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Abstract

There is a growing need for statistical methods that generate an ensemble of plausible realizations of a hierarchical proces:
from a single run or experiment. The main challenge is how to construct such an ensemble in a manner that preserves the interne
dynamics (e.qg. intermittency) and temporal persistency. A popular hierarchical process often used as a case study in such problen
is atmospheric turbulent flow. Analogies to turbulence are often called upon when information flow from large to small scales, non
Gaussian statistics, and intermittency are inherent attributes of the hierarchical process under consideration. These attributes a
key defining syndromes of the turbulent cascade thereby making turbulence time series ideal for testing such ensemble generatio
schemes. In this study, we propose a wavelet based resampling scheme (WB) and compare it to the traditional Fourier based pha:s
randomization bootstrap (FB) approach within the context of the turbulence energy cascade. The comparison between the twc
resampling methods and observed ensemble statistics constructed by clustering similar meteorological conditions demonstrat
that the WB reproduces several features related to intermittency of the ensemble series when compared to FB. In particular, the
WB exhibited an increase in wavelet energy activity and an increase in the wavelet flatness factor with increasing frequency
consistent with the cluster of ensemble statistics. On the other hand, the FB yielded no increase in such energy activity with
scale and resulted in near Gaussian wavelet coefficients at all frequencies within the inertial subrange. The scaling behavior
of the longitudinal ¢") and vertical () velocity structure functions of various order> 0 confirms that WB preserves the
small scale intermittency, whereas FB completely destroys it. The extension of WB to the multivariate case is also demonstrated
via the conservation of co-spectra betweéandw’ time series. Because the resampling strategy proposed here is conducted
in the wavelet domain, gap-infected and uneven sampled time series can be readily accommodated within the WB. Finally,
recommendations about the filter and block sizes are discussed.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Ergodicity; Hierarchical processes; Intermittency; Resampling; Turbulence; Wavelets

* Corresponding author. Tel.: +39 0832 298721, fax: +39 0832 298716.
E-mail addressd.cava@isac.cnr.it (D. Cava).

0167-2789/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2005.05.015



C. Angelini et al. / Physica D 207 (2005) 24-40 25

1. Introduction such turbulence ison-Gaussiapnonlinear, andlong-
memoryprocess. Hence, any methodology that can
Stochastic processes that exhibit hierarchical successfully resample ASL turbulence is likely to be
information flow from long to short time scales are successful at resampling a broad range of hierarchical
now receiving broad attention in sciences and finance processes. Finally, ASL turbulence is a logical choice
(e.g.[12,23). When simulating such processes, it is for this work becauseeal-world ensemblesan be
desirable to consider the entire ensemble of all possible experimentally collected thereby permitting direct
realizations rather than one realization. In practice, (and independent) testing of any proposed resampling
only a single realization is observed or measured and method.
the ergodic hypothesis must be used to extrapolate the The original idea of bootstrap was develope@@h
measured statistics from this realization to the ensem- for approximating the sampling distribution and the
ble behavior. Methodologies to construct plausible variance of many statistics under the assumption of
ensemble runs from a single realization are further independent and identical distributed (i.i.d) data. To
complicated by nonlinear interactions among scales achieve this purpose, synthetic data is generated by
and in time. Hence, there is a clear need for statistical independently re-sampling (with replacement) from
methods that generate an ensemble of realizationsthe original observations, their statistics of interest are
from a single run for processes that exhibit hierarchical computed, and the variance among the replicas is used
information flow while preserving their internal dy- to estimate the sample variance. The extension to non-
namics and persistency. Resampling is frequently usedi.i.d. time series data is not trivial and it usually depends
to increase the statistical power in inferences, espe- both on the structure of the time series [85], the
cially in hazard predictiond30]). As an exampl¢28] case of stationary time series is considered) and on the
recently applied a bootstrap method to demonstrate statistics of interest. To preserve the particular structure
that the increase in the rate of occurrence of extreme of the time series, block-resample, data dependent,
floods in the Elbe and Oder rivers over the past 80-150 or constrained re-sampling are often used (E28]).
years was absent. River flow is generally a hierarchical However, the performance of these strategies depends
process with many modes of variabil{t36]. on two competing constraints: faithfully reproducing
In this work, we propose a wavelet based re- the statistics of the original observations, and produc-
sampling method for generating ensemble runs from ing sufficient variability among the surrogate series.
a single realization using atmospheric surface layer Furthermore, recent efforts (see, for exanigig]) for
(ASL) turbulence as a case study of a hierarchical developing resampling methods for long memory pro-
process. The similarity between rough wall boundary cesses typically transform the data into another domain
layers and other hierarchical processes is gaining (e.g. wavelets or Fourier based) that maximizes the de-
broad attention in numerous fields (including finance). correlation among coefficients. Bootstrap techniques
For example, the recent similarities between the for- based on the phase randomization in Fourier domain
eign exchange markets and ASL turbulence received (hereafter referred to as FB) have been successfully
much discussion and debate in physics and financeapplied (40,37]) for generating surrogate time series.
despite the lack of rigorous theoretical arguments Recently, several wavelet surrogate methods have
connecting turbulence to financial market dynamics also been proposed (e.fB,4]). However, no study
([12,23,24,42,25] The reason why ASL turbulence to date has compared the performance of the wavelet
serves as a logical reference for such analogies isbased resampling and FB to reconstruct ensemble
attributed to the fact that many hierarchical pro- statistics from a single experiment when measures of
cesses exhibit information flow from large to small the ensemble are experimentally available. Hence, the
scales, non-Gaussian statistics, intermittency, and main novelty of this work in the context of resampling
multi-fractal properties. For the turbulent kinetic methods for hierarchical processes are three-fold: (1)
energy cascade, these specific attributes have beerdevelop ad hoc wavelet based resampling strategy with
rigorously studied for more than 60 years and are block resampling (hereafter referred to as WB), (2)
now reasonably well quantified. Resampling ASL compare WB and FB using an ensemble of turbulence
turbulence time series remains a challenge becausetime series collected from two ASL field experiments,
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and (3) extend the WB to multivariate time series
and test it with multivariate ensemble turbulence time
series in the ASL. Many limitations of resampling
schemes discussed i29] regarding uneven sam-
pling and gaps can be partially resolved within the
proposed WB.

