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Abstract: A systematic approach for the design of
variable structure power system stabilisers
(VSPSS), with desired eigenvalues in the sliding
mode is presented. A detailed sensitivity analysis
reveals that the VSPSS is quite robust to wide
variations in operating load and system param-
eters.

1 Introduction

High initial response, high gain excitation systems
equipped with power system stabilisers (PSS) have been
extensively used in modern power systems as an effective
means of enhancing the overall system stability. A linear
dynamic model of the system obtained by linearisation of
a nonlinear model around a nominal operating point is
usually adopted for the PSS design. Several stabilisation
strategies have been proposed in the past to achieve
improved dynamic performance of the system [1-8].

The PSS designed using a linearised model, provides
an optimum performance for the operating point and
system parameters considered. However, a fixed structure
optimum PSS designed for a particular operating and
system condition would provide suboptimum per-
formance under variations in system parameters and
operating conditions.

The application of adaptive PSS has been proposed
[9-12] to counteract the problem of variations in the
system parameters. The adaptive PSS provides an
improved performance under variations in system param-
eters and operating conditions. However, for the realis-
ation of such adaptive self-tuning PSS, online
identification of system parameters, observation of
system states and computation of feedback gains in a
short sampling period is needed. Moreover, the system is
generally represented by a low-order discrete-time
dynamic model, the performance thereby becoming sub-
optimal.

Variable structure control (VSC) theory has been
applied for designing power system stabilisers [13, 14].
The variable structure controllers are quite insensitive to
system parameter variations and their realisation is
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simple. A systematic procedure for the selection of the
proper switching vector is extremely important for the
design of VSCs.

Hsu and Chan [13] have applied VSC theory for the
design of PSS for a machine-infinite bus system. Follow-
ing their approach, it is necessary to choose some of the
components of the switching vector by trial and error.
Although, this would ensure sliding mode operation on
the switching hyperplane, the system performance would
probably not be optimum.

Chan and Hsu [14] have further proposed an optimal
VSPSS for a machine-infinite bus system as well as for a
multimachine system. The proposed VSPSS is optimal in
the sense that the switching hyperplane is obtained by
minimising a quadratic performance index, in the sliding
mode operation. The resulting switching vector and
hence the switching hyperplane depends on the weighting
matrices associated with the performance index, the
optimum selection of which is extremely difficult.

Utkin and Yang [15] have suggested three alternative
approaches for choosing a switching vector such that the
sliding motion has desirable properties. In the first, a
system is designed, in which the sliding mode is described
by equations with favourably located eigenvalues; in the
second, a quadratic performance index is minimised with
respect to the state vector; the third procedure consists in
minimising a quadratic performance index with respect
to the state vector and also minimising the so-called
equivalent control problem, which characterises the
control costs in the sliding mode.

No attempt seems to have been made to design a
VSPSS such that the resulting motion is described by
equations with favourably placed eigenvalues. It should
be noted that the desired location of the poles of a closed
loop system can be more conveniently prescribed to
achieve the desired dynamic performance, and hence the
switching vector C, as compared to the selection of
weighting matrices needed to achieve the desired
dynamic performance and hence C as in case of optimum
VSPSS.

2 System investigated

The system investigated, comprises a synchronous gener-
ator connected to an infinite bus through a double-circuit
transmission line. An IEEE type-1 excitation system
model [16], which neglects saturation of the exciter and
voltage limits of amplifier output, has been considered.
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3 PSS performance objectives

Two distinct types of system oscillations are usually
encountered in an interconnected power system [8]. One
type is associated with units at a generating station
swinging with respect to the rest of the power system.
Such oscillations are referred to as 'local plant mode
oscillations'. The frequencies of these oscillations are
typically in the range 0.8-2.0 Hz. The second type of
oscillation is associated with the swinging of many
machines in one part of the system against machines in
other parts. These are referred to as 'interarea mode'
oscillations, and have frequencies in the range 0.1-0.7 Hz.
The basic function of the PSS is to add damping to both
types of system oscillations.

It should be noted that only a local mode of oscil-
lation is encountered in a simple machine-infinite bus
system and hence the effectiveness of PSS in damping
interarea modes of oscillations cannot be studied with a
machine-infinite bus system.

The overall excitation control system (including PSS)
is designed to

(i) Maximise the damping of the local plant mode as
well as interarea mode oscillations without compromis-
ing the stability of other modes

(ii) Enhance system transient stability
(hi) Not adversely affect system performance during

major system upsets which cause large frequency excur-
sions

(iv) Minimise the consequences of excitation system
malfunction due to component failures.

