such that quantitative comparisons can be made that depend only on
the parameter ρ.

3.2 Defining Correlations in a Multi-Agent System
Although a deterministic relationship exists between the full set of agents, we will examine
how much coupling exists if we only consider a subset of the agents. The method we will
pursue here relies only on drawing samples from the system and can be used for any system
that has components with measurable outputs. But, this sampling limits us to only a few
dimensions due to the computational complexity of the estimator.

Thus to estimate the dependencies in the system, we will calculate the MI between com-
binations of two agents and only consider their positions (i.e. ignore their velocities). That is,
we want to know how much information is obtained about the position of one agent, xi(t), at
some unknown time t by knowing the position of another, xj(t), at the same unknown time
t. i.e. we want to compute

I(xi(t);xj(t)) for unknown t ∈ [0,∞). (7)

This captures the spatial and temporal correlations between pairs of agents. By computing
this for all combinations of agents we can build up a matrix of pair-wise correlations between
the agents. This matrix would be similar to the covariance matrix but can be defined for
objects that can consist of many variables and represents the total nonlinear dependance and
not just linear dependance.

The difficulty in evaluating or estimating (7) comes from the fact that we cannot easily
produce i.i.d. samples from the joint and marginal densities from a single instance of the
system. This is due to the fact any measurement of the state of the system is highly dependent
on the previous measurement. To overcome this, a monte carlo approach could be used to
produce samples from many simulations of the system, but this will not be pursued since we
cannot preserve the individual agents’ identity between simulations and will prevent us from
building up a pair wise correlation matrix for the group. Thus a different approach will be
pursued that will involve transforming the system into a stationary one where we can draw
i.i.d. samples from it and use them to estimate the MI of the original system.
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Fig. 2. Example trajectories for different values of ρ. For left frames ρ = 0.28, middle frames ρ = 0.48,
and for right frames ρ = 0.68. The top row shows the trajectories of all 10 agents while the bottom
shows the trajectory of a single agent relative to the centre of the group.

By creating a new coordinate frame centred on the mean position of the agents we can
create a quasi-stationary system, in the sense that samples drawn from one instance of the
system (i.e. at different times along the transformed trajectory) are representative of all in-
stances of the system for any time. Trajectories from this are shown in the bottom row of
Fig. 2. The transformation that produces these trajectories for agent k is

yk(t) = xk(t)− tvm (8)

where vm is the mean velocity of the system (which is fixed for all instances of all systems).
In this coordinate frame, the probability density for the location yk of agent k is py(yk) and
is independent of time. From this density we can obtain the probability density function of the
agent in the original coordinate frame at a specified time t, as px(xk|t) = py(yk = xk−tvm).
The density of xk(t) for an unspecified time t ∈ [0,∞] can be recovered by noting px(xk) =∫

px(xk|t)p(t)dt, where p(t) is a uniform distribution on the interval [0,∞). This gives

px(xk) = lim
T→∞

1
T

∫ T

0

py(xk − tvm)dt. (9)

This represents the probability density function for the location, xk, of agent k for any time
t ∈ [0,∞) based on the probability density function of the agent’s position relative to the
centre of the group. We could try to obtain an expression for the MI based on this marginal
probability density function (and a corresponding joint probability density function) but this
would be impractical due to the limit extending to infinity. We can achieve the same aim
(i.e. determining residual dependencies) by dropping the limit and taking it over a finite time
horizon. From this theoretical analysis we will develop a method to produce i.i.d. samples
from px(xk) by using the trajectories yk(t).
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Fig. 3. Average and variance of the pair-wise mutual information for different systems.

Due to the quasi-stationarity of the trajectories, samples drawn randomly in time, from
a trajectory, yk(t), can be assumed to be i.i.d. from the density py(yk). These samples also
correspond to i.i.d. samples from px(xk|t = 0). To obtain samples from px(xk), where t is
restricted to [0, T ], each sample is projected forward in time by a different random amount,
t∗ ∈ [0, T ]. This projection simply corresponds to translating each sample by t∗vm.

Hence a sample, x∗k, from px(xk) can be obtained by a sample, y∗k, from py(yk) and a
time t∗ which is a random element of [0, T ], via x∗k = y∗k + t∗vm. The process is identical for
obtaining samples, (x∗i ,x

∗
j ), for the joint density, pxx(xi,xj), from samples of pyy(yi,yj).

Thus using these samples, and the method outlined in Sect. 2, we can estimate the mutual
information, I(xi;xj), between all combinations of agents.

3.3 Results
Results were obtained for values of ρ from 0.2 to 0.8 for systems with 10 agents, with each
estimate being produced with 8000 sample points. The results will be presented in two ways,
the first will be the mean and variance of the pair-wise correlations. The mean characterises
how structured the overall system is, while the variance provides information about sub-
structure within the system. These results are shown in Fig. 3.

The second series of results that where obtained are the pair-wise information matrix,
which contains the mutual information between all the combinations of agents. Some of
these are shown in Fig. 4. The mutual information between an agent and itself has not been
calculated and has been set to zero in the figure. It is noted that for small ρ and large ρ the size
of the correlations is quite uniform across the system, where as in between (e.g. for ρ = 0.64)
the system exhibits large differences between the correlations of the individual agents. This
can also be seen in Fig. 3 where the variance of the pair-wise mutual information is also
plotted.

This variations can be explained by looking at the dynamics of the system, for low ρ
there is very little coupling between the agents and hence the correlation should be quite
low. As the coupling increases (through increasing ρ and hence the damping), the system
starts to undergo a phase transition, with local coupling between neighbouring agents. As ρ
increases further the oscillations become completely damped out across the whole system
and the system becomes globally coupled.

4 Conclusion and Future Work
In this paper we presented a method for finding general correlations between the motion
of individual agents in a multi-agent system by estimating the mutual information between
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Fig. 4. Typical pair-wise mutual information matrices for different systems. White represents high cor-
relation and black represents low correlation, with all values normalised by the maximum value for that
system. The mutual information between an agent and itself has not been calculated.

them. We showed how this technique can be used to characterise the global behaviour of a
simple multi-agent system. The important contribution of the work is to show that the global
behaviour of the system can be characterised by examining only local pair-wise coupling. The
global phase transition found by Wright et al. in [1] was also recognised by our technique.

For future work we hope to examine how this technique handles large systems with many
components. For such systems it would be infeasible to calculate all pair-wise correlations,
and we propose instead to only calculate the correlations for a subset of all the combinations
across the system. We intend to show that this may be sufficient for a characterisation of
global multi-agent behaviours.
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