
Intrusion Detection for Encrypted Web Accesses

Akira Yamada
KDDI R&D Laboratories Inc.

yamada.akira@kddilabs.jp

Yutaka Miyake
KDDI R&D Laboratories Inc.

miyake@kddilabs.jp

Keisuke Takemori
KDDI R&D Laboratories Inc.

takemori@kddilabs.jp

Ahren Studer
Carnegie Mellon University

astuder@ece.cmu.edu

Adrian Perrig
Carnegie Mellon University

adrian@ece.cmu.edu

Abstract

As various services are provided as web applications,
attacks against web applications constitute a serious prob-
lem. Intrusion Detection Systems (IDSes) are one solution,
however, these systems do not work effectively when the ac-
cesses are encrypted by protocols. Because the IDSes in-
spect the contents of a packet, it is difficult to find attacks
by the current IDS. This paper presents a novel approach
to anomaly detection for encrypted web accesses. This ap-
proach applies encrypted traffic analysis to intrusion detec-
tion, which analyzes contents of encrypted traffic using only
data size and timing without decryption. First, the system
extracts information from encrypted traffic, which is a set
comprising data size and timing for each web client. Sec-
ond, the accesses are distinguished based on similarity of
the information and access frequencies are calculated. Fi-
nally, malicious activities are detected according to rules
generated from the frequency of accesses and characteris-
tics of HTTP traffic. The system does not extract private
information or require enormous pre-operation beforehand,
which are needed in conventional encrypted traffic analysis.
We show that the system detects various attacks with a high
degree of accuracy, adopting an actual dataset gathered at
a gateway of a network and the DARPA dataset.

1 Introduction

While web-based applications are becoming common,
attacks against these applications pose a serious problem.
An Intrusion Detection System (IDS) is one way of dealing
with such attacks. An IDS is located beside the web server
and monitors the users’ activities by protocol analysis and
pattern matching. In other words, IDSes reconstruct HTTP
headers and payload from captured packets, and identify at-
tacks by comparing traffic to signatures of attacks. Thus the
process requires the privilege of watching the entire payload
of packets.

Mechanisms such as SSL (Secure Socket Layer) [1, 2] or
its successor TLS (Transport Layer Security Protocol) [3]
have been proposed as ways of ensuring secure communi-

cations over the Internet. These protocols make it possible
to authenticate the server and client, and to safeguard the
integrity and confidentiality of data. For encrypted traffic,
a conventional IDS needs a deposited private key; other-
wise, it needs to monitor the traffic after decryption. These
conventional approaches are problematic from the perspec-
tive of key management and network configuration. How-
ever, such situations are becoming more common, because
web applications that require secure communication be-
tween client and server are increasing in popularity. There-
fore, the managers of web application servers are faced with
the dilemma in that they want to provide secure services us-
ing SSL/TLS, but the system has become less secure due to
the lack of IDS monitoring. Our main objective is to solve
this problem.

In related research, traffic analysis attacks against en-
cryption protocols have been proposed. These attacks ex-
tract covert information from encrypted traffic without de-
cryption. Several studies [4, 5, 6, 7, 8] have reported that
the type of content can be estimated, even if the traffic is
encrypted by SSL, WEP or IPsec. Observing only the vol-
ume and the interval of transferred data, they can identify
the type of content or destination URL with a high level
of accuracy. However, the objective of these studies is to
gather private information from encrypted traffic, and there
are some problems in applying these methods to the direct
monitoring of traffic. Because they have to compare en-
crypted traffic with enormous archives of unencrypted traf-
fic, they need to gather unencrypted data before the anal-
ysis. It is difficult for an IDS to gather all of the content
before because a Web server and the IDS are managed sep-
arately. Furthermore, the process consists of comparisons
with every archive, and requires too much processing. Such
excessive computation prevents real-time analysis for intru-
sion detection.

We propose a novel approach to anomaly detection for
encrypted web accesses. The approach applies encrypted
traffic analysis to intrusion detection. Our approach uses
only data size and timing of traffic without decryption to
analyze the content of encrypted traffic. First, the system
extracts data size and timing information for each web client

from the encrypted traffic. Second, the clients’ accesses are
distinguished based on similarity of the information and ac-
cess frequencies are calculated. Finally, frequencies of ac-
cesses and characteristics of HTTP traffic are used to detect
malicious activities.