4 Variable structure systems (VSS)

The basic philosophy of the variable structure approach
is simply obtained by contrasting it with the linear state
regulator design for the single input-system

x = Ax + bu (1)

In the linear state regulator design, the structure of the
state feedback is fixed as

KTx (2)

where, the state-feedback gain vector K is chosen accord-
ing to various design procedures, such as eigenvalue
placement or quadratic minimisation.

In VSSs, the control is allowed to change its structure,
i.e., to switch at any instant from one to another member
of a set of possible continuous functions of the state. The
variable structure controller design problem is then to
select the parameters of each of the structures and to
define the switching logic [17]. A reward for introducing
this additional complexity is the possibility of combining
useful properties of each of the structures. Moreover, a
VSS can possess new properties not present in any of the
structures used. For instance, an asymptotically stable
system may consist of two structures neither of which is
asymptotically stable.

The change in structure of the controller takes place
on the hyperplane

(3)S = CTx = 0

where C is a constant vector. This hyperplane is also
known as the switching hyperplane.

When the control signal u is a function of the state
vector x undergoes discontinuities on the plane S = 0, the
velocity vector also undergoes discontinuities on the
same plane. If the state trajectories are directed towards
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the plane, an S = 0, sliding mode will appear in this
plane. The pair of inequalities,

L t s - . 0 -S>0 and L t s _ o + S < 0 (4)

are a sufficient condition for the sliding mode to exist.
The control signal is a piecewise linear function of x

with discontinuous coefficients

u = - \jiTx
a, if Xi S > 0

ifx,-S<0
(5)

where, at and /J, are constants and i = 1,2,..., n.
It should be noted that the switching of the state feed-

back gains occur on the discontinuity plane S = 0. The
choice of controls should ensure that they give rise to the
sliding mode on the discontinuity plane S = 0. The
switching vector C is chosen so that the sliding motion
has the desired properties.

4.1 Equations of the sliding mode with desired
eigenvalues

Consider the dynamic model of the system in state-space
form

x = Ax + bu (6)

Define a coordinate transformation

Z = Mx (7)

where the transformation matrix M is chosen so that

MA = r ° l (8)

The first (n — 1) rows of the matrix M form the basis of a
subspace orthogonal to the subspace spanned by the
vector b, rank M = n and b2 is a nonzero scalar (n is the
order of the system).

Substituting x = M~lZ from eqn. 7 into eqn. 6 we
obtain

Z=MAM~1Z + (9)

By partitioning Z such that Z = \_Z\ Z 2 ] r where Zt is a
(n - 1) column vector and Z2 a scalar (i.e. the last
element of Z), eqn. 9 reduces to

KHt
A1U A12, A2l and A22 are the block matrices making up
the MAM'1 matrix with appropriate dimensions. From
eqn. 10

(ID

u (12)

Al2Z2

A22Z2

Eqn. 11 may be regarded as describing the dynamics of
an open-loop control system with state vector Zx and
control signal Z 2 . Since the pair (A, b) is assumed to be
controllable, the pair (A1U A12) is also controllable [15].

Substituting x = M~lZ in eqn. 3, the equation of the

switching hyperplane reduces to

= C M £ = U (Li)

writing CTM~X = [C\ C2] where Ct is a (n — 1) column
vector and C2 a scalar, eqn. 13 can be written as

C[Z! + C2Z2 = 0 (14)
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Without loss of generality, we can assume that C2 = 1
and the control signal Z2 can be expressed as

Z2=-CT
1Z1 (15)

Using eqns. 11 and 15 we obtain the equations of the
sliding mode in closed loop form as

^ 1 ^ \ " 1 1 12 ^ 1 / 1 ^ C 1 V ^v

The dynamic model of the system is obtained from the
transfer function model (Fig. 1) in state-space form as

The eigenvalues of the matrix Ac may be placed arbit-
rarily in the complex plane, since the pair (Alu A12) is
controllable, by a suitable choice of the vector Cv

The algorithm for the realisation of the switching
vector and hence the switching hyperplane can be sum-
marised as follows

(i) Select the transformation matrix M (eqn. 7)
(ii) Compute the vector Cy such that the eigenvalues

ku ..., kn _! of the matrix Ac characterising the dynamics
in the sliding mode have desirable placement

(iii) Choose the equation of the hyperplane to be of the
form

S = [C[ Y]Mx = 0 (17)

5 Design of variable structure PSS with desired
eigenvalues in the sliding mode for a
machine-infinite bus system

The small perturbation transfer-function block diagram
of the machine-infinite bus system [2], relating the
pertinent variables of electrical torque, speed, angle, ter-
minal voltage, field voltage and flux linkages, is shown in
Fig. 1.

