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Abstract

There is a growing need for statistical methods that generate an ensemble of plausible realizations of a hierarchical process
from a single run or experiment. The main challenge is how to construct such an ensemble in a manner that preserves the internal
dynamics (e.g. intermittency) and temporal persistency. A popular hierarchical process often used as a case study in such problems
is atmospheric turbulent flow. Analogies to turbulence are often called upon when information flow from large to small scales, non
Gaussian statistics, and intermittency are inherent attributes of the hierarchical process under consideration. These attributes are
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ey defining syndromes of the turbulent cascade thereby making turbulence time series ideal for testing such ensemble g
chemes. In this study, we propose a wavelet based resampling scheme (WB) and compare it to the traditional Fourier ba
andomization bootstrap (FB) approach within the context of the turbulence energy cascade. The comparison betwee
esampling methods and observed ensemble statistics constructed by clustering similar meteorological conditions dem
hat the WB reproduces several features related to intermittency of the ensemble series when compared to FB. In parti

B exhibited an increase in wavelet energy activity and an increase in the wavelet flatness factor with increasing fre
onsistent with the cluster of ensemble statistics. On the other hand, the FB yielded no increase in such energy acti
cale and resulted in near Gaussian wavelet coefficients at all frequencies within the inertial subrange. The scaling
f the longitudinal (u′) and vertical (w′) velocity structure functions of various orderp > 0 confirms that WB preserves th
mall scale intermittency, whereas FB completely destroys it. The extension of WB to the multivariate case is also demo
ia the conservation of co-spectra betweenu′ andw′ time series. Because the resampling strategy proposed here is cond

n the wavelet domain, gap-infected and uneven sampled time series can be readily accommodated within the WB
ecommendations about the filter and block sizes are discussed.
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1. Introduction

Stochastic processes that exhibit hierarchical
information flow from long to short time scales are
now receiving broad attention in sciences and finance
(e.g. [12,23]). When simulating such processes, it is
desirable to consider the entire ensemble of all possible
realizations rather than one realization. In practice,
only a single realization is observed or measured and
the ergodic hypothesis must be used to extrapolate the
measured statistics from this realization to the ensem-
ble behavior. Methodologies to construct plausible
ensemble runs from a single realization are further
complicated by nonlinear interactions among scales
and in time. Hence, there is a clear need for statistical
methods that generate an ensemble of realizations
from a single run for processes that exhibit hierarchical
information flow while preserving their internal dy-
namics and persistency. Resampling is frequently used
to increase the statistical power in inferences, espe-
cially in hazard predictions ([30]). As an example[28]
recently applied a bootstrap method to demonstrate
that the increase in the rate of occurrence of extreme
floods in the Elbe and Oder rivers over the past 80–150
years was absent. River flow is generally a hierarchical
process with many modes of variability[36].

In this work, we propose a wavelet based re-
sampling method for generating ensemble runs from
a single realization using atmospheric surface layer
(ASL) turbulence as a case study of a hierarchical
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such turbulence isnon-Gaussian, nonlinear, andlong-
memoryprocess. Hence, any methodology that can
successfully resample ASL turbulence is likely to be
successful at resampling a broad range of hierarchical
processes. Finally, ASL turbulence is a logical choice
for this work becausereal-world ensemblescan be
experimentally collected thereby permitting direct
(and independent) testing of any proposed resampling
method.

The original idea of bootstrap was developed in[9]
for approximating the sampling distribution and the
variance of many statistics under the assumption of
independent and identical distributed (i.i.d) data. To
achieve this purpose, synthetic data is generated by
independently re-sampling (with replacement) from
the original observations, their statistics of interest are
computed, and the variance among the replicas is used
to estimate the sample variance. The extension to non-
i.i.d. time series data is not trivial and it usually depends
both on the structure of the time series (in[35], the
case of stationary time series is considered) and on the
statistics of interest. To preserve the particular structure
of the time series, block-resample, data dependent,
or constrained re-sampling are often used (e.g.[28]).
However, the performance of these strategies depends
on two competing constraints: faithfully reproducing
the statistics of the original observations, and produc-
ing sufficient variability among the surrogate series.
Furthermore, recent efforts (see, for example[33]) for
developing resampling methods for long memory pro-
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ttributed to the fact that many hierarchical p
esses exhibit information flow from large to sm
cales, non-Gaussian statistics, intermittency,
ulti-fractal properties. For the turbulent kine
nergy cascade, these specific attributes have
igorously studied for more than 60 years and
ow reasonably well quantified. Resampling A