We evaluate our system using an actual dataset gathered
at a network gateway and a DARPA IDS evaluation dataset
[10, 9]. We apply the algorithm to unencrypted accesses
instead of encrypted traffic in this evaluation, but we ac-
count for the influence of encryption in the form of random
padding for each data size. The evaluation shows that our
system achieves a high degree of detection accuracy.

This paper is organized as follows. Section 2 clarifies the
attacks that our system targets, and Section 3 explains the
proposed system. Section 4 evaluates our system, and Sec-
tion 5 discusses accuracy and performance of the proposed
system. Section 6 compares the proposed system with re-
lated studies. Finally, Section 7 presents our conclusions.

2 Attacks against web applications

There are a wide range of attacks against web applica-
tions. In this section, we clarify different attack classes that
the system targets. Note that the attack classification does
not refer to traditional signature approaches, which compare
a HTTP request string with a set of signature strings. The
classification makes the target clear, but it is a more abstract
class than the traditional approaches. The system detects
the following attack classes: scanning attacks, scripting lan-
guage vulnerabilities and buffer overflows.

2.1 Scanning attacks

Scanning attacks examine the existence and configura-
tion of a web server or proxy server at an IP address. The
attacker can obtain information about the web server and/or
proxy server by using simple HTTP methods, such as GET,
HEAD and OPTIONS. A directory traversal attack, which
accesses the parent directory and gains information about
the construction of directories and files, is also categorized
as a scanning attack. The following HTTP requests are ex-
amples of scanning attacks.

GET http://www.qq.com/ HTTP/1.1
HEAD / HTTP/1.1
OPTIONS / HTTP/1.1
GET / HTTP/1.1

2.2 Scripting language vulnerabilities

Most web applications use scripting languages such as
Perl or PHP. A specific version of scripts or sample code
distributed with the language have vulnerabilities as they
allow attackers to execute arbitrary codes. The attackers
examine whether a specific script is installed or not by ac-
cessing the script on the server. Once a vulnerable script is
discovered by the attacker, the attacker can compromise the
server. Some examples are given below.

Internet

Client
HTTPS

Client

...

(1) Feature vector
 extraction

(2) Frequency
analysis

(3) Attack
detection

Normal/
Abnormal

Server

IDS

Traffic

Figure 1. Proposed system configuration.

GET /adserver/adxmlrpc.php HTTP/1.0
GET /phpAdsNew/adxmlrpc.php HTTP/1.0
GET /phpadsnew/adxmlrpc.php HTTP/1.0

2.3 Buffer overflows
Attackers using a buffer overflow attack can execute ar-

bitrary code on the web server by overwriting stack or heap
memory of the process. Though usual programs check the
bounds of memory accesses, unchecked memory accesses
allow attackers to crash or gain control of a process by send-
ing a larger request or argument. In the worst case, the at-
tacker can control the web server through the vulnerability.
It is possible that web applications, modules, and script lan-
guages are also vulnerable in this way. The following is an
example.

GET /default.ida?NNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNN

3 Intrusion detection for encrypted web ac-
cesses

3.1 System configuration
Fig.1 shows a network configuration of the proposed sys-

tem. The system is located at the gateway of the web server,
and analyzes encrypted traffic without decryption. The de-
tection has 3 components, (1) feature vector extraction, (2)
frequency analysis, and (3) attack detection. First, traffic is
divided into units that describe each client’s activities and a
feature vector, a set of parameters that describes the activity,
is extracted from each unit. Timing and size of transferred
data are the parameters used for encrypted traffic analysis.
Second, feature vectors are categorized into clusters based
on similarity metrics, which enables the frequency of each
access to be analyzed. Because the sizes of encrypted data
are not equivalent to plain data, it is not possible to count up
each feature vector using an ordinary method. Finally, each
feature vector is judged to be a legitimate or illegitimate ac-
cess based on the parameters included in the feature vector
and frequency of the feature vector.

3.2 Feature vector extraction
Captured traffic is divided into several units that describe

each client’s activities. And a feature vector is extracted

Time

T
ra

ff
ic

server:443client:2825

(1) source
IP address

(2) Interval

(3) Protocol
 analysis

Total traffic
Time

T
ra

ff
ic

Client’s activities

391 byte

9709 byte

435 byte

12409 byte

...

460 byte

57763 byte

server:443client:2825

Request(460,435,391,...)
Response(57763,12409,9709,...)

