
Differentially Private Data Cubes:
Optimizing Noise Sources and Consistency

Bolin Ding1 Marianne Winslett2,1 Jiawei Han1 Zhenhui Li1
1Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

2Advanced Digital Sciences Center, Singapore
{bding3, winslett, hanj, zli28}@uiuc.edu

ABSTRACT
Data cubes play an essential role in data analysis and decision sup-
port. In a data cube, data from a fact table is aggregated on sub-
sets of the table’s dimensions, forming a collection of smaller ta-
bles called cuboids. When the fact table includes sensitive data
such as salary or diagnosis, publishing even a subset of its cuboids
may compromise individuals’ privacy. In this paper, we address
this problem using differential privacy (DP), which provides prov-
able privacy guarantees for individuals by adding noise to query
answers. We choose an initial subset of cuboids to compute di-
rectly from the fact table, injecting DP noise as usual; and then
compute the remaining cuboids from the initial set. Given a fixed
privacy guarantee, we show that it is NP-hard to choose the initial
set of cuboids so that the maximal noise over all published cuboids
is minimized, or so that the number of cuboids with noise below
a given threshold (precise cuboids) is maximized. We provide an
efficient procedure with running time polynomial in the number of
cuboids to select the initial set of cuboids, such that the maximal
noise in all published cuboids will be within a factor (ln |L| + 1)2

of the optimal, where |L| is the number of cuboids to be published,
or the number of precise cuboids will be within a factor (1− 1/e)
of the optimal. We also show how to enforce consistency in the
published cuboids while simultaneously improving their utility (re-
ducing error). In an empirical evaluation on real and synthetic data,
we report the amounts of error of different publishing algorithms,
and show that our approaches outperform baselines significantly.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Data mining; H.2.7 [DATABASE MANAGEMENT]: Database
Administration—Security, integrity, and protection

General Terms
Algorithms, Security, Theory

Keywords
OLAP, data cube, differential privacy, private data analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

1. INTRODUCTION
Data cubes play an essential role in multidimensional data anal-

ysis and fast OLAP operations. Often the underlying data is sensi-
tive, and publishing all or part of the cube may endanger the privacy
of individuals. For example, privacy concerns prevent Singapore’s
Ministry of Health (MOH) from performing wide-scale monitor-
ing for adverse drug reactions among Singapore’s three main eth-
nic groups, none of which are typically included in pharmaceutical
companies’ drug trials. Privacy concerns also limit MOH’s pub-
lished health summary tables to extremely coarse categories, re-
ducing their utility for policy planning. Institutional Review Board
(IRB) approval is now required for access to most high-level sum-
mary tables from studies funded by the US National Institutes of
Health, making it very hard to leverage results from past studies to
plan new studies. In these and many other scenarios, society can
greatly benefit from the publication of detailed, high-utility data
cubes that also preserve individuals’ privacy.

The data cube of a fact table consists of cells and cuboids. A
cell aggregates the rows in the fact table that match on certain di-
mensions. The fact table in Figure 1(a) has three dimensions, to be
aggregated with count measure. As in Figures 1(b)-1(d), a cuboid
can be viewed as the projection of a fact table on a subset of dimen-
sions, producing a set of cells with associated aggregate measures.

With background knowledge, an adversary can infer sensitive
information about an individual from a published cube [16, 21, 35].
For example, in the data cube in Figure 1, if we know that Alice is
aged 31-40 and is in the table, the count in cuboid {Age,Salary}
tells us her salary is 50-200k. If we know Bob is in the table and
is aged 21-30, we learn there is a 75% chance that his salary is 10-
50k and a 25% chance it is 50-200k. If we also know that Carl,
aged 21-30 and with salary 50-200k, is in the table, then the values
of count in cuboid {Age, Salary} tell us Bob’s salary is 10-50k.

Even publishing large actual aggregate counts is still not safe,
if an adversary has enough background knowledge. For example,
suppose there are 100 individuals in a fact table (Sex,Age,Salary),
and we publish two cells (∗, ∗, 10-50k) and (∗, ∗, 50-200k), both
with count equal to 50. Suppose the adversary knows everyone’s
salary except Bob’s: if 49 people have salary 10-50k and 50 have
50-200k, then s/he can infer that Bob’s salary is 10-50k.

We apply the notion of ε-differential privacy [10] (DP or ε-DP
for short in the rest of this paper) in data cube publishing. Com-
pared to previous techniques for privacy-preserving data publishing
(see [2, 15] for surveys), DP makes very conservative assumptions
about the adversary’s background knowledge. The privacy guar-
antee it provides is independent of any background knowledge the
adversary may have about the database. In particular, a publishing
algorithm satisfying DP protects the privacy of any individual row
in the database even if the adversary knows every other row [10].

Sex Age Salary
F 21-30 10-50k
F 21-30 10-50k
F 31-40 50-200k
F 41-50 500k+
M 21-30 10-50k
M 21-30 50-200k
M 31-40 50-200k
M 60+ 500k+

(a) Fact Table T
Sex Age Salary c
∗ ∗ 0-10k 0
∗ ∗ 10-50k 3
∗ ∗ 50-200k 3
∗ ∗

(b) Cuboid {Salary}

Sex Age Salary c
F 21-30 0-10k 0
F 21-30 10-50k 2

.

(c) Cuboid {Sex,Age,Salary}
Sex Age Salary c
∗ 21-30 0-10k 0
∗ 21-30 10-50k 3
∗ 21-30 50-200k 1
∗ 21-30 200-500k 0
∗ 21-30 500k+ 0
∗ 31-40 0-10k 0
∗ 31-40 10-50k 0
∗ 31-40 50-200k 2
∗ 31-40 200-500k 0
∗ 31-40 500k+ 0
∗

(d) Cuboid {Age,Salary}
Figure 1: Fact Table and count Data Cube

Informally, DP guarantees that the presence/absence or specific
value of any particular individual’s record has a negligible impact
on the likelihood that a particular result is returned to a query. Thus
an adversary cannot make meaningful inferences about any one in-
dividual’s record values, or even whether the record was present.

One way to achieve DP is to add random noise to query results
[10]. The noise is carefully calibrated to the query’s sensitivity,
which measures the total change of the query output under a small
change of the input. As the variance of the noise increases, the pri-
vacy guarantee becomes stronger, but the utility of the result drops.

To publish an ε-DP data cube over d dimensions, there are two
baselines. (i) We can compute the count measure for each cuboid
from the fact table, and then add noise to each cell. As changing
one row in the table affects 2d cells, according to [12], each cell
needs Laplace noise Lap(2d/ε), which destroys the utility of the
cube unless d is small. The same idea is applied in [4] to publish
a set of marginals of a contingency table. (ii) If we only compute
count for the base cuboid ({Sex, Age, Salary} in Figure 1(c)) from
the fact table, Lap(1/ε) suffices. We compute the other cuboids
from the noisy base cuboid to ensure DP. However, noise in high-
level cuboids, such as {Salary}, will be magnified significantly, and
utility will be low. This idea can be applied to universal histograms,
but noise accumulation also makes them ineffective there [19].

Another possible way is to treat each cell in a cuboid as a query,
and apply methods in [23] to answer a workload of count queries
while ensuring DP. But this approach is not practical in our context,
as its running time/space is at least quadratic in the number of cells.

If we roll up measures across DP cuboids, the sums may not
match the totals recorded in other cuboids. According to a Mi-
crosoft user study [1], users are likely to accept these kinds of small
inconsistencies if they trust the original data and understand why
the inconsistencies are present. However, if the users do not trust
the original data, they may interpret the inconsistencies as evidence
of bad data. So it is desirable to enforce a requirement for correct
roll-up totals across dimensions in the DP cuboids to be published.
Consistency also boosts accuracy of DP data publishing in some
cases, e.g., in answering one-dimensional range queries [19].

Contributions. We study how to publish all or part of a data cube
for a given fact table, while ensuring ε-differential privacy and lim-
iting the variance of the noise added to the cube. We propose a
general noise control framework in which a subset Lpre of cuboids
is computed from the fact table, plus random noise. The remain-
ing cuboids are computed directly from those in Lpre, which is the
“source of noise”. When Lpre is larger, each of its members re-
quires more noise, but the cuboids computed from Lpre accumulate
less noise. So a clever selection of Lpre can reduce the overall noise.

We define two publishing scenarios that fit the needs of the Min-
istry of Health. In the first scenario, MOH identifies a set of cuboids
which must be released, and the goal is to minimize the max noise
in the cuboids. In the second scenario, MOH has a large body of
cross-tabulations that can be useful for urban planners and the med-
ical community. A weighting function indicates the importance of
releasing each cuboid. The question is, which of these cuboids can
be released in a DP manner, while respecting a given noise vari-
ance bound for each cell (called precise cuboids)–the goal is to
maximize the sum of the weights of the released precise cuboids.

We formalize these two optimization problems for the selection
of Lpre, prove that they are NP-hard, and give efficient algorithms
with provable approximation guarantees. For the first problem, the
max noise variance in all published cuboids will be within a fac-
tor (ln |L| + 1)2 of optimal, where |L| is the number of cuboids
to be published; and for the second, the number/weight of precise
cuboids will be within a factor (1− 1/e) of optimal.

We also show how to enforce consistency over a DP data cube by
computing a consistent measure from the noisy measure released
by a DP algorithm. We minimize the Lp distance between the con-
sistent measure and the noisy measure. The revised data cube is still
DP, as we do not revisit the fact table when enforcing consistency.
The consistency-enforcing techniques in [4] are similar to our L∞

version, but our L1 version yields a much better theoretical bound
on error than the L∞ version. We show that in the L2 version, the
consistent measure can be computed efficiently, and provide better
utility than the original inconsistent noisy measure.

Organization. Section 2 provides background for data cubes and
DP, plus our noise-control goals. Section 3 gives our noise-control
publishing framework and formalizes the optimization problems
for noise control. Section 4 gives approximation algorithms for
these problems. Section 5 shows how to enforce consistency across
cuboids. Experimental results are reported in Section 6, followed
by discussion and extension of our techniques in Section 7, and re-
lated work in Section 8. Proofs of all theorems are in the Appendix.

2. BACKGROUND AND PROBLEM

Data Cubes
Consider a fact table T with d nominal dimensions A = {A1, A2,
. . . , Ad}. We also use Ai to denote the set of all possible values for
the ith dimension, and |Ai| to denote the number of distinct values
(i.e., cardinality). For a row r ∈ T , r[i] is r’s value for Ai.