urbulence time series remains a challenge bec
esses typically transform the data into another do
e.g. wavelets or Fourier based) that maximizes th
orrelation among coefficients. Bootstrap techniq
ased on the phase randomization in Fourier do
hereafter referred to as FB) have been success
pplied ([40,37]) for generating surrogate time seri
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tatistics from a single experiment when measure
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ime series collected from two ASL field experimen
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and (3) extend the WB to multivariate time series
and test it with multivariate ensemble turbulence time
series in the ASL. Many limitations of resampling
schemes discussed in[29] regarding uneven sam-
pling and gaps can be partially resolved within the
proposed WB.

The organization of this manuscript is as follows:
the methodology for resampling hierarchical time se-
ries is described in Section2. The application of WB
to an idealized hierarchical (but linear) process such
as fBm is discussed in Section3. The application
and comparison of FB and WB to two ASL turbu-
lence experiments performed over different surfaces
and meteorological conditions is described in Section
4. Conclusions and recommendations are presented in
Section5.

2. Resampling methods for hierarchical
processes

2.1. General theory about bootstrap

The idea of the bootstrap is described as follows.
Suppose thatX = (X1, . . . , Xn) aren i.i.d. observa-
tions from an unknown distributionF and that one is
interested in inferences on a parameterθ using the
statisticθ̂ = T (X1, . . . , Xn). If the distribution of the
statisticsT is not known or requires a complicated
mathematical expression, then one can generateB
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2.2. Wavelet based resampling

Over the past 10 years, numerous studies have
demonstrated the so calledde-correlatingproperty of
the orthonormal wavelet transform, which is central to
the concept of bootstrap (see, for example[15,16]). In
fact, the correlation between the wavelet coefficients of
many signals is usually small even if the signal itself is
highly autocorrelated in the time domain[6,22,41]. In
particular, it has been shown in[11,39]that the wavelet
transform has optimal de-correlating property for the
class of (1/f)-like signals; this is clearly expressed
by the fact that the correlation between the wavelet
coefficientsdj,k anddj′,k′ at different levels behave as

〈dj,k, dj′,k′ 〉 ∼ O(|2jk − 2j
′
k′|2(H−L)),

and between wavelet coefficients at the same levels as

〈dj,k, dj,k′ 〉 ∼ O(|k − k′|2(H−L)),

whereL is the number of vanishing moments of the
mother wavelet andH is the Hurst exponent. Addi-
tionally the wavelet coefficients are exactly stationary
within each level for non-stationary processes with
stationary increments (hence in particular for fBm pro-
cesses), however such a property was approximately
observed in few hierarchical processes including tur-
bulence. We note that orthonormal wavelet transforms
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f the statisticT by the standard deviation amo
he θ̂b estimates. Similar procedures can also
esigned for computing confidence intervals (

10,7], for a general review of the theory). Wh
he observations exhibit some correlation, the n
pproach of the bootstrap becomes ineffective
ifferent re-sampling strategies that take into acc
oth the stochastic structure of the data and
articular statistics of interest should be conside
he surrogate data must mimic the behavior of
bserved data for most of the parameters of inte
his objective is usually achieved by placing so
onstraints on the re-sampling strategies such as
locks of data (see, for example[21]).
o not destroy the original correlation in the ser
ather, this correlation is preserved through the sca
oefficients. In short, this de-correlation allows
evelopment of resampling methods in the wav
omain by:

1) Applying an orthogonal wavelet transform to
observed time series.