(4) Feature vector
extraction

One activity Tranferred data sizes

A feature vector

Figure 2. Feature vector extraction.

from each unit, which is a set of parameters that describe
features of the activity. First, every packet is categorized
into the activities of each web client, which correspond to
one click in a web page. Then each activity is transformed
into a feature vector, which is a set of parameters repre-
senting the activity. Web clients are distinguished based on
source IP address and activities are distinguished based on
interval between packets. This means that a pair of source
and destination IP addresses correspond to a sequence of the
client’s activities, and a group of packets observed within a
short period correspond to activity by that client. The fea-
ture vector extraction is as following:

1. Accesses belonging to a client are categorized based
on the source IP address. We assume that a client oc-
cupies an IP address during the activities and another
client does not occupy the address at the same time.

2. Activities that belong to a client are divided into each
activity based on interval of the packets. We assume
that if packets are observed continuously then these
packets are categorized into one activity. As an ex-
ample of one activity, the user clicks a hyperlink in a
web page and waits for the browser response.

3. A TCP session is reconstructed from packets included
in one activity and the SSL/TLS protocol is decoded
from the session.

4. The feature vector is extracted as a set of volumes that
are transferred at the session. The 10 largest volumes
are picked up as the feature vector. Accounting for
the direction of data, the feature vector consists of 20
volumes of data. The volumes are sorted in terms of
size because the order of transmission does not depend
on the client’s activity.

Fig.2 shows the steps to extract a feature vector. The traffic
is divided into activities for each client and transferred to
feature vectors corresponding to the activities.

The system decodes the SSL/TLS protocol in order to
estimate the volume of transferred data. Fig.3 shows the

Record Layer

Change
Cipher
Spec

Alert Hand
shake

Application
Data

type

version

length

fragment

Encrypted
Not Encrypted

Figure 3. Structure of SSL/TLS packet.

structure of a packet for SSL/TLS. The SSL/TLS protocol
is constructed from the Change Cipher Spec, Handshake
and Alert protocols, and these sub-protocols are built on the
Record Layer protocol. The header of the Record Layer,
which includes information about the type of sub-protocol
and the volume of data, is not encrypted. Using a type of
sub-protocol, we eliminate packets involving the negotia-
tion of security protocol, such as key exchange or authen-
tication. Protocol version SSL 2.0 and SSL 3.0/TSL 1.0
are slightly different. In protocol version SSL 3.0/TLS 1.0,
we estimate the volume of data based on Length field in
the Record Layer. In protocol version SSL 2.0, the Record
Layer does not include Length field, so we estimate the vol-
ume by reassembling the TCP connection only.

The size of encrypted data is not equivalent to plain data
because random padding is combined with the plain data,
which is at most 255 bytes. SSL/TLS supports 2 types of
encryption algorithm, stream cipher and block cipher. A
block cipher reduces more information than a stream cipher,
because a block cipher adjusts the length of data to block
size. Analyzing the SSL/TLS protocol header, the system
extracts approximate volumes of transferred data as the fea-
ture vector. The influence of random padding is accounted
for during the evaluations.

3.3 Frequency analysis

After feature vector extraction, each feature vector is as-
signed a temporary ID by which the system distinguishes
these activities. Because of the random padding, it is impos-
sible to count the number of feature vectors directly. The
system categorizes the feature vectors into certain groups
of vectors based on similarity metric, which is Euclid dis-
tance. The influence of random padding is removed by the
process; it means that the system treats similar feature vec-
tors as a unique access. The identification process enables
the system to analyze frequency of access. The algorithm is
as follows.

Now N feature vectorsxi(i = 1, 2, . . . , N) are catego-
rized intoL(< N) subgroups. Each group hasID`(` =
1, . . . , L). N + 1 th feature vectorxN+1 is assigned an
ID by following step. The set of vectors and the number of
vectors assignedID` areS` andN`, respectively. The av-
erage feature vector is defined as (1), which is the average
size of feature vectors included in anID`.

X` =
1

N`

∑

S`

xi (1)

1. As the similarity metric, calculate Euclid distances be-
tweenxN+1 andX`, and select minimum valueEmin

from the distances.

E` = euclid(xN+1 , X`) (2)

Emin = min
`

[E`] (3)

2. If Emin is less than thresholdTh0 thenIDmin is as-
signed toxN+1, whereIDmin corresponds toXmin

andEmin. The average feature vector and the number
of feature vectors are updated as (4) and (5).