The organization of this manuscript is as follows:
the methodology for resampling hierarchical time se-
ries is described in Sectich The application of WB
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2.2. Wavelet based resampling

Over the past 10 years, numerous studies have
demonstrated the so calle@-correlatingproperty of
the orthonormal wavelet transform, which is central to
the concept of bootstrap (see, for exanjifg,16). In
fact, the correlation between the wavelet coefficients of
many signals is usually small even if the signal itself is
highly autocorrelated in the time domd#,22,41] In

to an idealized hierarchical (but linear) process such particular, it has been shown|ibl,39]that the wavelet

as fBm is discussed in Sectioh The application
and comparison of FB and WB to two ASL turbu-

transform has optimal de-correlating property for the
class of (1f)-like signals; this is clearly expressed

lence experiments performed over different surfaces by the fact that the correlation between the wavelet

and meteorological conditions is described in Section

coefficientsd;, andd i at different levels behave as

4. Conclusions and recommendations are presented in

Sectionb.

2. Resampling methods for hierarchical
processes

2.1. General theory about bootstrap

The idea of the bootstrap is described as follows.
Suppose thaX = (X3, ..., X,;) aren i.i.d. observa-
tions from an unknown distributioR and that one is
interested in inferences on a parameteusing the
statisticd = T(X1, ..., X,). If the distribution of the
statisticsT is not known or requires a complicated
mathematical expression, then one can geneBate
surrogate datax? = (x4,...,Xx%), b=1,...,B,
by independently re-sampling with replacement
in the observed vectoX, computing the statistic
6* = T(x2,...,x%), and evaluating the accuracy
of the statisticT by the standard deviation among
the 6% estimates. Similar procedures can also be
designed for computing confidence intervals (see
[10,7], for a general review of the theory). When
the observations exhibit some correlation, the naive

(djk. dyp) ~ O(27k — 27 k' [PH=L),
and between wavelet coefficients at the same levels as
(dig. djp) ~ O(lk — k' |2H=),

wherel is the number of vanishing moments of the
mother wavelet andH is the Hurst exponent. Addi-
tionally the wavelet coefficients are exactly stationary
within each level for non-stationary processes with
stationary increments (hence in particular for fBm pro-
cesses), however such a property was approximately
observed in few hierarchical processes including tur-
bulence. We note that orthonormal wavelet transforms
do not destroy the original correlation in the series;
rather, this correlation is preserved through the scaling
coefficients. In short, this de-correlation allows the
development of resampling methods in the wavelet
domain by:

(1) Applying an orthogonal wavelet transform to the
observed time series.

(2) Generating surrogate wavelet coefficients using a
suitable re-sampling strategy (described later).

approach of the bootstrap becomes ineffective and (3) Applying the inverse wavelet transform to the re-

different re-sampling strategies that take into account
both the stochastic structure of the data and the
particular statistics of interest should be considered.

The surrogate data must mimic the behavior of the

observed data for most of the parameters of interest.

This objective is usually achieved by placing some

sampled wavelet coefficients to generate a surro-
gate time series.