2) Generating surrogate wavelet coefficients usi
suitable re-sampling strategy (described later)

3) Applying the inverse wavelet transform to the
sampled wavelet coefficients to generate a su
gate time series.

egarding the re-sampling strategy, assume
= 2J and the original time seriesX = (X1, . . . , Xn)

s transformed up to the coarse levelJ0 using an orthog
nal wavelet basis with a finite number of vanish
oments. The choice of the number of vanish
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moments must be based on a compromise between the
de-correlation property and the length of the filter. With
these constraints and simplifications, the wavelet trans-
form of the series yields (cJ0,0, . . . , cJ0,2J0−1dJ0,0, . . . ,

dJ0,2J0−1, . . . , dJ−1,0, . . . , dJ−1,2J−1−1), where
cJ0,k are the scaling coefficients anddj,k are the
wavelet coefficients. To generate surrogate data,
one can re-sample (with some ad hoc strategies)
the wavelet coefficientsdjk within each level j
and independently between the levels but retaining
the coarsest coefficientscJ0,k unaltered. Finally,
to obtain Xb it is sufficient to apply the inverse
wavelet transform on (cJ0,0, . . . , cJ0,2J0−1, d

b
J0,0

,

. . . , db
J0,2J0−1

. . . , dbJ−1,0, . . . , d
b
J−1,2J−1−1

) for

b = 1, . . . , B. The unchanged coarsest scaling coeffi-
cients preserve the main features in the original signal
(including global trends). We note that resampling
each wavelet scale independently should not destroy
the frequency content and the energy cascade. Several
strategies on how to re-sample the wavelet coefficients
within each level is discussed next.

The idea of resampling time series in the wavelet
domain is not new. The simplest procedure is to inde-
pendently re-sample wavelet coefficients one by one
within each level (e.g.[3,4,33]). Resampling can be
done with replacement like in the i.i.d. case or without
replacement (i.e., permutation of wavelet coefficients).
The best option depends on the particular features one
wants to investigate. For example, resampling with
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resamples fixed-size blocks of wavelet coefficients
within each level instead of each single coefficient.
The performance of the methods depends on the choice
of the block size (single coefficient resampling can be
regarded a block method with block size unity). Larger
blocks better preserve the correlation structure at the
expense of reducing the number of possible realiza-
tions for surrogate data generation. Ideally the block
size should be larger than the maximum lag for which
the autocorrelation function is significant, however,
from a practical point of view it is often empirically
chosen. Finding the optimal block size in a “data
dependent way” is usually difficult because it depends
on the particular statistics to be preserved and the re-
sampling approaches (overlapping or non-overlapping
blocks; see[14,21]). Standard non-overlapping fixed
size block based resampling in the wavelet domain
are used in[3] for testing nonlinearity and the results
compared with the ones obtained with the single
coefficient approach, show significant improvements
that can be considered satisfactory for many statistics.
In contrast to the aforementioned fixed size block
resampling scheme, the stationary bootstrap of[35]
provides a methods for generating stationary synthetic
data. In our context, assuming as in[13] that the
wavelet coefficients within each level are almost sta-
tionary, it is natural to seek a resampling strategy that
preserves stationarity. To achieve this purpose at each
level j ≥ J0 and for each block, first a block sizeLi
is randomly sampled from the geometric distribution
w
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n hierarchical time series, these artificial effects
learly unsatisfactory. The “whiteness of the spec
s also described in[3] within the context of hypothes
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To resample weakly correlated data within
avelet domain, one can use a block-bootstrap
roach to partially preserve the correlation struct

n its simplest version, block-bootstrap random
ith parameterpj, then the starting block positionBi
s uniformly selected in 0,1, . . . ,2j − 1 and the bloc
j,Bi , . . . , dj,Bi+Li−1 is selected (periodic conditio
re used in wrapping the data). The selected block
oncatenated to obtain the 2j resampled wavelet coe
cientsdbj,0, . . . , d
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. It has been shown in[14,35]

hat the choicepj ∼ 2−j/3 is asymptotically optima
ithin each level asj increases, in the sense that su
hoice minimizes the risk (the sum of the variance
he squared bias) of the estimate (at a given level)
bserve that the optimal rate does not depend o
ovariance structure as soon as the conditions giv
heorem 1 of[35] are satisfied. However, the const
(i.e.,pj = c 2−j/3) depends on the covariance of
rocess, and to a priori estimate the optimal cons

s difficult in practical applications. In our simulatio
he choice ofc is fixed (c = 0.25) and was empiricall
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chosen after some tuning. We also found that any
value of c between 0.25 and 0.50 provides almost
indistinguishable results. Note that using such an
approach, the mean block size of the selected blocks
within the level j is 1/pj. Independent time series
resampling is applied to each set of measurements to
compute univariate based statistics. The performance
of the univariate WB is also compared to FB to assess
which of these two methods better preserves inter-
mittency and non-Gaussian attributes of the turbulent
energy cascade. The extension to the bivariate case,
which is necessary to formulate resampling strategies
of cross-statistics, can be obtained by performing the
same set of permutations on the detailed coefficients
of each time series.