Xmin ← 1
Nmin + 1

(Nmin×Xmin + xN+1) (4)

Nmin ←Nmin + 1 (5)

3. If Emin is equivalent to or more thanTh0 thenIDL+1

is assigned toxN+1 as a new ID. The number of
the feature vectorsNL+1 and average feature vector
XL+1 are (6)(7).

NL+1 ← 1 (6)

XL+1 ← xN+1 (7)

Once IDs are assigned, the system can count up the num-
ber of times each activity occurs and the number of times a
series of activities occur. Because the system regards events
that occur less frequently as attacks, the number of IDs or
transition between IDs has to be updated with each new ac-
tivity. The accesses to the web server are continuous, and
the output of the previous access is also continuous. The
following algorithm counts up the number of IDs contin-
uously. The detection of attacks is described in the Sec-
tion 3.4.

Access identification outputs a sequence ofM IDs,
IDj(j = 1, 2, . . . ,M) whereIDj ∈ {ID`}. M is the
number of activities observed up to this time, andIDM is
the latest ID. The next ID,IDM+1, updates counters us-
ing the following algorithm. The algorithm uses 2 tablesT1

andT2, which store counters for accesses and transitions,
respectively.

1. If the entry corresponding toIDM+1 does not exist in
tableT1, then register(IDM+1, cM+1) to the tableT1

and set the counter (cM+1 ← 1).

2. If the entry corresponding toIDM+1 exists in table
T1, then read the entry(IDM+1, cM+1) from the table
and increment the counter(cM+1 ← cM+1 + 1).

3. When IDM+1 appears afterIDM , concatenate
these IDs as a transition between accesses,tM =
{IDM |IDM+1}. If the entry corresponding totM
does not exist in tableT2, then registers(tM , cM) to
the table and set the counter (cM ← 1).

4. If the entry corresponding to the transitiontM exists in
tableT2, then read the entry(tM , cM) from the table
and increment the counter (cm ← cm + 1). The algo-
rithm is also able to handle transitions with more than
2 IDs.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5 10 15 20

client -> server
server -> client

Time [sec]

Si
ze

 [b
yt

e]

Figure 4. Transferred and received sizes in
web access.

3.4 Attack detection
We assume that a statistically rare event and an event that

differs from typical HTTP access behaviors are potentially
malicious. The system decides whether an access is legiti-
mate or not based on the access frequency and the charac-
teristics of HTTP accesses. The algorithm in Section 3.3
calculates the frequency of each access. The feature vector
provides the access characteristics.

We compare an observed access with the typical pattern
of web accesses. The approach is similar to conventional
anomaly techniques, but available parameters are limited
in encrypted traffic analysis. For example, the size of a
Request-line and type of method are hidden in the total size
of the transferred data.

Characteristically, in a typical web access, a client sends
requests consisting of a small number of bytes and receives
responses consisting of a large number of bytes. Fig.4 is
an example of web access that shows the transferred and
received volumes. Usually a client requests a specific re-
source from a web server and the server responds by pro-
viding the resource, so a large-sized request or a small-sized
response are abnormal. We employ two parameters, maxi-
mum size of requestThreq and maximum size of response
Thres to describe the typical pattern of web accesses.

The thresholdsThreq andThres correspond to the at-
tacks listed in Section 2. Typical Scanning attacks request
simple HTTP methods and only receive response codes.
The responses are smaller than regular contents, even if the
requests are similar to legitimate requests. An attack using
script language based vulnerabilities sends a small-sized re-
quest and receives a large-sized response, which is charac-
teristic of typical HTTP accesses. However, this behavior
is only observed if the attack is succeeds. If the server is
not vulnerable, the server responses should include a small
message with an error status. Buffer overflow attacks have
to send a larger-sized request than legitimate requests for
overflowing the vulnerable buffer.

In the frequency analysis, we regard statistically rare
events as potentially abnormal. Though worm infections
are frequently observed, there are more legitimate accesses

Table 1. Datasets.
MByte Request Instance

Actual Normal 749.8 81,386 11,977
dataset Abnormal 1.9 499 463
DARPA Normal 2666.8 428,630 56,261
dataset Abnormal 172.0 2,933 481

observed on a usual web server. After HTTP characteris-
tic based detection, the frequency of activities is evaluated.
Only rules generated by the size of request/response cause
a large number of false positives. To reduce false positives,
the system eliminates an alert if the event is common for
the web server. We introduce the minimum threshold for
events,Thfreq, as a parameter, and regard activities that
occur more than the threshold as normal.