Regarding the re-sampling strategy, assume that
n = 27 and the original time serieg = (X1, ..., X,)
is transformed up to the coarse levglusing an orthog-

constraints on the re-sampling strategies such as usingonal wavelet basis with a finite number of vanishing

blocks of data (see, for exam1]).

moments. The choice of the number of vanishing
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moments must be based on a compromise between theesamples fixed-size blocks of wavelet coefficients
de-correlation property and the length of the filter. With  within each level instead of each single coefficient.
these constraints and simplifications, the wavelet trans- The performance of the methods depends on the choice
formofthe seriesyields:(,.0, . . ., € j0.270-14J0,0: - - - of the block size (single coefficient resampling can be
dj 2o 1s -+ dj-10, -, dj_12/-1_1), where regarded a block method with block size unity). Larger
cjo.k are the scaling coefficients and;; are the blocks better preserve the correlation structure at the
wavelet coefficients. To generate surrogate data, expense of reducing the number of possible realiza-
one can re-sample (with some ad hoc strategies) tions for surrogate data generation. Ideally the block
the wavelet coefficientsd; within each level | size should be larger than the maximum lag for which
and independently between the levels but retaining the autocorrelation function is significant, however,
the coarsest coefficients, unaltered. Finally, from a practical point of view it is often empirically
to obtain X” it is sufficient to apply the inverse chosen. Finding the optimal block size in a “data

wavelet transform on (.0, ... ¢y 2501 d’;o'o, dependent way” is usually difficult because it depends
d’ A lea L1y for on the particular statistics to be preserved and the re-
oo dy ot g dy 00y g

b=1,..., B. The unchanged coarsest scaling coeffi- sampling approaches (overlapping or non—o_verlgpping
cients preserve the main features in the original signal b]ocksl; Sie[gd"zéb' Stand?rd non}]overlap;)llngdflxed_
(including global trends). We note that resampling size block based resampling in the wavelet domain

each wavelet scale independently should not destroy are used i'{?’]_ for testing nonline_arity ar!d the resu Its
the frequency content and the energy cascade. SeveraFOmpareOI with the ones obtained with the single

strategies on how to re-sample the wavelet coefficients coefficient apprqach, ShOV.V significant Improvements
within each level is discussed next. that can be considered satisfactory for many statistics.

The idea of resampling time series in the wavelet In contrast to the aforementioned fixed size block

domain is not new. The simplest procedure is to inde- resampllng scheme, the statlo'nary bqotstran%ﬂ .
pendently re-sample wavelet coefficients one by one provides a methods for generating stationary synthetic

within each level (e.g[3,4,33). Resampling can be data. In our _cpntext, assuming as [b3] that the
done with replacement like in the i.i.d. case or without wavelet coefficients within each level are almost sta-

replacement (i.e., permutation of wavelet coefficients). tionary, it is nqtural _to seek a resampling strategy that
The best option depends on the particular features oneP'€Serves stationarity. To achieve this purpose at each
wants to investigate. For example, resampling with !evel J = Jo and for each block, first a b.IOCI.( S'.ZQ .
replacement introduces variability in the energy or |s_randomly sampled from the geometrlc d|s_tr|but|on
variance of the signal while permutation of coefficients With Parametep;;, then the starting block positio;
preserves the energy precisely. Although the wavelet 'S Uniformly selectedin 0L, ..., 2/ — 1 and the block
coefficients within a given level show a small autocor- “J8i> -~ djBitLi-1 1S selected (periodic condition
relation, they are not strictly independent and hence the &€ US€d in wrapping the data). The selected blocks are
simplest procedure usually fails in producing synthetic c_o_ncater]:ated to (thaln thé @sampled wavelet coef-
data much less correlated with respect to the original ICI€NSdjo. ... d}5;_;. Ithas been shown ifi4,35]
data. Moreover, in this case, the spectral density of the that the choicep; ~ 27//3 is asymptotically optimal
surrogate data resembles white noise at small scaleswithin each level agincreases, in the sense that such a
Since the spectra and its decay are important featureschoice minimizes the risk (the sum of the variance and
in hierarchical time series, these artificial effects are the squared bias) of the estimate (at a given level). We
clearly unsatisfactory. The “whiteness of the spectra” observe that the optimal rate does not depend on the
is also described if8] within the context of hypothesis  covariance structure as soon as the conditions given in
testing. Theorem 1 0f35] are satisfied. However, the constant
To resample weakly correlated data within the c(i.e., p; = ¢ 27//3) depends on the covariance of the
wavelet domain, one can use a block-bootstrap ap- process, and to a priori estimate the optimal constant
proach to partially preserve the correlation structure. is difficult in practical applications. In our simulation,
In its simplest version, block-bootstrap randomly the choice otis fixed ¢ = 0.25) and was empirically