2.3. Technical issues related to the resampling
method

The choice of the wavelet family and the size of
the filter are as important as the choice of the block
size (or the mean block size). The de-correlating
property implies that the correlation between wavelet
coefficients decays rapidly with increasing number of
vanishing moments of the wavelet filter. However, it
should be noted that a filter with higher number of van-
ishing moments requires larger support. Increasing the
width of the support of the wavelet function produces
undesirable boundary artifacts in the surrogate data.
The selection of the block size is equally important
a we
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produces synthetic data with almost Gaussian ampli-
tude distribution. Block methods tend to minimize
this drawback, but the Gaussianization phenomena
cannot be eliminated without some adjustments. One
adjustment procedure proposed in[40] is based on
rank-order statistics and provides surrogate time series
with the same pdf as the original one. This idea, used
for phase randomization, can be easily extended to
the wavelet resampling scheme here. However, this
adjustment is not recommended for two reasons: first,
it tends to introduce spurious white noise components
on the spectrum, and second, it forces the pdf of the
surrogate data to be identical to the original data.
Experimentally, the pdf of turbulent signals measured
under comparable meteorological conditions are “sim-
ilar” but not identical. To reduce this gaussianization
effect, we use the procedure proposed in[3]. In this
procedure, a surrogate time series is accepted if the pdf
is “close” to the pdf of the original time series. The less
stringent constrain on the pdf can be used to judge the
goodness of a resampling method as well. For example,
counting the fraction of accepted surrogate time series
generated by the method is one goodness measure
(though not unique). A measure of closeness between
pdfs can be the root mean squared difference between
surrogate and observed pdfs (see[3], for a detailed
description of the method). Surrogate time series se-
lected with this approach show proper spectral density
power law scaling and reduced “gaussianization”.

F ndard
d time
s

nd requires a priori analysis. For this reason,
onducted a sensitivity analysis on both the fi
nfluence and the block size.

To select the filter size and block size, we first c
idered spectral properties; these properties are c
o any hierarchical process. Short filters or small b
ize in resampling methods often produce synth
ata with high frequency spectral behavior resemb
hite noise. This artificial effect is significant f

he single coefficient resampling method but is
ronounced for the blocking methods. For the A

urbulence data (described later), we found that fi
izes with six to eight vanishing moments and a b
ize of 32 are adequate to obtain physically accep
urrogate data (see,Appendix A, for details).

We also conducted a similar sensitivity analysis
he probability distribution function of the synthe
ime series. It is well known that random re-samp
ig. 1. The envelope of ensemble wavelet spectra (three sta
eviations from the ensemble mean) computed from 500 WB
eries along with the original fBm spectra (solid line).
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3. Testing WB on a synthetic linear hierarchical
process: a case study on fBm

An initial (but weak) validation of WB was carried
out by analyzing the second order moment preser-
vation of a simulated fractional Brownian motion
(or fBm) process. For simplicity, the realizations of
the fBm process were generated using the classical
phase randomization algorithm to assure to correct
frequency decay. The surrogate data are obtained
using the wavelet stationary block resampling method
described in Section2.2and Daubechies wavelet filter
with 6 vanishing moments. Realizations from a fBm
process with Hurst exponent 1/3 and lengthn = 215

where generated. This Hurst exponent was chosen
because the resulting fBm spectrum has a power-law
decay consistent with fine scale ASL turbulence. Start-
ing from one fBm realization 500 synthetic series were
generated and the power spectrum of each surrogate

Table 1
Summary information about the cluster mean wind (〈U〉) conditions,
surface shear stress (〈u′w′〉), sensible heat flux (〈H〉), and atmo-
spheric stability parameter (z/L) at each site

〈U〉 (ms−1) 〈u′w′〉 (ms−1)2 H (Wm−2) z/L

Site 1 6.0 ± 0.2 −0.09± 0.01 11± 2 −0.04
Site 2 4.0 ± 0.2 −0.18± 0.04 45± 8 −0.03