4 Evaluation of detection accuracy

4.1 Overview of evaluation

For the evaluation, we used 2 datasets, packets collected
at a LAN gateway, and the DARPA IDS evaluation dataset.
The datasets are reconstructed into legitimate and illegiti-
mate/attack accesses. We use HTTP instead of HTTPS en-
crypted traffic because there are few instances of attacks on
HTTPS, and an unencrypted attack can also exploit a web
applications via SSL. We account for the influence of en-
cryption through random padding, which is the most strin-
gent condition in the protocol specifications. 0 to 255 bytes
of random padding were added to each size of transferred
data to make the size multiple of the block size for the en-
cryption algorithm.

4.2 Dataset

The evaluation adopts 2 datasets, the actual dataset gath-
ered at a network gateway and the DARPA IDS evaluation
dataset. The actual dataset consists of accesses to external
web sites and attacks collected by a honey pot. It is obvi-
ous that the accesses from the LAN are legitimate activities
and any accesses to the honey pot are malicious. Note that
accesses from a LAN are TCP connections initiated from
IP addresses that belong to a private address. We chose a
dynamic web site to evaluate the system, as this site pro-
vides a social networking service and possesses functions
to submit an article and comment on the article. Usually,
attackers target these functions of a web application, which
are implemented as CGI and provide dynamic content.

The DARPA IDS evaluation dataset consists of PCAP
formatted files that represent 5 weeks of traffic. We chose
the files for weeks 4 and 5, because the detailed list de-
scribes attack instances that are restricted to weeks 4 and
5. While the attacks occurred against several protocols, we
only use the HTTP attacks and any attacks observed on port
80. Tab.1 shows details of the datasets. Request means the
number of HTTP requests and an Instance means the num-
ber of activities that the feature vector extraction outputs.

Table 2. Attacks in actual dataset.

Attack Description

HTTP scan Scan for existence of a web server
Proxy scan Scan for existence of a proxy server

(CVE-2005-1921) Multiple PHP XML-RPC implementations vulner-
able to code injection

(MS03-51) Buffer Overrun in Microsoft FrontPage Server Ex-
tensions Could Allow Code Execution

(MS04-007) ASN.1 Vulnerability Could Allow Code Execution

Table 3. Attacks in DARPA dataset.

Attack Description

Apache2 Denial of service attack against an apache web server
Back Denial of service attack against an apache web server
Phf Remote execution attack against badly written CGI script

Crashiis Denial of service attack against an IIS web server
Mscan Vulnerability scanner for windows NT
Ntinfo Vulnerability scanner for network IP addresses

4.3 Attack instances
Attacks included in the dataset are listed in Tab.2 and 3.

Attacks in the actual dataset are gathered by the honeypot,
so the attack instances do not successfully compromise the
victims. On the other hand, some attacks in the DARPA
dataset successfully compromised the victims. Some at-
tackers steal sensitive information, such as password files,
from the server. HTTP scan, Proxy scan, NTinfo and Mscan
are categorized as scanning attacks. (CVE-2005-1921)
and Phf are categorized as attacks against scripting lan-
guage vulnerabilities. (MS03-51), (MS04-007), Apache2
and Back are categorized as a buffer overflow attacks.

4.4 Error rate
Fig. 5 shows the error rate for the actual dataset and the

DARPA dataset. Two thresholds,Threq and Thres, are
evaluated; these are the maximum size of a request and the
maximum size of a response respectively. In these evalua-
tions, random padding is not included. The results from the
actual dataset are presented in the top graph. The solid line
corresponds to the conditions with a threshold of request
size,Threq, fixed at 3,000 and response size,Thres, rang-
ing from from 0 to 100,000. The broken line corresponds
to Thres fixed at 400 andThreq ranging from 0 to 100,000.
At Threq = 3000 andThres = 400, the error rate is min-
imum. A high detection rate is achieved with a low false
positive rate.

The bottom graph in Figure 5 contains the results from
the evaluation of our system on the DARPA dataset. The
solid line corresponds to a request threshold,Threq, fixed
at 800 and a response threshold,Thres, from 0 to 100,000.
The broken line corresponds toThres fixed at 2,000 and
Threq from 0 to 100,000. The error rate is at a minimum
at Threq = 800 andThres = 400, but the detection rate is
lower here than for the actual dataset.