28 C. Angelini et al. / Physica D 207 (2005) 24-40

chosen after some tuning. We also found that any produces synthetic data with almost Gaussian ampli-
value of c between 0.25 and 0.50 provides almost tude distribution. Block methods tend to minimize
indistinguishable results. Note that using such an this drawback, but the Gaussianization phenomena
approach, the mean block size of the selected blocks cannot be eliminated without some adjustments. One
within the levelj is 1/p;. Independent time series adjustment procedure proposed [#0] is based on
resampling is applied to each set of measurements torank-order statistics and provides surrogate time series
compute univariate based statistics. The performancewith the same pdf as the original one. This idea, used
of the univariate WB is also compared to FB to assess for phase randomization, can be easily extended to
which of these two methods better preserves inter- the wavelet resampling scheme here. However, this
mittency and non-Gaussian attributes of the turbulent adjustment is not recommended for two reasons: first,
energy cascade. The extension to the bivariate case|t tends to introduce spurious white noise components
which is necessary to formulate resampling strategies on the spectrum, and second, it forces the pdf of the
of cross-statistics, can be obtained by performing the surrogate data to be identical to the original data.
same set of permutations on the detailed coefficients Experimentally, the pdf of turbulent signals measured

of each time series. under comparable meteorological conditions are “sim-
ilar” but not identical. To reduce this gaussianization

2.3. Technical issues related to the resampling effect, we use the procedure proposed3dh In this

method procedure, a surrogate time series is accepted if the pdf

is “close” to the pdf of the original time series. The less

The choice of the wavelet family and the size of stringent constrain on the pdf can be used to judge the
the filter are as important as the choice of the block goodness of aresampling method as well. For example,
size (or the mean block size). The de-correlating counting the fraction of accepted surrogate time series
property implies that the correlation between wavelet generated by the method is one goodness measure
coefficients decays rapidly with increasing number of (though not unique). A measure of closeness between
vanishing moments of the wavelet filter. However, it pdfs can be the root mean squared difference between
should be noted that a filter with higher number of van- surrogate and observed pdfs (48§ for a detailed
ishing moments requires larger support. Increasing the description of the method). Surrogate time series se-
width of the support of the wavelet function produces lected with this approach show proper spectral density
undesirable boundary artifacts in the surrogate data. power law scaling and reduced “gaussianization”.

The selection of the block size is equally important

and requires a priori analysis. For this reason, we 0
conducted a sensitivity analysis on both the filter
influence and the block size.

To select the filter size and block size, we first con-
sidered spectral properties; these properties are central
to any hierarchical process. Short filters or small block
size in resampling methods often produce synthetic
data with high frequency spectral behavior resembling
white noise. This artificial effect is significant for
the single coefficient resampling method but is less
pronounced for the blocking methods. For the ASL
turbulence data (described later), we found that filter
sizes with six to eight vanishing moments and a block P
size of 32 are adequate to obtain physically acceptable
surrogate data (se@ppendix A for details).

We also _C_OndL_th?d a similar S_enSItIVIty analySlS_On Fig. 1. The envelope of ensemble wavelet spectra (three standard
the probability distribution function of the synthetic  geviations from the ensemble mean) computed from 500 WB time
time series. It is well known that random re-sampling series along with the original fBm spectra (solid line).

Ergm(f)

frequency (Hz)
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3. Testing WB on a synthetic linear hierarchical Table 1
process: a case study on fBm Summary information about the cluster mean witd)) conditions,

surface shear stresgu(w’)), sensible heat flux(f)), and atmo-
spheric stability parametet (L) at each site
(Uy(ms)  @w)mshH? HWm32) z/L

Sitel 60+0.2 —0.09+0.01 11+ 2 —0.04
Site2 40+0.2 —0.18+0.04 45+ 8 —0.03

An initial (but weak) validation of WB was carried
out by analyzing the second order moment preser-
vation of a simulated fractional Brownian motion
(or fBm) process. For simplicity, the realizations of
the fBm process were generated using the classical The standard devia_tions around these c!ugter mean (or ensemble
phase randomization algorithm to assure to correct mean) values resulting from run to run variations are also shown.
frequency decay. The surrogate data are obtained
using the wavelet stationary block resampling method realizationis shownifrig. L As a reference, the power
described in Sectiod.2and Daubechies wavelet filter  spectrum of the original fBm realization is also shown.
with 6 vanishing moments. Realizations from a fBm This analysis demonstrates that the spectral agreement
process with Hurst exponent 1/3 and length= 21° between the original fBm and the WB surrogate data
where generated. This Hurst exponent was chosenis reasonably well. In particular, note that the choice of
because the resulting fBm spectrum has a power-law the wavelet stationary resampling scheme with a suffi-
decay consistent with fine scale ASL turbulence. Start- ciently large wavelet filter does not suffer from the so
ing from one fBm realization 500 synthetic series were called ‘whiteness of spectra’ at the finest scales, a typ-
generated and the power spectrum of each surrogateical artifact common to several resampling strategies.