The data cube of T consists of cells and cuboids. A cell a takes
the form (a[1], a[2], . . . , a[d]), where a[i] ∈ (Ai ∪ {∗}) denotes
the ith dimension’s value for this cell. A cell is associated with cer-
tain aggregate measure of interest. In this paper, we first focus on
the count measure c(a) and discuss how to handle other measures
in Section 7.3. c(a) is the number of rows r in T that are aggre-
gated in cell a (with the same values on non-∗ dimensions of a):
c(a) = |{r ∈ T | ∀1 ≤ i ≤ d, r[i] = a[i] ∨ a[i] = ∗}|.

Cell a is an m-dim cell if exactly m of a[1], a[2], . . . , a[d] are
not ∗. An m-dim cuboid C is specified by m dimensions [C] =
{Ai1 , Ai2 , . . . , Aim}. The cuboid C consists of all m-dim cells a
such that ∀1 ≤ k ≤ m, a[ik] ∈ Aik , and C can be interpreted as
the projection of T on the set of dimensions [C]. The d-dim cuboid
is called the base cuboid and the cells in it are base cells.

For two cuboids C1 and C2, if [C1] ⊆ [C2] (denoted as C1 	
C2), then (measures of cells in) C1 can be computed from C2. C1

is said to be an ancestor of C2, and C2 is a descendant of C1. Let
Lall denote the set of all cuboids. Clearly, (Lall,) forms a lattice.

EXAMPLE 2.1. Fact table T in Table 1 has three dimensions:
Sex = {M, F}; Age = {0-10, 11-20, 21-30, 31-40, 41-50, 51-
60, 60+}; and Salary = {0-10k, 10-50k, 50-200k, 200-500k,
500k+}. Figure 2(a) shows the lattice of cuboids of T . As {Salary}
⊆ {Age,Salary}, cuboid {Salary} can be computed from cuboid
{Age, Salary}. For example, to compute cell (∗, ∗, 10-50k), we
aggregate cells (∗. 0-10, 10-50k), . . . , (∗. 60+, 10-50k).

ε-Differential Privacy
Differential privacy (DP for short in the rest of this paper) is based
on the concept of neighbors. Two tables T1 and T2 are neighbors if
they differ by at most one row, i.e., |(T1 − T2) ∪ (T2 − T1)| = 1.1

Let nbrs(T) be the neighbors of T , and TB be the set of all possible
table instances with dimensions A1, . . . , Ad. Let F : TB → Rn be
a function that produces a vector of length n from a table instance.
In our context, F computes the set of cuboids we select.

Definition 1. (Differential Privacy [10]) A randomized algorithm
K is ε-differentially private if for any two neighboring tables T1 and
T2 and any subset S of the output of K,

Pr [K(T1) ∈ S] ≤ exp(ε)× Pr [K(T2) ∈ S] ,

where the probability is taken over the randomness of K.

Consider an individual’s concern about the privacy of her/his record
r. When the publisher specifies a small ε, Definition 1 ensures that
the inclusion or exclusion of r in the fact table makes a negligible
difference in the chances of K returning any particular answer.

Definition 2. (Sensitivity [10]) The L1 sensitivity of F is:

S(F) = max
∀T1,T2∈TB : T1∈nbrs(T2)

||F (T1)− F (T2)||1,

where ||x − y||1 =
∑

1≤i≤n |xi − yi| is the L1 distance between
two n-dimensional vectors x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉.

Let Lap(λ) denote a sample Y taken from a zero-mean Laplace
distribution with probability density function f(x) = 1

2λ
e−|x|/λ.

Here, E [Y] = 0 and variance Var [Y] = 2λ2. We write 〈Lap(λ)〉n
to denote a vector of n independent random samples Lap(λ).

THEOREM 1. ([12]) Let F be a query sequence of length n.
The randomized algorithm that takes as input database T and out-
put F̃ (T) = F (T) + 〈Lap(S(F)/ε)〉n is ε-differentially private.

Problem Description
Given a d-dimensional fact table T , we aim to publish a subset L of
all T ’s cuboids Lall with measure c̃(·), a noisy version of the count
measure c(·), using an algorithm K that ensures ε-differential pri-
vacy. In particular, for any cell a in a cuboid in L, we want to
publish a noisy count measure c̃(a) using the DP algorithm K.

Measuring Noise. We measure the utility of an algorithm by the
variance of the noisy measure it publishes. As we apply Laplace
mechanism in Theorem 1, we will show noisy measure c̃(·) pub-
lished by our algorithms is unbiased, i.e., the expectation E [c̃(a)] =
c(a). So for one cell, the variance Var [c̃(a)] is equal to the ex-
pected squared error, i.e., Var [c̃(a)] = E

[
(c̃(a)− c(a))2

]
, and

we use it to measure the noise/error in c̃(a). Similarly, for any set
P of cells, we use Var

[∑
a∈P c̃(a)

]
to measure the noise/error.

1Some DP papers use a slightly different definition: T1 and T2 are
neighbors if they have the same cardinality and T1 can be obtained
from T2 by replacing one row (ε-indistinguishable [12]). Our algo-
rithms also work with this definition, if we double the noise.

C110 C101 C011

C111

C100 C010 C001

C000

{Sex,Age, Salary}

{Sex,Age} {Sex, Salary} {Age, Salary}

{Age} {Salary}

{ }

{Sex}

(a) Lattice Structure of Cuboids

C110 C101 C011

C111

C100 C010 C001

C000

7 2

2

7
5 5

7
2

5

2 7 5

(b) Variance Magnification

Figure 2: Lattice of cuboids, Variance magnification of noise

Noise-Control Objectives. We aim to control the noise in the pub-
lished cuboids in one of the following two ways:

(i) (Bounding max noise) Minimize the maximal variance over
all cells, maxa Var [c̃(a)], in the published cuboids.

(ii) (Publishing as many as possible) Given a threshold θ0, a
cuboid C is said to be precise if Var [c̃(a)] ≤ θ0 for all cells a in
C. Maximize the number of precise cuboids in all published ones.

Enforcing Consistency. When the consistency is required, we
show how to take noisy measure c̃(·) as input and alter it into mea-
sure ĉ(·) to fit consistency constraints that the cuboids should sum
up correctly. Our consistency-enforcing algorithm takes only c̃(·)
as input (not touching the fact table T), and thus from the composi-
tion property of differential privacy [28], it is also ε-DP. The output
consistent measure ĉ(·) should be as close to c̃(·) and c(·) as pos-
sible. The consistency constraints will be formulated in Section 5.

3. NOISE CONTROL FRAMEWORK
We first present two straw man approaches, Kall and Kbase, fol-

lowed by our noise-optimizing approach Kpart.

Straw Man Release Algorithms Kall and Kbase

One option, Kall, is to compute the exact measure c(a) for each cell
a in each cuboid in L, and add noise to each cell independently, in-
cluding empty cells. Formally, let Fall(T) be the vector containing
measure c(a) for each cell a of each cuboid in L. Fall has sensitiv-
ity |L| (Definition 2), since a row in T contributes 1 to exactly one
cell in each cuboid in L. Kall adds noise drawn from Lap(|L|/ε) to
each cell–c̃(a) = c(a) + Lap(|L|/ε)–and publishes the resulting
vector. The noise variance in Kall is high. With 8 dimensions, |L|
can reach 28, making Var [c̃(a)] = 2 · 216/ε2. We will discuss the
relationship between Kall and related work [4, 36] in Section 8.

THEOREM 2. Kall is ε-differentially private. For any cell a to
be published, E [c̃(a)] = c(a) and Var [c̃(a)] = 2|L|2/ε2.

Another option, Kbase, computes only the cells in the d-dim cuboid,
i.e., the base cuboid, directly from T , and adds noise into them.
Kbase computes the measures of the remaining cells to be released
by aggregating the noisy measures of the base cells. The vector
Fbase(T) has each entry as the measure c(a) of a cell in the base
cuboid, and thus its sensitivity is 1; therefore, publishing c̃(a) =
c(a)+Lap(1/ε) for each base cell preserves ε-differential privacy.
When Kbase computes higher-level cuboids from Fbase(T), we do
not touch T , so ε-DP is preserved. However, the noise variance
grows as we aggregate more base cells for cells in higher levels.

THEOREM 3. Kbase is ε-differentially private. For any pub-
lished cell a, E [c̃(a)] = c(a). If a is in a cuboid with dimensions
[C], then c̃(a) has noise variance Var [c̃(a)] = 2

∏
Aj /∈[C] |Aj |/ε2.

EXAMPLE 3.1. For the fact table T in Figure 1(a), Figure 2(a)
shows the lattice of cuboids under the relationship 	. Three di-
mensions Sex, Age, and Salary have cardinality 2, 7, and 5, re-
spectively. Each cuboid is labeled as Cx1x2x3 , where xi = 1 iff
the ith dimension is in this cuboid. For example, C011 is the cuboid
{Age,Salary}. The label on an edge from C to C′ in Figure 2(b) is
the variance magnification ratio when cells in cuboid C are aggre-
gated to compute the cells in C′. For example, if C011 is computed
from C111, the noise variance doubles, since the dimension Sex has
2 distinct values–each cell in C011 is the aggregation of 2 cells in
C111. If C001 is computed from C111, the noise variance is magni-
fied 2× 7 = 14 times, since 14 cells in C111 form one in C001.

Suppose we want to publish all the cuboids in Figure 2(a). Using
Kall, we add Laplace noise Lap(8/ε) to each cell, giving noise
variance 2 × 64/ε2 = 128/ε2 for one cell. Using Kbase, we add
Laplace noise Lap(1/ε) to each cell in C111 and then aggregate its
cells. Each cell in C100 is built from 7× 5 cells in C111, with noise
variance 35× 2/ε2 = 70/ε2. A cell in C000 is built from 7× 5× 2
cells in C111, with noise variance 70× 2/ε2 = 140/ε2.

A better approach is to compute cuboids C111, C110, C101, and
C100 from T , adding Laplace noise Lap(4/ε) to each (the sensi-
tivity is 4). We compute the other cuboids from these. Then the
noise variance in C100 is 32/ε2 and in C000 is 2× 32/ε2 = 64/ε2

(aggregating 2 cells of C100).

As shown in Example 3.1, the more cuboids we compute di-
rectly from the table T , the higher their sensitivity is, and so the
more noise they require, but the less noise is accumulated when
other cuboids are computed from them. Kall and Kbase represent
the extremes of computing as many or as few cuboids as possible
directly from T . There must be a strategy between Kall and Kbase

that gives better bounds for the noise variance of released cuboids.

A Better Algorithm Kpart

To publish a set L ⊆ Lall of cuboids, Kpart chooses which cuboids,
denoted as Lpre, to compute directly from the fact table T , in a
manner that reduces the overall noise. Lpost = L − Lpre includes
all the other cuboids in L. We do not require Lpre ⊆ L.