Fig. 1 Linearised small perturbation model of generator connected to
infinite bus through transmission line

5.1 Evaluation of K constants
The initial d-q axis current and voltage components and
torque angle needed for evaluating the K constants are
obtained from the steady-state equations given in Section
9.1 using the system data given in Section 9.2. These are
as follows

Vd0 = 0.8211 p.u. Ii0 = 0.8496 p.u.

E'qo = 0.8427 p.u. Vqo = 0.5708 p.u.

Iqo = 0.5297 p.u. Vo = 1.0585 p.u.

So = 77.40°

The K constants evaluated using the relations given in
Section 9.3 are

Kj = 1.15839 K2 = 1.43471 K3 = 0.36

K4 = 1.83643 Ks= -0.11133 K6 = 0.31711
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x = Ax + bu

where

(18)

Ad AE'q AEfi AV

and u is the stabilising signal obtained through VSPSS.
The values of A and b are given in Section 9.4.

As discussed earlier the transformation matrix M
should be chosen so that the first (n — 1) rows are
orthogonal to vector b and the product of the nth row of
M and b is nonzero. Accordingly, M is chosen as

M =

Applying the coordinate transformation Z = Mi , the
block matrices Alt and Al2 of the matrix MAM'1 for
the system investigated, are:

1
0
0
0
0
0

0
1

0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
0
1

0
0
0
0
1
0

0.0
314.0

0.0
0.0
0.0

0.0"
0.0
0.0
2.0
0.2

-0.1158
0.0

-0.3061
0.0
0.0

-0.1435
0.0

-0.463
0.0
0.0

nics of the system in the
v
j

A 12 C\)Z\ ~-ACZ1

0.0
0.0
0.1667
0.1
0.01

sliding

0.0
0.0
0.0
0.0

-2 .0

mod
described by

(19)

The sliding mode operation which desired pole locations
can easily be obtained by choosing the elements of Ct

appropriately. Pole placement technique is used to obtain

To choose Cx so that the sliding motion has desired
eigenvalues, the system described by eqn. 11 is trans-
formed to phase canonical form

+ A, (20)

where

0
0
0
0

o"
0
0
0
1

1
0
0
0

1 a5 2

0
1
0
0

<*53

0
0
1
0

a 5 4

0
0
0
1

(21)

where asi = 0.6102; a52 = 1.4776; a53 = -72.0679;
a S 4 = - 3 7 . 0 5 3 ; amd a55 = -2.363. The closed-loop
sliding mode equations can thus be written in phase-

265



canonical form as

Expressing

(22)

'12 "-13 *--14 C 1 5 ] r

the characteristic equation for the system described by
eqn. 22, is obtained as

s5 + (C1S - a55)s4 + (C14 - aS4)s3 + (C13 - aS3)s2

+ ( C 1 2 - a 5 2 ) s + ( C 1 1 - a 5 1 ) = 0 (23)

For the system investigated, eqn. 23 reduces to

s 5 + ( C i s + 2.363)s4

+ (C14 + 37.053)s3 + (C13 + 72.068)s2

+ (C12 - 1.477)s + ( C u - 0.61) = 0 (24)

A stabilising signal

u = — i/^ Aco — \l/2 Aco it (25)

is considered. Such a proportional-integral stabiliser with
speed deviation as its input signal is capable of providing
the desired phase lead by appropriate selection of the
gain settings, \/J1 and i//2- The sliding mode operation
may be realised by switching the gain settings tfri and \j/2

according to the following logic

1 = 1,2 (26)

Fig. 2 shows the schematic block diagram of the VSPSS.

Fig. 2 Variable structure power system stabiliser

The desired location of the eigenvalues and the gain
setting a, are obtained using the following step by step
procedure:

Step 1: A set of real negative eigenvalues kt (i = 1, n)
are assumed.

Step 2: A performance index J given by

J =

where

A$2(t)~] dt

= A(o(t) - Aco(oo)

= A<5(0 - A<5(oo)

is evaluated for a wide range of a considering a 1% step
increase in mechanical torque. The value of a corres-
ponding to Jmin is chosen.

Step 3: All the eigenvalues are shifted to the left by a
small step AA.

Step 4: Repeat steps 2 and 3 sequentially until a
minimum value of Jmin is attained.

For the system studied, the minimum value of Jmln was
obtained for <xt = 15.0 (i = 1, 2) and pole locations at
(-8.0, -8 .5 , -9.0, -9 .5 , -10.0). For these pole loca-
tions the characteristic equation of the system (eqn. 22) is

s5 + 45.0s* + 808.75s3 + 7256.25s2

+ 32501.5s + 58140.0 = 0 (27)

Comparing the coefficients of eqns. 24 and 27 the vector
Ct thus obtained is

Q = [-82146.276 188.818 2647.961

-32.674 539.925]T

Hence, the switching vector C = M[C\ C 2 ] T is given by

C= [-82146.276 188.818 2647.961

-32.674 1.0 539.925]T

Fig. 3 shows the dynamic responses for Aco and A<5 con-
sidering VSPSS following a 1% step increase in ATm.