4 2
2 1
-] 0 ‘; 0
-2 -1
-4 -2
0 1 2 3 0 1 2 3
(@) sample time series «10° (b) sample time series «10*
4 2
2 1
_0 )
=)
-2 -1
-4 . : : -2
0 1 2 3 0 1 2 3
(c) surrogate using FB «10° (d) surrogate using FB x10*
4 2

-4 -2
0 1 2 3 0 1 2 3

(e) surrogate using WB <10 ) surrogate using WB < 10*
Fig. 2. Measured’ (a) andw’ (b) time series taken from the cluster at Site 1. Sample surrogate time setiéédoandw’ (d) generated by the

FB, and sample surrogate time seriesifofe) andw’ (f) generated using WB are shown. For the WB, Daubechies with six vanishing moments
was used for the decomposition.
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4. Application of the resampling methodology (Site 2). In this experimenty’ andw’ were sampled
on atmospheric turbulence data at 56 Hz and at = 5.2m, and for a wide range of
atmospheric stabilityz(/ L) conditions, wheré. is the
As earlier stated, ASL turbulence is commonly used Obukhov length. This experiment produced 97 individ-
as a case study for hierarchical processes that exhibitual runs, each having a duration of 19.5 min{&aata
intermittent and non Gaussian energy cascades. Thepoints). More information about the site characteris-
aforementioned wavelet resampling methodology here tics can be found ifil 7]. An ensemblevas constructed
is applied to two different data sets. The first data for each experiment by first clustering all the runs col-
set is from an experiment carried out at Terra Nova lected under near-neutral atmospheric stability condi-
Bay, Antarctica, over a homogeneous snowy area of tions (i.e.|z/L| < 0.1). Then, further clustering was
50 km x 30km, and at gently sloping0.4% terrain performed for runs having comparable surface heat-
(Site 1). The longitudinal«) and vertical (') tur- ing (H) and mean shear strega’(w’)). These clusters
bulent velocities were sampled at 20.8Hz and at a can be thought of as independent realizations of the
heightz = 10 m above the snowy surface. The exper- same experiment — which is what the synthetic data
iment produced more than 100 runs, each having ais attempting to generate from one single realization.
duration of 26.2min (=¥ data points). More infor-  To independently validate the performance of the re-
mation about the site characteristics can be found in sampling methodology, the statistical properties of the
[5]. The second data set was collected above a grassclusters (i.e. measured ensemble) and the synthetic time
surface at Duke Forest near Durham, North Carolina series (i.e. surrogate data ensemble) are compared. We

107 10° 107 10°
(a) frequency (Hz) (b) frequency (Hz)
10 10
g 3
2 * 5
O * e
00* 2’
o b
-5 0 5 -5 0 5
(c) ulo, (d) W/G,y

Fig. 3. Comparison between the measured and surrogate wavelet spectta)atndw’ (b) for the series shown iRig. 2 The corresponding
pdf comparisons are also shown in (c) and (d). The different symbols refer to: measured time series (stars), surrogate time series generated b
FB (circle), and surrogate time series generated using WB (diamonds). For reference, the pdf of a Gaussian process is also shown (solid line).
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focus on a cluster of 10 runs for each of the two ex- homogeneous and isotropi31]). Since the interest
periments. Information about the key statistics and the here is primarily in turbulent fluctuations within this
run to run variability within the cluster at each site can energy cascade, the resampling strategy must not alter
be found inTable 1 Fig. 2 shows a measured and the mesoscale conditions. Hence, the coarsestlevels (or
w’ time series at Site 1 (a and b) along with a ran- scales) unaltered by the resampling must be estimated a
domly selected surrogate series generated from FB (cpriori. We choose the peak of the observed energy spec-
and d) and WB (e and f). Fromig. 2 it is clear that trum as an indication of the most energetic turbulent
the synthetically produced and measuiegdfluctua- eddies and assume that eddies larger than these scales
tions appear less organized than théicounterpartat  are mesoscale. With this separation between mesoscale
the coarse scales. These differences are primarily dueand turbulence, the resampling method changes all
to mesoscale action and turbulence generation mecha-wavelet coefficients finer (and including) the most
nisms in the different components. Within the inertial energetic level.