Fig.6 shows the error rate under the condition that ran-
dom padding is introduced to the actual dataset. There is

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
False positive rate

D
et

ec
tio

n
ra

te

Threshold of response Thres=400
Threshold of request Threq=3000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Threshold of response Thres=800
Threshold of request Threq=2000

False positive rate

D
et

ec
tio

n
ra

te

Figure 5. Detection rate for each dataset.

not much difference between the original results in Figure 5
and the results with padding in Figure 6.

Fig.7 shows the error rates of the actual dataset for vary-
ing values of the minimum frequency threshold,Thfreq,
which is the threshold used for frequency analysis. In the
first graph, thresholdThreq and Thres are fixed at 3000
and 400, in the second graph, the thresholds are fixed at 800
and 2000. AsThfreq increases, FPR and FNR approach the
original error rates. Though the minimum FNR and FPR are
limited, FPR and FNR can be controlled byThfreq. In par-
ticular, frequently occurring false alarms are eliminated by
using frequency analysis. It is possible that frequency anal-
ysis could eliminate true alarms. Though all true alarms are
reduced to a single alarm, the first alarm is not deleted. Both
true and false alarms are detected one or more times even if
the alarms are deleted due to frequency analysis.

5 Discussion
5.1 Detection accuracy

In the actual dataset, the proposed algorithm detects the
attacks with low false positive and false negatives rates.
Actual instances of scanning, script, and buffer overflow
attacks are successfully distinguished from legitimate ac-
cesses with a high degree of accuracy. The proposed algo-
rithm captures the characteristics of an error response that
the web server sends, namely, a small-sized response.

In the DARPA dataset, the proposed algorithm fails to
detect attack instances with a small-sized request and a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
False positive rate

D
et

ec
tio

n
ra

te

Threq=3000, no padding
Threq=3000, padding

Figure 6. Detection rate for random padded
dataset.

large-sized response. It means that the system can not de-
tect attacks that are similar to legitimate accesses. In the
case of the DARPA dataset, the attacker sends small-sized
exploit code and gets a password file from the web server
without any other scanning activity. However, in a typical
scenario, an attacker would use scanning activities to carry
out the attacks. To find an unknown vulnerability in a web
application server, the attacker needs to try several scanning
requests. The proposed algorithm would reveal unknown at-
tacks by the related scanning activities, even if the unknown
attacks are similar to legitimate accesses. Under such con-
ditions, the approach would not be susceptible to high false
positive/negative rates. In future work, we plan to evaluate
our system using other traffic datasets and attack instances
collected from actual networks.

5.2 Performance
For real time intrusion detection, performance is impor-

tant. During the proposed access identification, the number
of IDs grows dramatically and causes significant consump-
tion of memory and the need for considerable calculation
power. To address this issue the algorithms were extended
to use Least Recently Used (LRU) ID management. LRU
enables the algorithms to work continuously while using
limited memory with old entries deleted automatically. In a
web site, the old contents are updated, or deleted and never
accessed. However, the system cannot recognize the con-
tent update, so entries related to the old content are need-
lessly retained permanently. If the old entries are deleted
automatically using LRU, the system is able to perform con-
tinuous analysis with limited memory. It is true that the
accuracy of the algorithms is reduced in the additional pro-
cess, but high performance and continuous analysis without
the need for maintenance is a significant benefit for network
operation.

6 Related work
6.1 Inspection for encrypted traffic

In [11], conventional inspection techniques for encrypted
web accesses are summarized. There are 3 approaches to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

FNR no frequency analysis
FNR frequency analysis

FPR frequency analysis
FPR no frequency analysis

Theshold of frequency Thfreq

E
rr

or
 ra

te

Threq=3000
Thres=400

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

FPR no frequency analysis
FPR frequency analysis

FNR no frequency analysis
FNR frequency analysis

Threshold of frequency Thfreq

E
rr

or
 ra

te

Threq=800
Thres=2000

Figure 7. Result of frequency analysis.

the inspection of encrypted traffic; terminate the SSL con-
nection at the IDS, have the IDS passively decrypt the data
using a copy of the server’s private key, and collocate the
IDS on the web server. The network configurations are
shown in Fig.8. There are several drawbacks in the above
configurations. The first two configurations have a prob-
lem in managing the private key for SSL. There is a greater
risk of the key being stolen as the IDS has to have the pri-
vate key It is also troublesome that to terminate the SSL
connection at the IDS requires reconfiguration of the net-
work. The second technique, the IDS passively decrypts
SSL data, is only applicable to SSL using the RSA key
exchange. If the cipherspec uses Diffie-Hellman key ex-