1. (Noise Sources) For each cell a of cuboids in Lpre, Kpart com-
putes c(a) from T and releases c̃(a) = c(a)+Lap(s/ε), where the
sensitivity s = |Lpre|. Note that Lpre is selected by our algorithms
in Section 4.1 s.t. all cuboids in L can be computed from Lpre.

2. (Aggregation) For each cuboid C ∈ Lpost, Kpart selects a
descendant cuboid C∗ from Lpre s.t. C∗
 C, and computes c̃(a)
for each cell a ∈ C by aggregating the noisy measure of cells in
C∗. We discuss how to pick C∗ as follows.

The measure c̃(a) output by Kpart is an unbiased estimator of
c(a) for every cell a, i.e., E [c̃(a)] = c(a). For a cell a in cuboid
C′ ∈ Lpre, Var [c̃(a)] = 2s2/ε2 (s = |Lpre|). Suppose cell a in
C ∈ Lpost is computed from C′ ∈ Lpre by aggregating on dimen-
sions [C′]− [C] = {Ak1 , . . . , Akq}, the variance magnification is
defined as mag(C,C′) =

∏
1≤i≤q |Aki |. So the noise variance is

Var [c̃(a)] = mag(C,C′) · 2s2/ε2. (1)

Let mag(C,C) = 1. If C cannot be computed from C′ (C �
C′), let mag(C,C′) = ∞. We should compute the cells in C ∈
Lpost from the cuboid C∗ ∈ Lpre for which mag(C,C∗) is mini-
mal, i.e., mag(C,C∗) = minC′∈Lpre mag(C,C′). Let

noise(C,Lpre) = min
C′∈Lpre

mag(C,C′) · 2s2/ε2 (2)

be the smallest possible noise variance when computing C from a
single cuboid in Lpre. For C′ ∈ Lpre, noise(C′,Lpre) = 2s2/ε2.

THEOREM 4. Algorithm Kpart is ε-differentially private. For
any cuboid cell a to be released, E [c̃(a)] = c(a).

EXAMPLE 3.2. Consider the data cube in Example 2.1 and re-
lease algorithm Kpart with Lpre = {C111, C110, C101, C100}. C000

can be computed from C100 with noise variance 2 × 32/ε2, since
mag(C000, C100) = 2; or from C110 with noise variance 14 ×
32/ε2 = 448/ε2 , since mag(C000, C110) = 2× 7 = 14. So Kpart

computes C000 from C100, and noise(C000,Lpre) = 64/ε2.

Kpart shares some similarities to the matrix mechanism in [23].
Kpart chooses cuboids Lpre to compute L, while [23] chooses a set
of queries to answer a given workload of count queries. If we adapt
the matrix mechanism for our problem by treating a cell as a count
query, we need to manipulate matrices of sizes equal to the number
of cells (e.g., matrices with 106 × 106 entries for a moderate data
cube with 106 cells). So [23] is not applicable in our context.

Efficient Implementation of Kpart. Suppose Lpre is given. A naive
way to compute DP cuboids in L is to first inject noise into each
cuboid in Lpre. Then for each C ∈ L, query its descendant C∗ ∈
Lpre (C 	 C∗), and aggregate cells in C∗ to compute cells in C.

We can compute DP cuboids inL more efficiently with fewer cell
queries. Suppose C 	 C′′ 	 C∗, noise is injected into C∗ ∈ Lpre

for ensuring DP, and C′′ is computed from C∗. Then computing
C from C∗ is equivalent to computing it from C′′, with DP en-
sured. So after noise is injected into all cuboids in Lpre, DP cuboids
in L can be computed in a level-by-level way, i.e., computing i-
dim cuboids from (i + 1)-dim cuboids. The total running time is
O(Nd2), where N = Πj(|Aj |+ 1) is the total number of cells.

Problems of Optimizing Noise Source: Choosing Lpre

We formalize two versions of the problem of choosing Lpre with
different goals, given table T and set L of cuboids to be published.

Problem 1. (BOUND MAX VARIANCE) Choose a set Lpre of
cuboids s.t. all cuboids in L can be computed from Lpre and the
max noise noise(Lpre) = maxC∈L noise(C,Lpre) is minimized.

Problem 2. (PUBLISH MOST) Given threshold θ0 and cuboid
weighting w(·), choose Lpre s.t.

∑
C∈L: noise(C,Lpre)≤θ0

w(C) is
maximized. In other words, maximize the weight of the cuboids
computed from Lpre with noise variance no more than θ0.

THEOREM 5. BOUND MAX VARIANCE and PUBLISH MOST

are both NP-hard, where |L| is the input size.

The proof uses a non-trivial reduction from the VERTEX COVER

problem in degree-3 graphs. Details are in the appendix.
Note that Kall and Kbase are special cases of Kpart by letting

Lpre = L and Lpre = {the base cuboid}, respectively. We will
introduce two algorithms that choose Lpre carefully so that Kpart is
better than Kall and Kbase w.r.t. objectives in Problems 1 and 2.

4. OPTIMIZING THE SOURCE OF NOISE
A brute force approach for Problems 1 and 2–enumerating all

possible choices of Lpre (all possible cuboid subsets)–takes O(22
d

)
time, which is not practical even for d = 5. Due to the hardness
result in Theorem 5, we introduce approximation algorithms for
these two problems, with running time polynomial in 2d.

4.1 Bounding the Maximum Variance
We now present a (ln(|L|)+1)2-approximation algorithm for the

BOUND MAX VARIANCE problem, with running time polynomial

in |L| and 2d. First, suppose we have an efficient algorithm FEA-
SIBLE for subproblem FEASIBILITY(L,θ, s): for a fixed θ and s, is
there a set of s cuboids Lpre s.t. for all C ∈ L, noise(C,Lpre) ≤ θ?
Let FEASIBLE(L, θ, s) return Lpre if a solution exists, and “NO”
otherwise. Then to solve Problem 1, we can find the minimum θ
such that for some s, FEASIBLE(L, θ, s) returns a feasible solution.
This θ can be found using binary search instead of guessing all
possible values. Algorithm 1 provides the details.

1: θL ← 0, θR ← 2|L|2/ε2 (or θR ← 2 · 4d/ε2 if |L| = 2d);
2: while |θL − θR| > 1/ε2 do
3: θ← (θL + θR)/2;
4: if FEASIBLE(L,θ, s) = NO for all s = 1, . . . , |L| then θL ← θ;

else θR ← θ;
5: return θ∗ = θR and the solution found by FEASIBLE(L,θ∗, s).

FEASIBLE(L,θ, s)
6: Compute coverage cov(C) for each cuboid based on θ and s;
7: R ← ∅, COV ← ∅;
8: repeat the following two steps s times
9: Select a cuboid C′ such that |cov(C′)− COV| is maximized

10: R ← R∪ {C′}, COV ← COV ∪ cov(C′);
11: if COV = L then return R as Lpre;
12: else return NO.

Algorithm 1: Algorithm for BOUND MAX VARIANCE problem

Theorem 5 says that BOUND MAX VARIANCE is NP-hard, so
there cannot be an efficient exact algorithm for the subproblem
FEASIBILITY. We provide a greedy algorithm (analogous to that
for SET COVER) that achieves the promised approximation guar-
antee (ln |L|+ 1)2 for the BOUND MAX VARIANCE problem.

Using (2), we rewrite FEASIBILITY’s noise constraint as:

noise(C,Lpre) ≤ θ ⇔ min
C′∈Lpre

mag(C,C′) ≤ θε2

2s2
. (3)

For fixed θ, ε, and s, cuboid C′ covers cuboid C if C 	 C′ and
mag(C,C′) ≤ θε2

2s2
. Define C′’s coverage to be:

cov(C′, θ, ε, s) = {C ∈ L | C 	 C′, mag(C,C′) ≤ θε2

2s2
}. (4)

For simplicity, we write cov(C′) for cov(C′, θ, ε, s) when θ, ε, and
s are fixed. The following lemma is from (3) and (4).

LEMMA 1. noise(C,Lpre) ≤ θ if and only if there exists C′ ∈
Lpre such that C ∈ cov(C′, θ, ε, |Lpre|).

By Lemma 1, FEASIBILITY(L,θ, s) reduces to finding s cuboids
that cover all cuboids in L. To solve this problem, we employ the
greedy algorithm for the SET COVER problem: in each of s itera-
tions, we add to Lpre the cuboid that covers the maximum number
of not-yet-covered members of L. The greedy algorithm can find
at most (ln |L|+1)s∗ cuboids to cover all cuboids in L if the min-
imum covering set has size at least s∗. This algorithm, denoted as
FEASIBLE(L, θ, s), appears in lines 6-12 of Algorithm 1.

THEOREM 6. Algorithm 1 finds an (ln |L|+1)2-approximation
to Problem 1 in O(min{3d, 2d|L|}|L| log |L|) time. Moreover,
using the solution Lpre produced by Algorithm 1, Kpart is at least
as good as Kall and Kbase , in terms of the objective in Problem 1.

Algorithm 1’s running time is polynomial in 2d and |L|, and it
provides a logarithmic approximation. Note that parameter d is not
very large in most applications, but |L| can be as large as 2d.

EXAMPLE 4.1. Suppose we want to publish all cuboids in Fig-
ure 2(a) (L = Lall) . When FEASIBLE(·) is called with θ = 80/ε2

and s = 2, from (4), C′ covers C iff C 	 C′ and mag(C,C′) ≤
10. mag(C,C′) can be computed from Figure 2(b) by multiplying

the edge weights on the path from C′ to C. In the first iteration
of lines 8-10, Algorithm 1 chooses C111 for cov(C111) = {C111,
C110, C010, C101, C011} covers the most cuboids in L, and puts
C111 into R. In the second iteration, Algorithm 1 chooses C101 be-
cause cov(C101) = {C101, C100, C001, C000} which covers three
(the most) cuboids not covered by C111 yet. C111 and C101 cover
all the cuboids, so FEASIBLE(·) returns Lpre = {C111, C101}.

The binary search in Algorithm 1 determines that 64/ε2 is the
smallest value of θ for which FEASIBLE finds a feasible Lpre for
some s. In that iteration, for s = 4, FEASIBLE returns Lpre =
{C111, C110, C101, C100}. There, we have cov(C111) = {C111,
C011}, cov(C110) = {C110, C010}, cov(C101) = {C101, C001},
and cov(C100) = {C100, C000}.

4.2 Publishing as Many as Possible
We now present a (1 − 1/e)-approximation algorithm for the

PUBLISH MOST problem, with running time polynomial in |L|
and 2d. Given threshold θ0, assuming the optimal solution has s
cuboids, from Lemma 1, PUBLISH MOST is equivalent to finding a
set of s cuboids Lpre s.t. the weighted sum of the cuboids in L that
they cover (with θ = θ0 and the fixed s) is as high as possible. We
will consider values up to |L| for s, and apply the greedy algorithm
for the MAXIMUM COVERAGE problem for each choice of s.