subrange (i.e. at scales much smaller than the inte- To illustrate the differences between the synthetic
gral time scale), the’ andw’ statistical properties are  and measured time series fig. 2, spectral and pdf
dynamically (and statistically) similar due to the ac- comparisons are conductedrig. 3. This comparison

tion of vortex stretching. That is, after many cascade suggests that both methods preserve the spectral prop-
steps, the ASL turbulence statistics become locally erties of the original time series and similar results hold

FB FB

10 1072 107" 10° 107° 107 107" 10°

(a) frequency (Hz) (b) frequency (Hz)

WB WB

0 -2 - 0 -: -2 -1
10 10 10 10 10 10 10 10
(c) frequency (Hz) (d) frequency (Hz)

Fig. 4. CV of the cluster for’ andw’ for Site 1 along with the CV of the surrogate data generated by FB (a and b) and by WB (c and d). Dot-
dashed lines refer to CVs of the whole cluster, while the dashed black line represent the CV of the reference time series used when resampling.
Finally open circles and lines represent the envelope of ensemble CV (three standard deviations from the ensemble mean) computed over 500
synthetic runs.
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when changing the original time series or the surrogate such as the ‘whiteness of the spectra’. On the other
sample. By contrast, the simple comparison of pdfs is hand, notallowing substantial changesinthe pdfretains
not sufficient to highlight the differences between the realizable surrogates. We note that with proper tuning
FB and the WB strategies since the shape of the pdfs of parameters such as filter size and coarsest wavelet
shows higher variability respect to the choice of the level, the numbers of rejected surrogate runsis, in many
time series and the surrogate samples, hence more aceases, negligible when wavelet stationary resampling
curate parameters must be used for this purpose. Atimeis used along with a suitable choice of the filter size
series from the ensemble of 10 runs for each experi- to de-correlate the data. A preliminary analysis of the
mental site is chosen for generating 500 surrogate time clustered time series at both sites shows that while the
series runs (per experimental site). When resampling, spectra of.’ andw’ within the inertial subrange were
simultaneously matching the spectra and pdf of the almostidentical, the pdfs were not. Hence, the stringent
original series cannot be achieved exactly. We followed constraintto match in resampling must be the spectrum
[3] who proposed that a synthetic run is accepted only not the pdf. While the analysis ig. 3 suggests that

if its pdf is sufficiently close to the pdf of the original  both WB and FB reproduce reasonably well the statis-
time series. Root mean squared difference betweentics of an individual realization, no information about
the histogram of the measured time series and the can-intermittency preservation in the series is provided.
didate surrogate series is computed and the candidateHence, a stronger support for using WB vis-a-vis
series is accepted if the difference is within 10-15%. FB can be obtained by assessing how well these two
Not forcing the pdfs of the original and surrogate data resampling methodologies reproduce the ensemble
to precisely match each other reduces spurious artifactscluster. We consider the following measures of

FB FB

0
10 107 107" 10 10 107 107 10°

(a) frequency (Hz) (b) frequency (Hz)

WB WB

0 .
10 107 107" 10 10 107 107" 10°

(c) frequency (Hz) (d) frequency (Hz)

Fig. 5. As inFig. 4, but for FF. The horizontal dotted line represents the ‘Gaussian value’ of FF.
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intermittency in the wavelet domain ateach scale index: while WB resulted in an FF that increases beyond its
Gaussian value (=3) with increasing frequency. These

(1) Coefficient of variation of energy, C\= preliminary results suggest that WB does not destroy
[(d;}k> - (dj2k>2] 1/2 the intermittency within the energy cascade. The log-
: 2 >’ , ical next step is to assess whether WB preserves the
Jk @) multifractal properties of the turbulent energy cascade.
Jk One approach to assess the multifractal properties of
(2) Flatness factor, F= (dJZ_ k)2' the energy cascade is the scaling behaviqtioforder

structure functiong =1, 2, ..., 10),

CV is a good indicator of the spatial energy variance,

whereas FF (whose ‘Gaussian value’ is 3) measures S, = ([u(x +r) — u(x)]?) oc rér.