Encrypted
Not encrypted

Private Key

(1) Terminates SSL (2) Passively decrypts SSL

Client Web App
Server

Client
Web App

Server

Client Web App
Server

(3) Detects at the web server

Figure 8. Conventional approaches to the in-
spection of encrypted web accesses.

change, the method does not work well. An IDS collocated
on the web server must use some of the resources that would
otherwise be available for the web server; CPU power, hard
drive space, memory and so forth. As described above, con-
ventional monitoring methods have problems inspecting en-
crypted traffic.

Yasinsac et al. proposed a method for detecting intru-
sions for encrypted traffic [12, 13], but the objectives are
different from those contained in our proposal. They also
address the problem of intrusion detection for encrypted
traffic, but they specialize in attacks against security pro-
tocols, for example, replay attacks and parallel session at-
tacks. We do not target attacks against security protocols
but attacks encrypted by security protocols.

6.2 Encrypted traffic analysis

Traffic analysis attacks are addressed in the specification
of SSL/TLS [3]. The protocols are not designed to pro-
tect length and type of Record Layer, which underlies secu-
rity sub-protocol in SSL/TLS. Wagner and Schneier analyze
the SSL protocol and summarize significant attacks, which
consist of traffic analysis attacks. They note that Bennet
and Yee have explained how an examination of cipher text
length can reveal information about URL requests in SSL-
encrypted Web traffic [14]. Furthermore, more practical
examples for actual web sites are described in the reports
[7, 8]. They demonstrate that some web sites are distin-
guishable with a very high degree of accuracy using transfer
data-size.

Hintz described a traffic analysis attack against SafeWeb
[15], an encrypting web proxy. SafeWeb attempts to pro-
vide an anonymity service that hides the identification of
its users from the web server and any monitoring system
at their network connection. Hintz demonstrates that size
of the transferred data can reveal the URL that the user ac-
cesses. Sun et al. also show that 100,000 Web pages [16]
are identified by comparing captured traffic with the data
sizes of these pages. Danezis enhances encrypted traffic
analysis using the Hidden Markov Model [17]. Bissias et
al. perform analysis with other encryption protocols such
as SSH, IPsec and WEP/WPA, the conditions of which are
harder than SSL/TLS. They analyze traffic without session
reconstruction, which is effectively available in analysis of
SSL/TLS.

However it is not feasible for encrypted traffic analysis
to be applied to intrusion detection directly, because these
attacks target confidential information encrypted by these
protocols. These methods have to archive thousands of
Web pages beforehand and compare captured traffic with
these pages. To detect encrypted attacks, the process has
to be as quick as possible and not depend on a relationship
between actual web sites and captured traffic. The intru-
sion detection system only has to recognize the frequency
of each access to perform frequency analysis. Our sys-
tem analyzes traffic sequentially without pre-operation and
does not reveal the relationship between encrypted and plain
accesses, because the system distinguishes accesses by se-
quential temporary IDs.

6.3 Anomaly detection for web server

Some anomaly detections [18, 19, 20, 21, 22, 23] for web
servers have been proposed. These methods extract param-
eters to identify accesses and then detect anomaly activi-
ties using some machine learning algorithms, for example
SVM and HMM. In most cases, the approaches use length
of request-line or a pair of attributes and parameters in-
cluded in the request-line to discriminate accesses. Using
encrypted traffic analysis, such specific parameters are not
available, only the total size of requests and responses are
available. Therefore, our conditions are much harder than
those addressed by these methods. Vigna et al. [19] employ
state transitions to track abnormal activities. The approach
of state transition is also effective after encrypted accesses
are identified by our access identification process.

7 Conclusion

In this paper, we proposed an intrusion detection system
for encrypted web accesses. The proposed system detects
attacks using transferred data size and timing, which are
available without decryption. Though the approach is an
application of a traffic analysis attack against security pro-
tocols, pre-operations are not needed and privacy is not vi-
olated. The detection is based on anomaly detection, which
relies on the frequency of similar accesses and the charac-
teristics of usual HTTP accesses, but the condition is much
harder than in conventional anomaly detection. We evalu-
ated the accuracy of the proposed system using an actual
dataset gathered at a network gateway and a DARPA IDS
evaluation dataset. We conclude that our system detects sev-
eral kinds of attacks, even if the traffic is encrypted.
Acknowledgments
We would like to thank Dawn Song from Carnegie Mellon
University for very helpful comments and suggestions.