As outlined in Algorithm 2, initially R and COV are empty. In
each iteration, we find the cuboid for which the total weight of the
not-previously-covered cuboids it covers in L is maximal. We put
this cuboid into R and put the newly covered cuboids into COV .
After repeating this s times, |R| = s and COV is the set of cuboids
with noise variance no more than θ0 if computed from R. At the
end, pick the best R over all choices of s as Lpre. If some cuboids
in L cannot be computed from Lpre but we desire to publish them,
we can simply add one more cuboid, the base cuboid, into Lpre.

1: for s = 1, 2, . . . , |L| doRs ← GREEDYCOVER(L,θ0, s);
2: return the bestRs as Lpre;

GREEDYCOVER(L,θ0, s)
3: Compute coverage cov(C) for each cuboid based on θ0 and s;
4: R ← ∅, COV ← ∅;
5: repeat the following steps s times
6: Select a cuboid C′ such that |cov(C′)− COV| is maximized

(or
∑

C∈cov(C′)−COV w(C) is maximized)
7: R ← R∪ {C′}, COV ← COV ∪ cov(C′);
8: return R.

Algorithm 2: Algorithm for PUBLISH MOST

THEOREM 7. Algorithm 2 finds a (1 − 1/e)-approximation to
Problem 2 in O(min{3d, 2d|L|}d|L|) time. Moreover, using the
solution Lpre produced by Algorithm 2, Kpart is as least as good as
Kall and Kbase, in terms of the objective in Problem 2.

EXAMPLE 4.2. Consider the effect of Algorithm 2 on Exam-
ple 4.1, with θ0 = 40/ε2 and all cuboids to be published with equal
weights. For s = 2, when we call GREEDYCOVER(L,40/ε2, 2),
{C111, C101} is returned as R in line 8. Since no other value of s
covers more cuboids, {C111, C101} is finally returned as Lpre.

5. ENFORCING CONSISTENCY
Suppose Lpre = {C1, C2}, where [C1] = {A1, A2, A3} and

[C2] = {A1, A2, A4}. Consider cuboid [C] = {A1, A2} to be
published. C can be computed from either C1 or C2. Since we add
noise to C1 and C2 independently, the two computations of C will
probably yield different results. If we revise Kpart by letting C be

the weighted (based on variance) average of the two results, then
C will not be an exact roll-up of either C1 or C2, though it will be
unbiased. Such inconsistency occurs in data cubes released by both
Kall and Kpart, as long as Lpre contains more than one cuboid.

In this section, we introduce systematic approaches to enforce
consistency across released cuboids. The basic idea is as follows.
Consider the noisy measures c̃(·) of cells in each cuboid C ∈ Lpre

released by Kpart, where Lpre is selected by either Algorithm 1 or
Algorithm 2. Recall that, in Kall, Lpre is the set of all cuboids to be
published. We construct consistent measure ĉ(·) from c̃(·) so that
the consistency constraints are enforced and the distance between
ĉ(·) and c̃(·) is minimized. Since the algorithm takes only c̃(·) as
the input and does not touch the real count measure c(·) or the fact
table T , ε-DP is automatically preserved.

Consistency Constraints and Distance Measures
Clearly, there is no inconsistency if we compute measures of all
cells from the base cells (i.e., d-dim cells). For a cell a, let Base(a)
be the set of all base cells, each of which aggregates a disjoint sub-
set of rows that are contained in a. Formally, a′ ∈ Base(a) if and
only if for any dimension Ai, a[i] �= ∗ implies a[i] = a′[i]. So we
enforce consistency constraints for measure ĉ(·) as follows.

∑

a′∈Base(a)

ĉ(a′) = ĉ(a), ∀ cells a. (5)

We seek the choice of ĉ(·) that satisfies consistency constraints
in (5) and is as close as possible to c̃(·), but can be computed with-
out reexamining c(·). We use Lp distance (p ≥ 1) to measure how
close ĉ(·) and c̃(·) are. Let Epre be the set of cells in cuboids belong-
ing to Lpre. Treat ĉ(·) and c̃(·) as vectors in REpre , and the Lp dis-
tance between is ||ĉ(·)− c̃(·)||p =

∑
a∈Epre

(|ĉ(a)− c̃(a)|p)1/p .
Finding ĉ(·) to minimize ||ĉ(·) − c̃(·)||p subject to (5) can be

viewed as a least-norm problem. From classic results from convex
optimization [7], it can be solved efficiently, at least in theory. We
will prove that the utility of optimal solutions for L1, L2, and L∞

distances satisfies certain statistical guarantees. More importantly,
classic algorithms do not work in our context because the number
of variables involved in (5) is equal to the number of cells, which is
huge. We provide a practical and theoretically sound algorithm that
minimizes the L2 distance in time linear in the number of cells.

5.1 Minimizing L∞ and L1 Distance
We first consider minimizing the L∞ distance, which is essen-

tially minimizing the maximal difference between c̃(a) and ĉ(a)
for any cell in Epre, i.e., ||ĉ(·)− c̃(·)||∞ = maxa∈Epre |ĉ(a)− c̃(a)|.
Equivalently, we solve for ĉ(·) in the following linear program.

minimize z (6)

s.t. |ĉ(a)− c̃(a)| ≤ z, ∀ cells a ∈ Epre;
∑

a′∈Base(a)

ĉ(a′) = ĉ(a), ∀ cells a ∈ Epre.

[4] considers a similar consistency enforcing scheme, but injects
noise into all cuboids instead of the carefully-selected subset of
cuboids Lpre. We can bound the error of ĉ(·) as follows.

THEOREM 8. (Generalized Theorem 8 in [4]) For ĉ(·) obtained

by solving (6), with probability at least 1− δ, where δ =
|Epre|
eη/2 ,

∑

a∈Epre

|ĉ(a)− c(a)| ≤ |Epre||Lpre|
ε

2 log
|Epre|
δ

=
|Epre||Lpre|

ε
η.

A linear program can also be used to minimize the L1 distance.
As ||ĉ(·)− c̃(·)||1 =

∑
a |ĉ(a)− c̃(a)|, by introducing an auxiliary

variable za for each cell a with constraint −za ≤ ĉ(a)−c̃(a) ≤ za,
minimizing ||ĉ(·) − c̃(·)||1 while enforcing consistency in ĉ(·) is
equivalent to the following linear program.

minimize
∑

a∈Epre

za (7)

s.t. |ĉ(a)− c̃(a)| ≤ za, ∀ cell a ∈ Epre;
∑

a′∈Base(a)

ĉ(a′) = ĉ(a), ∀ cell a ∈ Epre.

THEOREM 9. For ĉ(·) obtained by solving (7), if ε ≤ 1, with
probability at least 1− δ, where δ = (η

2eη/2−1)
|Epre| (η > 2),

∑

a∈Epre

|ĉ(a)− c(a)| ≤ |Epre||Lpre|
ε

η.

For a data cube where the cardinality of every dimension is two,
Theorem 8 in [4] yields a bound similar to that of our Theorem 8,
by discarding the integrality constraint (i.e., counts are integers).

Theorem 9 mirrors Theorem 8, but replaces the upper tail δ =
|Epre|
eη

with (η

2eη/2−1)
|Epre|. As |Epre| is usually large, linear program

(7) and Theorem 9 give a much better bound on the average error
in ĉ(·) than linear program (6) and Theorem 8.

To enforce the integrality constraint for ĉ(·) obtained from linear
program (6) or (7), we can simply round ĉ(a) for each cell to the
nearest integer, which will replace the error bound |Epre||Lpre|

ε
η with

|Epre||Lpre|
ε

η + |Epre| in both Theorems 8 and 9.

5.2 Minimizing L2 Distance
Now let’s focus on minimizing the L2 distance, i.e., the sum of

squared differences between c̃(a) and ĉ(a) for all cells. This prob-
lem has a very efficient solution with good statistical guarantees.

minimize
∑

a∈Epre

(ĉ(a)− c̃(a))2 (8)

s.t.
∑

a′∈Base(a)

ĉ(a′) = ĉ(a), ∀ cell a ∈ Lpre.

Program (8) can be viewed as a least L2-norm problem. Its
unique solution ĉ(·), called the least square solution, can be found
using linear algebra [7]. The classical method needs to compute
multiplication/inversion of M ×M -matrices, where M = Πj |Aj |
is the total number of base cells. Since M is typically larger than
106, the classical method is inefficient in our context. Fortunately,
we can derive the optimal solution ĉ(·) much more efficiently by
utilizing the structure of data cubes, as follows.

We define Ancs(a′) to be the set of ancestor cells of cell a′: a ∈
Ancs(a′) if and only if a is in an ancestor of the cuboid containing
a′ and has the same value as a′ on all non-∗ dimensions; formally,
a ∈ Ancs(a′) if and only if for any dimension Ai, a[i] �= ∗ implies
a[i] = a′[i]. If a′ is a base cell, a ∈ Ancs(a′) ⇔ a′ ∈ Base(a).

For a cell a and a cuboid C, let a[C] be a’s values on dimensions
of [C]. Suppose [C] = {Ai1 , . . . , Aik}, a[C] = 〈a[i1], . . . , a[ik]〉.

For two cuboids C1 and C2, let C1 ∨ C2 be the cuboid with
dimensions [C1]∪ [C2] and C1 ∧C2 with dimensions [C1]∩ [C2].

We provide the following two-stage algorithm to compute the
consistent measure ĉ(·) that is the optimal solution to program (8):
1. Bottom-up stage: We first compute obs(a′′) for every cell a′′

in a cuboid C′′ that can be computed from Lpre. Let

obs(a′′) =
∑

a′∈Base(a′′)

∑

a∈Epre∩Ancs(a′)

c̃(a). (9)

All
AllC

BMax
BMaxC

PMost
PMostC

Base

 50
 100
 200
 400
 800

 1600
 3200
 6400

 12800

0.25 0.5 1 1.5 2
Privacy Parameter ε

(a) Max Cuboid Error

 20

 40

 80

 160

 320

 640

 1280

0.25 0.5 1 1.5 2
Privacy Parameter ε

(b) Average Cuboid Error

Figure 3: Varying privacy parameter ε

A cuboid C ∈ Lpre is maximal in Lpre if there is no C′ ∈ Lpre

s.t. C ≺ C′. In all maximal cuboids C′′ in Lpre, obs(a′′) can
be computed as in Formula (9). In all the other cuboids that can
be computed from Lpre, obs(a′′) can be computed recursively as
follows: suppose a′′ ∈ C′′ and C′′ can be computed from Lpre,
there must be some cuboid C with dimensionality dim(C′′) + 1
s.t. either C ∈ Lpre or C can be computed from Lpre; then,

obs(a′′) =
∑

a: a∈C
a[C′′]=a′′[C′′]

obs(a). (10)

2. Top-down stage: After obs(a′′) is computed for every possible
cell a′′, consider another quantity est(a′′) for each cell a′′ ∈ C′′:

est(a′′) =
∑

C∈Lpre

∑

b: b∈(C∧C′′),
b[C∧C′′]=a′′[C∧C′′]

deg(C ∨ C′′)ĉ(b). (11)

where deg(C) =
∏

Ai∈A−[C] |Ai| and A is the set of all dimen-
sions and |Ai| is the cardinality of dimension Ai. Suppose obs(·)’s
are computed in the first stage as constants and ĉ(·)’s are variables.
Solving the equations est(a′′) = obs(a′′), we can compute ĉ(·)’s
in a top-down manner (from ancestors to descendants) as follows:

ratio(C′′) =
∑

C: C∈Lpre,

C′′
C

deg(C ∨ C′′), (12)

aux(a′′) =
∑

C: C∈Lpre,

C′′�C

∑

b: b∈(C∧C′′),
b[C∧C′′]=a′′[C∧C′′]

deg(C ∨ C′′)ĉ(b), (13)

ĉ(a′′) =
1

ratio(C′′)

(
obs(a′′)− aux(a′′)

)
. (14)

The above approach can be also applied to Kall because Kall is a
special case of Kpart obtained by setting Lpre = L.