The standard deviations around these cluster mean (or ensemble
mean) values resulting from run to run variations are also shown.

realization is shown inFig. 1. As a reference, the power
spectrum of the original fBm realization is also shown.
This analysis demonstrates that the spectral agreement
between the original fBm and the WB surrogate data
is reasonably well. In particular, note that the choice of
the wavelet stationary resampling scheme with a suffi-
ciently large wavelet filter does not suffer from the so
called ‘whiteness of spectra’ at the finest scales, a typ-
ical artifact common to several resampling strategies.

F ter at S e
F using ments
w

ig. 2. Measuredu′ (a) andw′ (b) time series taken from the clus
B, and sample surrogate time series foru′ (e) andw′ (f) generated
as used for the decomposition.
ite 1. Sample surrogate time series foru′ (c) andw′ (d) generated by th
WB are shown. For the WB, Daubechies with six vanishing mo
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4. Application of the resampling methodology
on atmospheric turbulence data

As earlier stated, ASL turbulence is commonly used
as a case study for hierarchical processes that exhibit
intermittent and non Gaussian energy cascades. The
aforementioned wavelet resampling methodology here
is applied to two different data sets. The first data
set is from an experiment carried out at Terra Nova
Bay, Antarctica, over a homogeneous snowy area of
50 km × 30 km, and at gently sloping≈0.4% terrain
(Site 1). The longitudinal (u′) and vertical (w′) tur-
bulent velocities were sampled at 20.8 Hz and at a
heightz = 10 m above the snowy surface. The exper-
iment produced more than 100 runs, each having a
duration of 26.2 min (=215 data points). More infor-
mation about the site characteristics can be found in
[5]. The second data set was collected above a grass
surface at Duke Forest near Durham, North Carolina

(Site 2). In this experiment,u′ andw′ were sampled
at 56 Hz and atz = 5.2 m, and for a wide range of
atmospheric stability (z/L) conditions, whereL is the
Obukhov length. This experiment produced 97 individ-
ual runs, each having a duration of 19.5 min (=216 data
points). More information about the site characteris-
tics can be found in[17]. Anensemblewas constructed
for each experiment by first clustering all the runs col-
lected under near-neutral atmospheric stability condi-
tions (i.e. |z/L| < 0.1). Then, further clustering was
performed for runs having comparable surface heat-
ing (H) and mean shear stress (〈u′w′〉). These clusters
can be thought of as independent realizations of the
same experiment – which is what the synthetic data
is attempting to generate from one single realization.
To independently validate the performance of the re-
sampling methodology, the statistical properties of the
clusters (i.e. measured ensemble) and the synthetic time
series (i.e. surrogate data ensemble) are compared. We

F elet sp g
p ymbols enerated by
F monds (solid line).
ig. 3. Comparison between the measured and surrogate wav
df comparisons are also shown in (c) and (d). The different s
B (circle), and surrogate time series generated using WB (dia
ectra ofu′ (a) andw′ (b) for the series shown inFig. 2. The correspondin
refer to: measured time series (stars), surrogate time series g
). For reference, the pdf of a Gaussian process is also shown
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focus on a cluster of 10 runs for each of the two ex-
periments. Information about the key statistics and the
run to run variability within the cluster at each site can
be found inTable 1. Fig. 2 shows a measuredu′ and
w′ time series at Site 1 (a and b) along with a ran-
domly selected surrogate series generated from FB (c
and d) and WB (e and f). FromFig. 2, it is clear that
the synthetically produced and measuredw′ fluctua-
tions appear less organized than theiru′ counterpart at
the coarse scales. These differences are primarily due
to mesoscale action and turbulence generation mecha-
nisms in the different components. Within the inertial
subrange (i.e. at scales much smaller than the inte-
gral time scale), theu′ andw′ statistical properties are
dynamically (and statistically) similar due to the ac-
tion of vortex stretching. That is, after many cascade
steps, the ASL turbulence statistics become locally

homogeneous and isotropic ([31]). Since the interest
here is primarily in turbulent fluctuations within this
energy cascade, the resampling strategy must not alter
the mesoscale conditions. Hence, the coarsest levels (or
scales) unaltered by the resampling must be estimated a
priori. We choose the peak of the observed energy spec-
trum as an indication of the most energetic turbulent
eddies and assume that eddies larger than these scales
are mesoscale. With this separation between mesoscale
and turbulence, the resampling method changes all
wavelet coefficients finer (and including) the most
energetic level.