References
[1] K. Hickman, “SSL 2.0 PROTOCOL SPECIFICA-

TION”, Available at: http://www.netscape.com/eng
/security/SSL2.html, 1995.

[2] A. Freier, P. Karlton and P. Kocher, “The SSL Protocol
Version 3.0”, Avaiable at: http://home.netscape.com
/eng/ssl3/, 1996.

[3] T. Dierks and C. Allen, “The TLS Protocol Version
1.0”, RFC 2246, 1999.

[4] A. Hintz, “Fingerprinting websites using traffic anal-
ysis”, Workshop on Privacy Enhancing Technologies,
2002.

[5] G. Bissias, M. Liberatore, D. Jensen, and B.
Levine, “Privacy Vulnerabilities in Encrypted HTTP
Streams”, Workshop on Privacy Enhancing Technolo-
gies, 2005.

[6] Q. Sun, D. Simon, Y. Wang, W. Russell, V. Padmanab-
han and L. Qiu, “Statistical identification of encrypted
web browsing traffic”, IEEE Symposium on Security
and Privacy, 2002.

[7] H. Cheng And R. Avnur, “Traffic Analysis of
SSL Encrypted Web Browsing”, Available at:
http://www.cs.berkeley.edu/˜daw/teaching/cs261-
f98/projects/final-reports/ronathan-heyning.ps, 1998.

[8] S. Mistry and B. Raman, “Traffic Analysis of
SSL-Encrypted Web Browsing”, Available at:
http://bmrc.berkeley.edu/people/shailen/Classes/
SecurityFall98/paper.ps, 1998.

[9] R. Lippmann, J. Haines, D. Fried, J. Korba, K. Das,
“The 1999 DARPA off-line intrusion detection evalu-
ation,” Computer Networks 34, 2000.

[10] DARPA Intrusion Detection Evaluation.
http://www.ll.mit. edu/SST/ideval/.

[11] Web Application Firewall Evaluation Criteria,
http://www.webappsec.org/projects/wafec/, 2006.

[12] S. Goregaoker, “A Method for Detecting Intrusions
on Encrypted Traffic”, Technical Report TR-010703,
Computer Science Dept., Florida State Univ., 2001.

[13] T. Leckie and A. Yasinsac, “Metadata for Anomaly-
Based Security Protocol Attack Deduction”, IEEE
Transactions on Knowledge and Data Engineering,
2004.

[14] D. Wagner and B. Schneier, “Analysis of the SSL
3.0 protocol”, 2nd USENIX Workshop on Electronic
Commerce, 1996.

[15] SafeWeb, http://www.safeweb.com, 2002.
[16] DMOZ Open Directory Project, http://dmoz.org,

1998.
[17] G. Danezis, “Traffic Analysis of the

HTTP Protocol over TLS”, Available at:
http://homes.esat.kuleuven.be/ gdanezis/TLSanon.pdf,
2002.

[18] C. Kruegel and G. Vigna, “Anomaly Detection of
Web-based Attacks”, ACM Conference on Computer
and communications security, 2003.

[19] G. Vigna, W. Robertson, V. Kher and R. Kemmerer,
“A Stateful Intrusion Detection System for World-
Wide Web Servers”, Annual Computer Security Ap-
plications Conference, 2003.

[20] H. Kim, S. Cho, J. Seo, Y. Lee and S Cha, “Use of
Support Vector Machine (SVM) in Detecting Anoma-
lous Web Usage Patterns”, Symposium on Informa-
tion and Communications Technology, 2004.

[21] T. Konno and M. Tateoka, “Accuracy Improvement
of Anomaly-Based Intrusion Detection System Using
Taguchi Method”, Symposium on Applications and
the Internet Workshops, 2005.

[22] J. Estevez-Tapiador, P. Garcia-Teodoro and J. Diaz-
Verdejo, “Detection of Web-Based Attacks through
Markovian Protocol Parsing”, IEEE Symposium on
Computers and Communications, 2005.

[23] W. Robertson, G. Vigna, C. Kruegel, and R. A. Kem-
merer, “Using Generalization and Characterization
Techniques in the Anomaly-based Detection of Web
Attacks”, Network and Distributed System Security
Symposium, 2006.