Note that this approach generalizes the consistency-enforcing
scheme in [19] from a tree-like structure (hierarchy of intervals)
to a lattice. The method in [19] cannot be directly applied here.

Optimality. We can prove ĉ(·) obtained above is not only consis-
tent but also an unbiased estimator of c(·). Also, ĉ(·) is optimal in
the sense that no other linear unbiased estimator of c(·) obtained
from c̃(·) has smaller variance, i.e., smaller expected squared error.

THEOREM 10. (i) The above algorithm correctly computes a
value for ĉ(·) that is consistent and solves the L2 minimization
problem (8). (ii) The above algorithm requires O(N(d2+d|Lpre|))
time to compute ĉ(·) for all N cells. (iii) For any cell of cuboids in
Lpre, ĉ(a) is an unbiased estimator of c(a), i.e., E [ĉ(a)] = c(a).
(iv) For any cell a, ĉ(a) has the smallest variance among any linear
unbiased estimator (e.g., c̃(a)) of c(a) obtained from c̃(·). (v) For
any set P of cells,

∑
a∈P ĉ(a) has the smallest variance among

any linear unbiased estimator of
∑

a∈P c(a) obtained from c̃(·).

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

or

ratio θ0/θ’

PMost Max Error
PMostC Max Error

PMost Avg Error
PMostC Avg Error

 120

 140

 160

 180

 200

 220

 240

 260

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ratio θ0/θ’

total # of cuboids
of precise cuboids

Figure 4: Varying θ0 in Algorithm 2 (for PMost and PMostC)

6. EXPERIMENTS
We evaluate and compare seven proposed techniques on both

real and synthetic datasets. The first two techniques are Kall and
Kbase, which were defined at the beginning of Section 3. We de-
note them as All and Base, respectively, in this section. Another
two are based on our generalized framework Kpart. One of these
has the objective of bounding the max noise variance (Problem 1)
and is denoted by BMax (Kpart + Algorithm 1). The other one has
the objective of maximizing the number of cuboids with noise vari-
ance no more than a given variance threshold θ0 (Problem 2) and
is denoted by PMost (Kpart + Algorithm 2). The last three tech-
niques involve applying the methods in Section 5.2 to enforce con-
sistency in the data cubes published by All (Lpre = L), BMax, and
PMost. The resulting three techniques are denoted AllC, BMaxC,
and PMostC, respectively. The LP-based techniques in Section 5.1
are not practical for large tables. All seven algorithms are coded in
C++ and evaluated on an 8GB 64-bit 2.40GHz PC.

Real dataset: We use the Adult dataset from the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/) with census in-
formation. It contains 32,561 rows with 8 categorical dimensions:
workclass (cardinality 9), education (16), marital-status (7), occu-
pation (15), relationship (6), race (5), sex (2), and salary (2).

Synthetic dataset: To generate the fact table, we first fix the num-
ber of dimensions and the dimension cardinalities. Then we gener-
ate each row independently, with each of its column values drawn
uniformly and independently from the domain of its dimension.

Error measurement: We compute the error as the absolute differ-
ence between the real count measure computed directly from the
fact table and the noisy measure released by one of the seven ε-DP
algorithms. The cuboid error is the average error for all cells in
this cuboid. We report both the max cuboid error and the average
cuboid error among all published cuboids.

We release L = all cuboids and evaluate all algorithms on the
same set of published cuboids. This is the hardest test for all algo-
rithms, as less noise will be needed if L omits some cuboids.

Exp-I: Varying privacy parameter ε. Using the Adult dataset, we
vary privacy parameter ε from 0.25 to 2. Smaller ε implies more
privacy and thus more noise. Recall Algorithm 2 (for PMost) takes
a variance threshold θ0 in the input; here, we set θ0 = 0.5θ′, where
θ′ is the variance bound found by Algorithm 1 (for BMax).

Figure 3 uses a logarithmic scale to show the max/average er-
ror in the released cuboids. As the inconsistent version of an ap-
proach always has at least as much error as the consistent version,
the two versions (All/AllC, BMax/BMaxC, and PMost/PMostC)
are stacked together on a single bar in each histogram in Section 6.

BMax and PMost always incur much less error than the two
baselines Base and All. BMax is better than PMost for bounding
the max error, while PMost is better than BMax for bounding the
average error. Base performs the worst in terms of the max error,
because only the base cuboid is computed from the table, and the
noise is magnified significantly when cuboids at higher levels are
computed by aggregating cells in the base cuboid. All is the worst

All
AllC

BMax
BMaxC

PMost
PMostC

Base

 20
 40
 80

 160
 320
 640

 1280
 2560

0 1 2 3 4 5 6 7 8
m: Dimensionality of Cuboids

Figure 5: Max cuboid error in different cuboids as dimension-
ality varies, when all cuboids must be released

in terms of the average error, for the large amount of noise initially
injected in each cuboid. Error decreases as ε increases.

As suggested by Theorem 10 (iv)-(v), our consistency enforc-
ing techniques tend to reduce error, since the variance of the con-
sistent measure ĉ(·) is no larger than that of the inconsistent c̃(·).
So AllC/BMaxC/PMostC reduces error by 30%-50%, compared
to All/BMax/PMost, while providing the same privacy guarantee.

Exp-II: Varying variance threshold θ0. Note that performance of
PMost and PMostC depends on the input threshold θ0 in Prob-
lem 2, as θ0 determines Lpre. Fix ε = 1. Given the variance
bound θ′ found by Algorithm 1, we vary θ0 from 0.1θ′ to 0.9θ′.
Figure 4 shows how θ0 affects Algorithm 2 on the Adult dataset.
As θ0 increases, we have more precise cuboids, i.e., the released
cuboids with noise variance no more than θ0. When θ0 = θ′, all
28 = 256 cuboids are precise, and PMost/PMostC is equivalent to
BMax/BMaxC, as the same Lpre is used. But the max/average error
of PMost and PMostC does not increase monotonically with θ0:
both θ0 = θ′ and θ0 = 0.5θ′ are local optimums for minimizing
errors. In the remaining experiments, we set θ0 = 0.5θ′.

Exp-III: Noise in different cuboids. Figure 5 shows the max error
in cuboids of different dimensionality on Adult, for ε = 1. Recall
in an m-dim cuboid, a cell has non-∗ values on exactly m dimen-
sions. As m decreases, a cell in an m-dim cuboid aggregates more
base cells. So Base aggregates more noise from base cells as m
drops, and performs the worst for m < 3. BMaxC is the best when
0 < m < 5, and its max error changes little for 0 < m < 7. The
consistency-enforcing techniques, AllC/BMaxC/PMostC, are very
effective for small m, reducing error by up to 70%.

Exp-IV: Varying number of dimensions. We create two more
dimensions, each of which has cardinality 4, on the Adult dataset,
and generate their values randomly for each row. We consider the
fact table with the first 6 to all the 10 dimensions. Fix ε = 1. We
report the max/average error of the seven approaches in Figure 6.
As the number of dimensions increases, BMaxC and PMostC are
always the best two, and the error in both All and Base is much
larger and increases faster than the error in others.

Exp-V: Varying cardinality of dimensions. We generate syn-
thetic tables with 7 dimensions, each of which has the same car-
dinality. We vary the cardinality from 2 to 10, and generate a ta-
ble with 108 rows randomly for each. We report the error of each
approach in Figure 7, for ε = 1. The performance of Base de-
teriorates quickly as the cardinality increases, because more cells
in the base cuboid need to be aggregated. The performance of All
does not change much, for its performance is mainly determined by
the number of dimensions, which determines the total number of
cuboids. Again, BMaxC and PMostC perform best in most cases.

Exp-VI: Efficiency. Consider a data cube with 5-10 dimensions on
the Adult dataset (with two more synthetic dimensions as in Exp-
IV). The overall DP data cube publishing time is reported in Fig-
ure 8, which can be decomposed as follows. Recall Algorithms 1-2

 80

 160

 320

 640

 1280

 2560

 5120

 10240

6 7 8 9 10
Dimensionality of Fact Table

(a) Max cuboid error

 40

 80

 160

 320

 640

 1280

6 7 8 9 10
Dimensionality of Fact Table

(b) Average cuboid error
Figure 6: Varying dimensionality of fact table

 20
 40
 80

 160
 320
 640

 1280
 2560
 3840

2 4 6 8 10
Cardinality of Dimensions

(a) Max Cuboid Error

 20

 40

 80

 160

2 4 6 8 10
Cardinality of Dimensions

(b) Average Cuboid Error
Figure 7: Varying cardinality of dimensions (7 dimensions)

select Lpre for BMax/BMaxC and PMost/PMostC, respectively.
The running time of Algorithms 1-2 is reported in Figure 9(a). For
different choices of Lpre on the 8-dim table, the time needed for
noise injection (Kpart) and consistency enforcement (the method in
Section 5.2) in all cuboids is reported in Figure 9(b).

From Figure 9(a), although the running time of Algorithms 1-2 is
polynomial in 2d, they are not the bottleneck. Their running time is
always a very small portion of the overall DP data cube publishing.

From Figure 9(b), it is shown that the consistency-enforcement
time increases linearly with |Lpre|, as predicted by Theorem 10 (ii).
The time for noise injection decreases as |Lpre| increases. This is
because when more cuboids are initially injected with noise, less
aggregation of noise occurs later on.