the importance of the tails of the probability density

function of the velocity differences. Both measures are The main characteristics of intermittent signals that dis-
expected to increase with increasing frequency in the play a multiplicative cascading structure is the exis-
turbulent cascade, as consequence of the increased intence of long-range correlatiofi32,1]; therefore, the
termittency in the dissipation rate at small scales (e.g. structure function approach is often used as a method
[18]). Fig. 4shows the CV of the cluster far andw’ for quantifying the effects of intermittency on the flow
for Site 1 along with the CV of the surrogate data gen- dynamics and its dependence on scale. Briefly, the
erated by FB and WB. It is clear froffig. 4that both departure of the scaling exponents from K41 theory
resampling methods underestimate the scale-wise evo-[19], {, = p/3, have been classically attributed to in-
lution of the cluster CV. While the FB exhibited little  termittency in the turbulent kinetic energy dissipation
variation in CV with increasing frequencies, the WB rate. Hence, the presence of intermittency at fine scales
showed some increase in CV. Hen&dg. 4 suggests may be evaluated by the ‘anomalous’ scaling expo-
that WB partially (not fully) preservesthe intermittency nents, that is from the non-linear dependence; of
while FB destroys all the intermittency. This behavior over p. Fig. 6 shows¢, of the cluster foru and w

is further confirmed by the FF iRig. 5. The FF for structure functions for Site 1 along witf for u and

FB are nearly Gaussian across the inertial subrange,w structure functions of the surrogate data generated

4 4
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v++11101 She & Leveque
3f cluster A
O  FB surrogates #
5 2.5¢ {  WB surrogates o z 2.5
e 2 2
= =1
N s
15 1.5}
1t b
0.5 0.5
0 : 0
o 2 4 6 8 10 ¢ 2 =% 8 2 W

Fig. 6. Scaling exponents, of the cluster (stars) far (a) andw (b) structure functions for Site 1 along with for uandw structure functions of

the surrogate data generated by FB (circles) and WB (diamonds). The symbols represent the average values, whereas the vertical bars represer
three standard deviations from the mean. Finally, for reference we show the K41 fh@H&olid line), the K62 mode]20] with © = 0.1

(dashed line) angd = 0.25 (dot-dashed line), and the She-kqué mode[38] (dotted line). The structure functions are computed in the wavelet

domain according to the formulation [h8].
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Fig. 7. The wavelet based spectrum (a), the’ spectrum (b) and th€ w’ cospectrum (c) of the cluster for Site 1 along with the corresponding
quantities of the surrogate data by wavelet based resampling. Dot-dashed lines refer to spectra and cospectrum of the whole cluster, while th
dashed black line represent the spectra and cospectra of the reference time series used when resampling. Finally open circles and lines represe
the envelope of ensemble spectra and cospectra (3 standard deviations from the ensemble mean) computed over 500 synthetic runs.

by FB and WB. The structure functions have been
computed in the wavelet domain, using the differenc-
ing characteristics of the Haar wavelet that allow an
explicit relationship between the structure functions
and the wavelet coefficients (sgE8], for further de-
tails). For reference, the K41 modfl9], the K62
model[20] with intermittency exponentg = 0.1 and
0.25, and the She-Légque mode[38] are shown. It
is evident that for both velocity components, the scal-
ing exponents derived from FB surrogates follow K41
theory (solid line) suggesting complete intermittency
suppression (as expected). On the other h&igl, 6

Table 2
Comparison between measured and WB surrogate data mean (and
std) spectral and co-spectral exponents within the inertial subrange

Variable/site Cluster ensemble WB ensemble
measured computed
exponents exponents

u’ spectrum on Site 1 —1.656 (0.013) —1.673(0.017)

w’ spectrum on Site 1 —1.703 (0.020) —1.711 (0.025)

u’'w’ co-spectrum on Site 1-2.334 (0.469)  —2.076 (0.220)

u’ spectrum on Site 2 —1.586 (0.017) —1.596 (0.017)

w’ spectrum on Site 2 —1.378(0.027) —1.417 (0.025)

confirms that WB preserves some of the small scale «'w’ cospectrum on Site 2 —1.923 (0.055) ~ —1.897 (0.052)

intermittency, although partially reduced. Whitégs.