To illustrate the differences between the synthetic
and measured time series inFig. 2, spectral and pdf
comparisons are conducted inFig. 3. This comparison
suggests that both methods preserve the spectral prop-
erties of the original time series and similar results hold

F of the d). Dot-
d d black resampling.
F
s

ig. 4. CV of the cluster foru′ andw′ for Site 1 along with the CV
ashed lines refer to CVs of the whole cluster, while the dashe

inally open circles and lines represent the envelope of ensemble CV
ynthetic runs.
surrogate data generated by FB (a and b) and by WB (c and
line represent the CV of the reference time series used when

(three standard deviations from the ensemble mean) computed over 500
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when changing the original time series or the surrogate
sample. By contrast, the simple comparison of pdfs is
not sufficient to highlight the differences between the
FB and the WB strategies since the shape of the pdfs
shows higher variability respect to the choice of the
time series and the surrogate samples, hence more ac-
curate parameters must be used for this purpose. A time
series from the ensemble of 10 runs for each experi-
mental site is chosen for generating 500 surrogate time
series runs (per experimental site). When resampling,
simultaneously matching the spectra and pdf of the
original series cannot be achieved exactly. We followed
[3] who proposed that a synthetic run is accepted only
if its pdf is sufficiently close to the pdf of the original
time series. Root mean squared difference between
the histogram of the measured time series and the can-
didate surrogate series is computed and the candidate
series is accepted if the difference is within 10–15%.
Not forcing the pdfs of the original and surrogate data
to precisely match each other reduces spurious artifacts

such as the ‘whiteness of the spectra’. On the other
hand, not allowing substantial changes in the pdf retains
realizable surrogates. We note that with proper tuning
of parameters such as filter size and coarsest wavelet
level, the numbers of rejected surrogate runs is, in many
cases, negligible when wavelet stationary resampling
is used along with a suitable choice of the filter size
to de-correlate the data. A preliminary analysis of the
clustered time series at both sites shows that while the
spectra ofu′ andw′ within the inertial subrange were
almost identical, the pdfs were not. Hence, the stringent
constraint to match in resampling must be the spectrum
not the pdf. While the analysis inFig. 3 suggests that
both WB and FB reproduce reasonably well the statis-
tics of an individual realization, no information about
intermittency preservation in the series is provided.
Hence, a stronger support for using WB vis-a-vis
FB can be obtained by assessing how well these two
resampling methodologies reproduce the ensemble
cluster. We consider the following measures of

tal dot
Fig. 5. As inFig. 4, but for FF. The horizon
 ted line represents the ‘Gaussian value’ of FF.
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intermittency in the wavelet domain at each scale index:

(1) Coefficient of variation of energy, CVj =
[〈d4

j,k〉 − 〈d2
j,k〉2]1/2

〈d2
j,k〉

,

(2) Flatness factor, FFj =
〈d4
j,k〉

〈d2
j,k〉2

.

CV is a good indicator of the spatial energy variance,
whereas FF (whose ‘Gaussian value’ is 3) measures
the importance of the tails of the probability density
function of the velocity differences. Both measures are
expected to increase with increasing frequency in the
turbulent cascade, as consequence of the increased in-
termittency in the dissipation rate at small scales (e.g.
[18]). Fig. 4shows the CV of the cluster foru′ andw′
for Site 1 along with the CV of the surrogate data gen-
erated by FB and WB. It is clear fromFig. 4 that both
resampling methods underestimate the scale-wise evo-
lution of the cluster CV. While the FB exhibited little
variation in CV with increasing frequencies, the WB
showed some increase in CV. Hence,Fig. 4 suggests
that WB partially (not fully) preserves the intermittency
while FB destroys all the intermittency. This behavior
is further confirmed by the FF inFig. 5. The FF for
FB are nearly Gaussian across the inertial subrange,

while WB resulted in an FF that increases beyond its
Gaussian value (=3) with increasing frequency. These
preliminary results suggest that WB does not destroy
the intermittency within the energy cascade. The log-
ical next step is to assess whether WB preserves the
multifractal properties of the turbulent energy cascade.
One approach to assess the multifractal properties of
the energy cascade is the scaling behavior ofpth order
structure function (p = 1,2, . . . ,10),

Sp = 〈[u(x+ r) − u(x)]p〉 ∝ rζp .