From Figure 8, using consistency enforcement, AllC is especially
expensive, because |Lpre| = 2d in AllC. BMaxC and PMostC, al-
though using consistency enforcement, usually only need 3%-10%
time of AllC, for they use smaller Lpre’s. For all approaches, the
publishing time increases exponentially with the dimensionality,
mainly because the total number of cells increases exponentially.

 1
 3

 10

 40

 160

 640

 2560

 10240

5 (2x105) 6 (9x105) 7 (3x106) 8 (8x106) 9 (4x107)10 (2x108)
Dimensionality of Fact Table (and Number of Cells)

Figure 8: DP data cube publishing time (in seconds)

Summary. Both All and Base are sensitive to the dimensionality
of the fact table, and Base is also sensitive to cardinalities of di-
mensions. All usually has a large average error, as a large amount
of noise is injected into all cuboids. Base has a large max error,
because noise is aggregated from the base cells; and that is why
Base incurs small average errors in the cuboids close to the base
cuboid. BMaxC and PMostC are the best most of the time.

All/BMax/PMost run much faster than AllC/BMaxC/PMostC.
But with our consistency enforcement, AllC/BMaxC/PMostC re-
duce error in All/BMax/PMost, respectively, by typically 30%-
70% or more, and ensure that the published data is consistent.

The error of BMaxC and PMostC is usually only 5%-30% of

 0.001

 0.01

 0.1

 1

 5

 5 6 7 8 9 10
Number of Dimensions

Select Lpre for BMax (Alg. 1)
Select Lpre for PMost(Alg. 2)

(a) Time (in seconds)

 1
 2
 4
 8

 16
 32
 64

 128
 256

 3 5 12 20 64 256
|Lpre|

Noise injection
Enforce consistency

(b) Time (in seconds)
Figure 9: Efficiency of different algorithms

the error incurred by All, and 20%-50% of the error of AllC. Note
that the y-axis in our figures is always in logarithmic scale.

Because of our consistency-enforcing method, the error of AllC
is sometimes comparable to BMax/BMaxC and PMost/PMostC,
when the dimensionality of the fact table is low. However, AllC is
very expensive because |Lpre| in AllC is equal to 2d (recall Theo-
rem 10 for the running time of our consistency enforcement). When
there are more than five dimensions, AllC’s publishing time is 6-10
times larger than BMaxC’s (> 10 times for ten dimensions), and
10-40 times larger than PMostC’s (> 40 times for ten dimensions).

7. DISCUSSION AND EXTENSIONS

7.1 Relative Error vs. Absolute Error
The amount of noise Kpart adds to DP cuboids is independent of

the number of rows and specific data in the fact table. Instead, the
selection of Lpre and the amount of noise depend only on which
cuboids are to be published, the number of dimensions, and their
cardinalities. So our expected absolute error is fixed if the structure
of the fact table is fixed, no matter how many rows there are. This
feature of our approaches is also true in DP-based frameworks for
different publishing tasks [4, 19, 23, 36]. The implication is that
the expected relative error cannot be bounded in general. Because,
with the expected absolute error fixed, some cells may have very
small values of the count measure (e.g., 1), while some have very
large values (e.g., 103). That is also why we report absolute error
in Section 6. On the other hand, the advantage is, for a particular
cell, it has less relative error if it aggregates more rows.

7.2 Further Reduction of Noise
We can generalize our noise-control framework Kpart by adding

different amounts of noise to different cuboids in Lpre to further
reduce noise. Suppose Lpre = {C1, . . . , Cs} and noise Lap(λi) is
injected into each cell in Ci. By the composition property of DP
[28], we claim that if

∑s
i=1 1/λi = ε, then publishing Lpre is ε-DP.

Finding the optimal Lpre and parameters 〈λi〉 to achieve the goals
in Problems 1 and 2 is hard, but Algorithms 1 and 2 can be modified
to provide approximate solutions. Here, privacy parameter ε can be
interpreted as the cost budget in WEIGHTED SET COVER.

To enforce consistency and yield an optimality result similar to
Theorem 10, we can solve a weighted version of the least squares
problem in Section 5.2. Our experiments show this reduces abso-
lute error in BMaxC/PMostC by 10%. We omit the details here.

7.3 Extension to Other Measures
Our techniques for the count measure can be extended to other

two basic measures sum and avg. sum can be considered as a gen-
eralized count measure, where each row in the fact table is asso-
ciated with a value instead of just 0-1. Compared to count, the
sensitivity of a publishing function for sum is magnified Δ times,
where Δ is the range of possible values for any individual fact ta-
ble tuple. Thus our techniques for count can be applied to sum,

with the noise variance magnified Δ2 times. To handle the average
measure avg, we can compute two DP data cubes (partitioning the
privacy budget across them), one with sum measure and one with
count measure, from the same fact table. The avg measure of a cell
can be computed from the two cubes, without violating DP.

7.4 Handling Larger Data Cubes
Our approaches introduced so far are applicable for mid-size data

cubes, e.g., with ≤ 12 dimensions or ≤ 109 cells. Since the current
framework needs to store all cells for consistency enforcement, it
cannot handle data cubes with too many cells.

For even larger data cubes (e.g., with ≥ 20 dimensions and ≥
220 cuboids), it is unnecessary to publish all cuboids at one time,
as typical users are likely to query only a very small portion of
them. Also, it is impossible to publish all cuboids while ensuring
DP, as the huge amount of noise will make the result meaningless.
So we outline an online version of our approach as follows.

Initially, Lpre = ∅ and we have certain amount ε of privacy
budget. When a cuboid query C comes, if C /∈ Lpre and C can be
computed from some DP cuboid C∗ ∈ Lpre, there are two choices:
a) compute C from C∗, with error in C∗ magnified in C; or b)
compute real cuboid C using high-dimensional OLAP techniques
like [25], inject noise into C to obtain a DP cuboid, insert C into
Lpre, and deduct a certain amount of privacy budget from ε. If C /∈
Lpre but C cannot be computed from any DP cuboid C∗ ∈ Lpre,
we have to follow b) above. If C ∈ Lpre or C used to be queried,
we can directly output the old DP cuboid C. After we run out of
privacy budget ε, to ensure ε-DP, we cannot create new DP cuboids
in Lpre any more and may be unable to answer new queries. How
to distribute the privacy budget online so that more queries can be
answered with less error is interesting future work.

8. RELATED WORK
Since ε-differential privacy (DP) [12] was introduced, many tech-

niques have been proposed for different data publishing and analy-
sis tasks (refer to [10, 11] for a comprehensive review). For exam-
ple, the notion of DP has been applied to releasing query and click
histograms from search logs [18, 22], recommender systems [29],
publishing commuting patterns [27], publishing results of machine
learning [6, 8, 20], clustering [13, 30], decision tree [14], mining
frequent patterns [5], and aggregating distributed time-series [31].
For a single counting query, one method to ensure DP [12] has been
shown to be optimal under a certain utility model [17].

Recent works [36, 19, 23] on differentially private count queries
over histograms are related to our work. Xiao et al. [36] propose to
use the Haar wavelet for range count queries. Hay et al. [19] pro-
pose an approach based on a hierarchy of intervals. Li et al. [23]
propose a general framework which supports answering a given
workload of count queries, and consider the problem of finding op-
timal strategies for a workload. While [36] and [19] can be unified
in the framework in [23], the specific algorithms given in [36, 19]
are more efficient than the matrix multiplication used in [23].

Xiao et al. extend their wavelet approach to nominal attributes
and multidimensional count queries. Their extended approach can
be applied in our problem to achieve the same noise bounds as our
Kall (refer to Theorem 3 in [36] and Theorem 2 in this work). In
general, our Kpart will add less noise, as shown in Theorems 6-7.

Barak et al. [4] show how to publish a set of marginals of a con-
tingency table while ensuring DP. One of their two approaches is
similar to Kall: add noise to all the marginals to be published. Their
LP-rounding method minimizes the L∞ distance while enforcing
consistency and integrality and removing negative numbers in the
publishing. Our Theorem 9 shows that minimizing the L1 distance

yields a much better theoretical bound on error. The other approach
in [4] is similar, but moves to the Fourier domain at first. Unlike our
work, they do not optimize the publishing strategy (i.e., the selec-
tion of Lpre). Moreover, the number of variables in the LP equals
the number of cells (often > 106 in our experiments). So LP-based
methods can only handle data cubes with small numbers of cells.

Agrawal et al. [3] study how to support OLAP queries while
ensuring a limited form of (ρ1, ρ2)-privacy, by randomizing each
entry in the fact table with a constant probability. An OLAP query
on the fact table can be answered from the perturbed table within
roughly

√|dataset| [4]. (ρ1, ρ2)-privacy is in general not as strong
as ε-differential privacy. Also, the error incurred by this method [3]
depends on the dataset size; in our framework, the amount of noise
to be added is data-independent, only determined by the number of
cuboids to be published and the structure of the fact table.

Differential privacy provides much stronger privacy guarantees
than other privacy concepts based on deterministic algorithms do,
such as k-anonymity [32] and its extension l-diversity [26] and t-
closeness [24]. [34] studies how to specify authorization and con-
trol inferences for OLAP queries in the data cube.

9. CONCLUSIONS
We have introduced a general noise-control framework to release

all or part of a data cube in an ε-differentially private way. To re-
duce the noise in the released cuboids, we choose certain cuboids
Lpre to compute directly from the fact table, and add noise to make
them differentially private. All the other cuboids are computed di-
rectly from the cuboids in Lpre, without adding additional noise
or revisiting the fact table. We modeled the selection of Lpre as
two optimization problems, proved them NP-hard, and proposed
approximation algorithms. To ensure consistency across differ-
ent rollups of released cuboids, we proposed consistency-enforcing
techniques that have the side benefit of reducing noise.

10. ACKNOWLEDGMENTS
We thank the reviewers for their insightful suggestions that im-

mensely improved the paper. This work was supported in part by
NSF IIS-09-05215, U.S. Air Force Office of Scientific Research
MURI award FA9550-08-1-0265, the U.S. Army Research Labo-
ratory under Cooperative Agreement Number W911NF-09-2-0053
(NS-CTA), A*STAR SERC grant 1021580074, and a grant from
Boeing. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

11. REFERENCES
[1] www.cs.cmu.edu/ compthink/mindswaps/oct07/difpriv.ppt. 2007.
[2] N. R. Adam and J. C. Wortmann. Security-control methods for

statistical databases: A comparative study. ACM Comput. Surv.,
21(4):515–556, 1989.

[3] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving OLAP. In
SIGMOD, pages 251–262, 2005.

[4] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and
K. Talwar. Privacy, accuracy, and consistency too: a holistic solution
to contingency table release. In PODS, pages 273–282, 2007.

[5] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering
frequent patterns in sensitive data. In KDD, pages 503–512, 2010.