The measured slopes are based, at each site, on the 10 runs within

4-6show the results for Site 1, the same analysis was each cluster and on the 500 WB surrogates.
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Fig. 8. Power spectrum in the range 10-30 Hz of 50 synthetic time series obtained resampling every wavelet coefficient of the selected time
series measured on Site 2 independently levels by levels. Panels (a—c) refer to the choice of the filter support (taken as Daubechies type) with 2,
6, and 10 vanishing moments, respectively.
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Fig. 9. As inFig. 8, but for non-overlapping blocks resampling strategy. Blocks of length 4, 16 and 64 are considered (a—c, respectively). The
Daubechies wavelet with 2 vanishing moments is used when resampling.
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Fig. 10. As inFig. 9but Daubechies wavelet with 6 vanishing moments is used when resampling.
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repeated for Site 2 with similar findings (figures not accommodate unevenly spaced time s€il€$. Data
shown). sets from atmospheric surface layer turbulence exper-
Finally, the proposed WB method can be readily ex- iments were used to construct clusters of time series
tended to multivariate data to compute cross statistics ensembles, and resampling was applied to one of these
such as the co-spectrufi,,. To preserve the local cor-  time series with the aim of reproducing the cluster (or
relations among the multivariate data, this extension is ensemble) statistics. Given that the cluster ensemble
achieved by performing the same set of random per- spectra shows little variations, while the cluster pdf
mutations to the detailed wavelet coefficients of each shows some variations, the wavelet resampling method
time series. IfFig. 7, we show the co-spect,,, com- was forced to match the spectrum and to within 15%
puted for the cluster time series for Site 1 along with the sample pdf. The comparison between the two re-
the WB surrogates. Analysis of the figure shows that sampling methods and the ensemble data demonstrated
the co-spectra computed using the surrogate time se-that the stationary wavelet method reproduces several
ries mimic the cluster co-spectra, and the spread of features related to intermittency of the turbulence
the synthetic data can be used to asses the variabilitycascade when compared to the Fourier phase ran-
of the cluster co-spectra when only one realization is domization. In particular, the wavelet based surrogate
used. A typical measure of interest in the spectral and runs do exhibit an increase in energy activity and in
co-spectral analysis is the exponent in the inertial sub- non-Gaussianity with increasing frequency consistent
range.Table 2shows the exponent and the standard with the cluster ensemble; moreover the ‘anomalous’
deviation (computed both on the cluster and on the 500 behaviour of the scaling exponents of the velocity

WB realization) of the spectra atd,,, within the iner- structure functions confirms that WB retains some of
tial subrange for both experimental sites. The analysis the small scale intermittency buildup but not all of it.
in the table support the aforementioned results. The Fourier phase randomization bootstrap yielded no

increase in energy activity with scale, near Gaussianity

at all frequencies within the inertial subrange, and
5. Conclusions ‘normal’ scaling coefficients following the K41 model

[19]. The extension of the wavelet based resampling

Numerous studies pointed out to the need for de- approach to the multivariate case is demonstrated via
veloping statistical methods that generate an ensemblethe conservation of the co-spectra between longitu-
of realizations from a single run for hierarchical time dinal and vertical velocity time series. It was shown
series. As discussed i29], developing resampling that the variability of the wavelet based surrogate
methodologies for (1) unevenly spaced multidimen- co-spectra, generated from 500 runs, is consistent with
sional time series, and (2) incorporating time-scale the co-spectral variability observed within the cluster.
uncertainties in the re-sampling procedures is becom-  Finally, we end this study with several cautionary
ing crucial in inference testing for climate change comments about WB. We showed that the intermit-
research. Turbulence serves as a common phenomenotency corrections to K41, often formulated in terms of
logical process for many hierarchical processes in (Au)? = C,,rgp were not precisely captured. For exam-
sciences and finance and hence serves as a logical tegble, we showed that when the log-normal moglelk=
for resampling methodologies. This phenomenological p/3+ 1/18(3p — p?) is fitted to the cluster data and
analogy to turbulence is commonly invoked because the WB surrogates, the resultipgwere 0.25 and 0.1,
many hierarchical processes exhibit information flow respectively. That is, the nonlinearities §p beyond
from large to small scales, non-Gaussian statistics, and p/3 were clearly damped by WB by more than a factor
intermittency. These attributes are defining elements of 2. Despite this dampening, WB remains a major ad-
of the well-studied turbulent energy cascade. vancement over FB that yieldedia= 0 (as expected).

In this study, a wavelet based resampling scheme Furthermore, the randomization of wavelet coefficients
that can accommodate both features is compared toacross blocks and between scales in WB leads to an
the traditional Fourier based phase randomization artifical rapid decay in the space-scale correlation
bootstrapping within the context of a turbulent kinetic function with distance for inertial subrange scales. This
energy cascade. The wavelet domain can readily long-range dependence of the space-scale correlation
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function has been shown to play a significant dynamical 6, and 10 vanishing moments respectively. Analysis of
role in the turbulence cascadg ,8,26,27). Future the figure shows some distortion of the power spectrum
efforts to improve WB may consider a wavelet-based in the inertial subrange toward white noise (this draw-
re-sampling scheme that uses a two-dimensional win- back is significant when inspecting the power spectrain
dow (in space and scale) so as retain canonical featureshe Fourier domain). This whitening is a typical draw-
of the space-scale correlation function decay. Depend- back of several re-sampling strategies when applied to
ing on the duration of the experiment, this criteria will  highly structured data.
likely competewith the need to produce sufficient vari- Turbulence time series are characterized by large
ability among the surrogate series in boot-strapping. integral time scales and the wavelet transform does
not completely remove the correlation among coef-
ficients within the same level; hence the independent
Acknowledgements term-by-term wavelet resampling is not satisfactory.
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