-0.002

1 2 3

time.s
Fig. 3 Dynamic responses for Aco and AS

without PSS
VSPSS
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Dynamic responses of the system without PSS are also
plotted as a comparison. It can be clearly seen that the
responses obtained with VSPSS are well damped.

6 Sensitivity analysis

A detailed sensitivity analysis is carried out to under-
stand the sensitivity of the system with VSPSS to changes
in significant system parameters viz. line reactance xe,
inertia constant H, field open-circuit time constant T'do,
AVR gain KA etc. and loading conditions P and Q over a
wide range, from their nominal values. The dynamic
responses for Aeo and A<5 following a 1 % step increase in
A Tm were obtained and analysed.

10

0.007

0.006

0.005

, 0.004
)

' 0.003

0.002

0.001

0 1 2 3 4 5
time.s

Fig. 4 Dynamic responses for ±25% change in line reactance xt with
VSPSS

xe = 0.4 p.u. (nominal)
xe = 0.3 p.u. (25% decrease)
xc = 0.5 p.u. (25% increase)

Fig. 4 shows the dynamic responses of the system with
VSPSS for

(i) xe = 0.4 p.u. (nominal value)
(ii) xe = 0.3 p.u. (25% decrease from nominal)

(iii) xe = 0.5 p.u. (25% increase from nominal).

It can be clearly seen that the dynamic performance of
the system with VSPSS is quite insensitive to ±25%
variations in line reactance xe from its nominal value.

IEE PROCEEDINGS-C, Vol. 140, No. 4, JULY 1993

Further, sensitivity analysis considering +25% change in
P, Q, KA, H and T'io from their nominal values revealed
that the VSPSS is quite robust to wide variations in these
parameters.

7 Conclusions

A systematic approach for the design of a VSPSS with
desired eigenvalues in the sliding mode has been pre-
sented. The dynamic performance of the system with
VSPSS is found to be well damped. A detailed sensitivity
analysis considering VSPSS shows that the system
dynamic performance is quite insensitive to wide changes
in system parameters such as xe, P, Q, T'iB, H and KA.
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9 Appendices

9.1: The steady-state values of the d - q axis voltage and
current components for the machine infinite-bus system
for the nominal operating condition are given below [2].
These are expressed as functions of the steady-state ter-
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minal voltage Vto and steady-state real and reactive load i.e. re = 0 for the sample problem investigated,
currents IPo and IQo, respectively.

= UpoXq + IQo(Vto + IQoxq)yEq,

K = i(Vt0 - IPore - lQoxe)
2 + (J p ox e -

sin 80 = lVtoIpo(xq + xe) - rexq(I
2
Po + I2

Qo)

ho

vqo =
''do =

where

Id, lq = direct and quadrature axis components of arma-
ture current

Vd,Vq = direct and quadrature axis components of ter-
minal voltage

E'q = voltage proportional to direct axis flux linkages
3 = angle between quadrature axis and infinite bus
Vo = infinite bus voltage
Eq = open-circuit terminal voltage

Subscript
o — steady-state value

92: The nominal parameters of the system and the oper-
ating conditions used for the sample problem investi-
gated are given below. All data are given in per unit of
value, except that H and time constants are in seconds.

Generator

H = 5.0 s Ti0 = 6.0 s

xd = 1.6 x'd = 0.32 xq = 1.55

IEEE type-I excitation system

KA = 50.0 TA = 0.05 s

KE = -0.05 TE = 0.5 s

KF = 0.05 TF = 0.5 s

Transmission line

xe = 0.4 re = 0.0

Operating condition

p = 1 . 0 0 = 0.05 Kw = 1.0 / = 5 0 H z

9.3: The constants K1-K6 are evaluated using the rela-
tions given below [2] considering zero external resistance

-f—-IQgVosm3o +
xe + xd

K,sir

K4 =

xe +

x'd +

xd +

Xd~

X'd

Xe

Xe

X'd

xd
sin

x V

x'd Vt0

9.4: The linear state-space model of the system [eqn. 18]
is given by

x = Ax + bu

where

x = [A<o A<5 AE'q AEfd AVR

0

2nf

0

0

0

0

b = [0 0

2H
0

E±

0

TA

0

0 0 *

K2

2H
0

1
T'doK3

0

KAK-6

TA

0 -

:JTA oy

0

0

1
T'do

~TE

0

KEKF

TETF

0

0

0

1

TE

1
TA

KF

TETF

0

0

0

0

K/
TA

1

TF
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