[6] A. Blum, K. Ligett, and A. Roth. A learning theory approach to
non-interactive database privacy. In STOC, pages 609–618, 2008.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
Univ. Press, 2004.

[8] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic
regression. In NIPS, pages 289–296, 2008.

[9] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge Univ. Press, 2009.

[10] C. Dwork. Differential privacy: A survey of results. In TAMC, pages
1–19, 2008.

[11] C. Dwork. The differential privacy frontier (extended abstract). In
TCC, pages 496–502, 2009.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In TCC, pages 265–284, 2006.

[13] D. Feldman, A. Fiat, H. Kaplan, and K. Nissim. Private coresets. In
STOC, pages 361–370, 2009.

[14] A. Friedman and A. Schuster. Data mining with differential privacy.
In KDD, pages 493–502, 2010.

[15] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving
data publishing: A survey on recent developments. ACM Comput.
Surv., 42(4), 2010.

[16] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition
attacks and auxiliary information in data privacy. In KDD, pages
265–273, 2008.

[17] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally
utility-maximizing privacy mechanisms. In STOC, pages 351–360,
2009.

[18] M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke.
Publishing search logs - a comparative study of privacy guarantees.
TKDE, 2011.

[19] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy
of differentially-private queries through consistency. In PVLDB,
pages 1021–1032, 2010.

[20] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith. What can we learn privately? In FOCS, pages 531–540,
2008.

[21] D. Kifer. Attacks on privacy and deFinetti’s theorem. In SIGMOD,
pages 127–138, 2009.

[22] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas. Releasing
search queries and clicks privately. In WWW, pages 171–180, 2009.

[23] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing
histogram queries under differential privacy. In PODS, pages
123–134, 2010.

[24] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and l-diversity. In ICDE, pages 106–115, 2007.

[25] X. Li, J. Han, and H. Gonzalez. High-dimensional OLAP: A minimal
cubing approach. In VLDB, pages 528–539, 2004.

[26] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In
ICDE, page 24, 2006.

[27] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map. In ICDE,
pages 277–286, 2008.

[28] F. McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In SIGMOD, pages 19–30, 2009.

[29] F. McSherry and I. Mironov. Differentially private recommender
systems: building privacy into the Netflix prize contenders. In KDD,
pages 627–636, 2009.

[30] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and
sampling in private data analysis. In STOC, pages 75–84, 2007.

[31] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption. In
SIGMOD, pages 735–746, 2010.

[32] P. Samarati and L. Sweeney. Generalizing data to provide anonymity
when disclosing information (abstract). In PODS, page 188, 1998.

[33] S. D. Silvey. Statistical Inference. Chapman-Hall, 1975.
[34] L. Wang, S. Jajodia, and D. Wijesekera. Preserving privacy in on-line

analytical processing data cubes. In Secure Data Management in
Decentralized Systems, pages 355–380. 2007.

[35] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack
in privacy preserving data publishing. In VLDB, pages 543–554,
2007.

[36] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet
transforms. In ICDE, pages 225–236, 2010.

APPENDIX: Proofs
Proof of Theorem 2. The vector Fall(T) has sensitivity S(Fall) =
|L|. So from Theorem 1, Kall is ε-DP. As the noise is Lap(|L|/ε),
we have E [c̃(a)] = c(a) and Var [c̃(a)] = 2|L|/ε2. �

Proof of Theorem 3. The sensitivity S(Fbase) = 1. So from Theo-
rem 1, publishing Fbase(T)+〈Lap(1/ε)〉 is ε-DP. For any other cell
a not in the base cuboid, the computation of c̃(a) takes the released
base cuboid as input, so from the composition property [28], is ε-
DP. For a cell a in a cuboid C, it aggregates ΠAj /∈[C]|Aj | cells {a′}
in the base cuboid. Then E [c̃(a)] = Σa′E [c̃(a′)] = Σa′c(a′) =
c(a). And since noise is generated independently, we have the vari-
ance Var [c̃(a)] = Σa′Var [c̃(a′)] =

(
ΠAj /∈[C]|Aj |

) · 2/ε2. �

Proof of Theorem 4.
Consider measures 〈c(a)〉 for all cells in the s selected cuboids

in Lpre, the sensitivity of publishing Lpre is s = |Lpre|. So by Theo-
rem 1 and the composition property of DP, adding a noise Lap(s/ε)
to each cell in Lpre and computing L from Lpre is ε-DP.

E [c̃(a)] = c(a) is also from the linearity of expectation. �

Proof of Theorem 5.
To complete the proof, we reduce the problem VERTEX COVER

IN DEGREE-3 GRAPHS to the BOUND MAX VARIANCE problem.
Then the hardness of the PUBLISH MOST problem follows.

Following is an instance of the VERTEX COVER problem in a
degree-3 graph (where the degree of a vertex is bounded by 3).
Given a degree-3 (undirected) graph G(V,E) where |V | = n, de-
cide if G has a vertex cover V ′ ⊆ V with at most m (< n) vertices.
V ′ ⊆ V is said to be a vertex cover of G iff for any edge uv ∈ E,
we have either u ∈ V ′ or v ∈ V ′. Abusing the notations a bit, let
cov(v) be the edges incident on a vertex v, then we want to decide
if there is V ′ ⊆ V such that ∪v∈V ′cov(v) = E and |V ′| ≤ m.

We can assume the degree of any vertex in V is larger than 1,
since a degree-1 vertex will be never chosen into a minimum vertex
cover. And since there is at least one vertex with degree 3 (other-
wise G can be decomposed into cycles which are the trivial case
for the VERTEX COVER problem), we have |E| > 2n/2 = n.

Construct an instance of the BOUND MAX VARIANCE problem
from the above instance of VERTEX COVER problem, accordingly:

(i) For each edge e ∈ E, create a dimension Ae with cardinality
|Ae| = 2, and a 1-dim cuboid [C1

e] = {Ae}.
(ii) Create 3n distinct dimensions B1, . . . , B3n, each of cardi-

nality 2. For each of them, create a 1-dim cuboid [C1
i] = {Bi}.

(iii) For each vertex v ∈ V , create a 3-dim cuboid [C3
v] =

{Ae1 , Ae2 , Ae3} for each edge ei incident on v. Note that a vertex
may have less than 3 edges incident on it; in this case, we create
one or two new distinct dimensions with cardinality 2, and include
them in [C3

v]. So we create n 3-dim cuboids here.
(iv) Create another n 3-dim cuboids C3

x’s: each cuboid [C3
x] =

{Bx1 , Bx2 , Bx3}, where each Bxi ’s are distinct dimensions with
cardinality 2 created in (ii).

(v) For each 3-dim cuboid, [C3
v] = {Ae1 , Ae2 , Ae3} or [C3

x] =
{Bx1 , Bx2 , Bx3}, create a new dimension Dv or Dx, respectively,
with cardinality 4, and a 4-dim cuboid [C4

v] = {Ae1 , Ae2 , Ae3 , Dv}
or [C4

x] = {Bx1 , Bx2 , Bx3 , Dx}, respectively. So in total, we have
2n 4-dim cuboids created here.

In this instance of the BOUND MAX VARIANCE problem, we
want to publish all the 1-dim, 3-dim, and 4-dim cuboids in (i)-(v),
denoted by L, and to decide if we can select a set of cuboids Lpre

such that the max noise variance in releasing L from Lpre using
Kpart is at most 8(3n+m)2/ε2 (noise(Lpre) ≤ 8(3n+m)2/ε2).

We prove the VERTEX COVER instance is YES if and only if the
BOUND MAX VARIANCE instance is YES, to complete our proof.
Due to the space limit, details are deferred to the full version. �

Remark. The main difficulty in the reduction is the lattice structure
of cuboids. And, how to prove/disprove the NP-hardness when the
number of dimensions d is bounded (d = O(log |L|)) and how to
prove the hardness of approximation are interesting open questions.

Proof of Lemma 1. The proof is from the definition: Let s =
|Lpre|. If noise(C,Lpre) ≤ θ, from Equation (2), there is a C′ ∈
Lpre s.t. mag(C,C′) ≤ θε2

2s2
. Thus from Equation (4), C ∈

cov(C′, θ, ε, s). The converse direction is similar. �

Proof of Theorem 6.
Approximation Ratio. Suppose the optimal solution is θ∗, i.e.,

there are s∗ cuboids Lpre s.t. for any C ∈ L, noise(C,Lpre) ≤ θ∗.
From Lemma 1, equivalently, there are s∗ cuboids C∗

1 , . . . , C
∗
s∗

s.t.
⋃s∗

i=1 cov(C
∗
i , θ

∗, ε, s∗) = L. And, from Equation (4), for any
cuboid C and α > 0, cov(C,α2θ∗, ε, αs∗) = cov(C, θ∗, ε, s∗).

Suppose in line 4 of Algorithm 1, we have θ = α2θ∗ and s =
αs∗. In the following part, we will prove when α = ln |L| + 1,
the algorithm FEASIBLE(L,θ, s) can find s cuboids C′

1, . . . , C
′
s,

s.t.
⋃s

i=1 cov(C
′
i, θ, ε, s) = L, which implies that, with Lpre =

{C′
1, . . . , C

′
s}, maxC∈L noise(C,Lpre) ≤ θ = α2θ∗. So we can

conclude that Algorithm 1 finds an (ln |L|+ 1)2-approximation.
Since for any cuboid C, cov(C, θ, ε, s) = cov(C, θ∗, ε, s∗) for

the selection of θ and p above, we write both of them as cov(C).
Now we only need to prove: if there exists s∗ cuboids C∗

1 , . . . , C
∗
s∗

such that
⋃s∗

i=1 cov(C
∗
i) = L, the algorithm FEASIBLE finds s =

αs∗ cuboids C′
1, . . . , C

′
s (in this order) s.t.

⋃s
i=1 cov(C

′
i) = L.

We apply the analysis of the greedy SET COVER algorithm here.
Let li be the number of cuboids in L uncovered by {C′

1, C
′
2, . . . ,

C′
i}. Define l0 = |L|. It is easy to see li ≤ (1− 1/s∗)li−1, since

every iteration we choose C′, which covers the most uncovered
cuboids in L ({C∗

1 , . . . , C
∗
s∗} also cover these uncovered cuboids,

so the selected C′ covers no less than any of them). So li ≤ (1 −
1/s∗)i|L|. When i ≥ (ln |L|+ 1)s∗, li < 1. So, FEASIBLE finds
at most s = (ln |L|+ 1)s∗ cuboids covering L.

Comparison to Kall and Kbase. Kall and Kbase are two special
cases of Kpart with Lpre = L and Lpre = {the base cuboid}, re-
spectively. Let θall and θbase be the max noise in L for these two
choices of Lpre respectively. It is not hard to see, both when θ = θall
and s = |L|, and when θ = θbase and s = 1, FEASIBLE will return
a solution. So the one found by Algorithm 1 is at least as good.

Time Complexity. If for some θ, the algorithm FEASIBLE re-
turns a feasible solution for some s, then for any θ′ ≥ θ, it also re-
turns a feasible solution for some s′. So from the above comparison
to Kall, we can use θR = θall = 2|L|2/ε2 as upper bound and apply
binary search to find the minimum “feasible” θ. Also, it is not hard
to see for any two different cuboid sets Lpre and Lpre

′, we have ei-
ther noise(Lpre) = noise(Lpre

′) or |noise(Lpre)− noise(Lpre
′)| ≥

1/ε2, for mag(C,C′) is always an integer for any two cuboids C
and C′. So we can stop when |θL−θR| ≤ 1/ε2. Therefore, overall,
lines 2-4 in Algorithm 1 repeats at most O(log(|L|)) times.

In each iteration of lines 2-4, the algorithm FEASIBLE is called
|L| times. Similar to the SET COVER greedy algorithm, a standard
implementation of FEASIBLE needs O(

∑
all cuboids C

|cov(C)|)
time (using a linked list of cuboids ordered by their coverage).∑

C |cov(C)| is bounded in two ways: i) There are a total of
2d cuboids C and each |cov(C)| ≤ |L|. ii) For a k-dim cuboid
C, |cov(C)| ≤ 2k; so

∑
C |cov(C)| ≤ ∑d

k=0

(
d
k

)
2k = 3d. So

we have
∑

C |cov(C)| ≤ min{3d, 2d|L|}. So the overall running
time of Algorithm 1 is O(min{3d, 2d|L|}|L| log |L|). �

Proof of Theorem 7.
Approximation Ratio. Suppose the optimal solution is to se-

lect s∗ cuboids C∗
1 , C

∗
2 , . . . , C

∗
s∗ as Lpre such that the number of

covered cuboids |⋃s∗
i=1 cov(C

∗
i , θ0, ε, s

∗)| = OPT is maximized.
Of course, s∗ ≤ |L|. When s = s∗ in line 1 of Algorithm 2,
GREEDYCOVER(L,θ0, s∗) is called. To prove the promised ap-
proximation ratio, we only need to prove GREEDYCOVER will se-
lect s∗ cuboids C′

1, C
′
2, . . . , C

′
s∗ (in this order) as Lpre such that

|⋃s∗
i=1 cov(C

′
i, θ0, ε, s

∗)| ≥ (1 − 1/e)OPT. The proof for this
is similar to the one in the proof of Theorem 6. So for the space
limit, we omit it here. The weight version (maximize the weight of
cuboids covered by Lpre) is very similar to the above.

Comparison to Kall and Kbase . The solution offered by Kall and
Kbase is achieved by Algorithm 2 when s = |L| and 1, respectively.
So the final solution output by Algorithm 2 is at least as good.

Time Complexity. Selecting more than |L| cuboids into Lpre

does not help, since selecting Lpre = L is a better solution than
that. So we only consider s from 1 up to |L|. Similar to FEASIBLE,
GREEDYCOVER can be implemented in O(min{3d, 2d|L|}) time.
For the weighted version, an additional factor O(log(2d)) = O(d)
is needed since we need to maintain a priority queue for all cuboids.
So the overall running time is O(min{3d, 2d|L|}d|L|). �

Proof of Theorem 8.
Independent Laplace noise Lap(|Lpre|/ε) is injected to each cell

measure c(a) to publish c̃(a). There are a total of |Epre| cells; so
from the CDF of Laplace distribution and union bound, with prob-
ability 1− δ, none of the cells has the absolute noise |c̃(a)− c(a)|
larger than (|Lpre|/ε) log(|Epre|/δ). c(·) is a feasible solution to (6)
and ĉ(·) is the optimal. So ∀a ∈ Epre : |ĉ(a) − c(a)| ≤ |ĉ(a) −
c̃(a)|+|c(a)− c̃(a)| ≤ 2|c̃(a)−c(a)| ≤ (2|Lpre|/ε) log(|Epre|/δ).
The conclusion follows by summing the above inequalities up. �

Proof of Theorem 9.
LEMMA 2. (Problem 1.10 in [9]) Let X = X1+X2+. . .+Xn

where Xi’s are independent and identically distributed with the ex-
ponential distribution with parameter α ∈ (0, 1). With probability
at least 1− δ, where δ =

(
η

eη−1

)n
, we have X ≤ ηE [X] (η > 1).

The above lemma can be proved by considering the moment gen-
erating function. We utilize it to prove Theorem 9 as follows:

For each cell a ∈ Epre, since Ya = c̃(a) − c(a) is a Laplace
noise Lap(|Lpre|/ε), we have Xa = |Ya| is distributed with the
exponential distribution with parameter ε/|Lpre| ∈ (0, 1) if ε ≤
|Lpre|. Let X =

∑
a∈Epre

Xa. We have E [X] = |Epre||Lpre|/ε.
From Lemma 2, we have, with probability at least 1 − δ, where
δ = (η

eη−1)
|Epre|,

∑
a∈Epre

|c̃(a)− c(a)| ≤ |Epre||Lpre|
ε

η. So∑
a∈Epre

|ĉ(a)−c(a)| ≤∑
a∈Epre

|ĉ(a)− c̃(a)|+∑
a∈Epre

|c̃(a)−c(a)|
≤∑

a∈Epre
|c(a) − c̃(a)| +∑

a∈Epre
|c̃(a) − c(a)| ≤ |Epre||Lpre|

ε
2η.

The second inequality above is because c(·) is a feasible solution
to (7) but ĉ(·) is the optimal. Set η = η/2 to complete the proof. �
Proof of Theorem 10.

(i) Correctness. We rewrite (8) as an unconstrained version:

minimize f(ĉ(·)) =
∑

a∈Epre

⎡
⎣
⎛
⎝ ∑

a′∈Base(a)

ĉ(a′)

⎞
⎠− c̃(a)

⎤
⎦
2

.

To obtain the optimal solution, setting the gradient of f(ĉ(·))
w.r.t. ĉ(a′) for each base cell a′ to be zero. For each base cell a′,

∂f

∂ĉ(a′)
= 2

∑
a: a∈Epre, a′∈Base(a)

⎡
⎣
⎛
⎝ ∑

a′∈Base(a)

ĉ(a′)

⎞
⎠− c̃(a)

⎤
⎦

= 2
∑

a∈Epre∩Ancs(a′)
(ĉ(a) − c̃(a)) = 0,

which is equivalent to
∑

a∈Epre∩Ancs(a′)
ĉ(a) =

∑
a∈Epre∩Ancs(a′)

c̃(a). (15)

For any cell a′′ in a cuboid C′′, sum up Equation (15) for all
base cells a′ ∈ Base(a′′). On the left-hand side, we have (let Base
denote the set of all base cells)

est(a′′) =
∑

a′∈Base(a′′)

∑
a∈Epre∩Ancs(a′)

ĉ(a)

=
∑

C∈Lpre

∑
a′∈Base(a′′)

∑
a∈C∩Ancs(a′)

ĉ(a)

=
∑

C∈Lpre

∑

a′: a′∈Base,
a′[C′′]=a′′[C′′]

∑
a: a∈C,

a[C]=a′[C]

ĉ(a)

=
∑

C∈Lpre

∑
a∈C

∑

a′: a′∈Base, a[C]=a′[C]

a′[C′′]=a′′[C′′]

ĉ(a)

=
∑

C∈Lpre

∑
a: a∈C,

a[C∧C′′]=a′′[C∧C′′]

∑

a′: a′∈Base, a[C]=a′[C]

a′[C′′]=a′′[C′′]

ĉ(a)

=
∑

C∈Lpre

∑
a: a∈C,

a[C∧C′′]=a′′[C∧C′′]

⎛
⎝ĉ(a)

∏
Ai∈A−[C]−[C′′]

|Ai|
⎞
⎠

=
∑

C∈Lpre

∑

b: b∈(C∧C′′),
b[C∧C′′]=a′′[C∧C′′]

⎛
⎝ĉ(b)

∏
Ai∈A−[C]−[C′′]

|Ai|
⎞
⎠

=
∑

C∈Lpre

∑

b: b∈(C∧C′′),
b[C∧C′′]=a′′[C∧C′′]

deg(C ∨ C′′)ĉ(b), (16)

where deg(C) =
∏

Ai∈A−[C] |Ai| and A is the set of all dimen-
sions and |Ai| is the cardinality of dimension Ai.

On the right-hand side, we have

obs(a′′) =
∑

a′∈Base(a′′)

∑
a∈Epre∩Ancs(a′)

c̃(a) =
∑

a: a∈C
a[C′′]=a′′[C′′]

obs(a), (17)

where C could be any cuboid that is a descendant of C′′ and can
be computed from Lpre. So obs(a′′) can be computed recursively.

From Equation (15), we know est(a′′) = obs(a′′). Solving a
system of linear equations, we can obtain ĉ(·) as in (9)-(14).

(ii) Time Complexity. We consider how to compute ĉ(a) for all
cells here (of course including the ones in L). For each base cell a′,
we compute obs(a′) as in (9) (recall Base(a′) = {a′} for a base
cell a′), for all base cells using O(M |Lpre|) time. For other cells
a′′ in the data cube, we compute obs(a′′) as in (10), from d-dim
cuboids to the 0-dim cuboid, using O(Nd2) time in total.

Now we compute ĉ(a) from the 0-dim cuboid to d-dim cuboids
as in (12)-(14): assuming deg(·) and ratio(·) have been precom-
puted, aux(a′′) (and thus ĉ(a′′)) can be computed in O(d|Lpre|)
time as for each C ∈ Lpre, there is only one cell b satisfying the
summing-up condition in (13). So in total, we need O(N(d2 +
d|Lpre|)) time to compute ĉ(a) for all cells in the data cube.

(iii) Unbiased. We can prove E [ĉ(a)] = c(a) by induction on
the dimensionality of a. Recall E [c̃(a)] = c(a). For the 0-dim
cell a0, we have aux(a0) = 0, and thus from (9) and (14), ĉ(a0)
is nothing but the weighted average of “different ways to obtain it
from cuboids in Lpre”. We can show E [ĉ(a0)] = c(a0) using the
linearity of expectation. For an i-dim cell, we first take expectation
on both sides of (14), and then use the linearity of expectation and
the induction assumption to draw the conclusion.

(iv)-(v) Optimality. For (i) and (iii), ĉ(·) is the ordinary least
squares estimator (minimizing L2 norm (8)) and unbiased. Inde-
pendent noise with identical variance is injected. So the promised
properties follow from the Gauss-Markov theorem [33]. �

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