The main characteristics of intermittent signals that dis-
play a multiplicative cascading structure is the exis-
tence of long-range correlations[32,1]; therefore, the
structure function approach is often used as a method
for quantifying the effects of intermittency on the flow
dynamics and its dependence on scale. Briefly, the
departure of the scaling exponents from K41 theory
[19], ζp = p/3, have been classically attributed to in-
termittency in the turbulent kinetic energy dissipation
rate. Hence, the presence of intermittency at fine scales
may be evaluated by the ‘anomalous’ scaling expo-
nents, that is from the non-linear dependence ofζp
over p. Fig. 6 showsζp of the cluster foru andw
structure functions for Site 1 along withζp for u and
w structure functions of the surrogate data generated

F structu f
t s). The ars represent
t e we s
( odel[3 velet
d

ig. 6. Scaling exponents,ζp of the cluster (stars) foru (a) andw (b)
he surrogate data generated by FB (circles) and WB (diamond
hree standard deviations from the mean. Finally, for referenc
dashed line) andµ = 0.25 (dot-dashed line), and the She-Levˆeque m
omain according to the formulation in[18].
re functions for Site 1 along withζp for uandw structure functions o
symbols represent the average values, whereas the vertical b

how the K41 model[19] (solid line), the K62 model[20] with µ = 0.1
8] (dotted line). The structure functions are computed in the wa
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Fig. 7. The wavelet basedu′ spectrum (a), thew′ spectrum (b) and theu′w′ cospectrum (c) of the cluster for Site 1 along with the corresponding
quantities of the surrogate data by wavelet based resampling. Dot-dashed lines refer to spectra and cospectrum of the whole cluster, while the
dashed black line represent the spectra and cospectra of the reference time series used when resampling. Finally open circles and lines represent
the envelope of ensemble spectra and cospectra (3 standard deviations from the ensemble mean) computed over 500 synthetic runs.

by FB and WB. The structure functions have been
computed in the wavelet domain, using the differenc-
ing characteristics of the Haar wavelet that allow an
explicit relationship between the structure functions
and the wavelet coefficients (see[18], for further de-
tails). For reference, the K41 model[19], the K62
model[20] with intermittency exponentsµ = 0.1 and
0.25, and the She-Levêque model[38] are shown. It
is evident that for both velocity components, the scal-
ing exponents derived from FB surrogates follow K41
theory (solid line) suggesting complete intermittency
suppression (as expected). On the other hand,Fig. 6
confirms that WB preserves some of the small scale
intermittency, although partially reduced. WhileFigs.
4–6show the results for Site 1, the same analysis was

Table 2
Comparison between measured and WB surrogate data mean (and
std) spectral and co-spectral exponents within the inertial subrange

Variable/site Cluster ensemble
measured
exponents

WB ensemble
computed
exponents

u′ spectrum on Site 1 −1.656 (0.013) −1.673 (0.017)
w′ spectrum on Site 1 −1.703 (0.020) −1.711 (0.025)
u′w′ co-spectrum on Site 1−2.334 (0.469) −2.076 (0.220)
u′ spectrum on Site 2 −1.586 (0.017) −1.596 (0.017)
w′ spectrum on Site 2 −1.378 (0.027) −1.417 (0.025)
u′w′ cospectrum on Site 2 −1.923 (0.055) −1.897 (0.052)

The measured slopes are based, at each site, on the 10 runs within
each cluster and on the 500 WB surrogates.
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Fig. 8. Power spectrum in the range 10–30 Hz of 50 synthetic time series obtained resampling every wavelet coefficient of the selected time
series measured on Site 2 independently levels by levels. Panels (a–c) refer to the choice of the filter support (taken as Daubechies type) with 2,
6, and 10 vanishing moments, respectively.
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Fig. 9. As inFig. 8, but for non-overlapping blocks resampling strategy. Blocks of length 4, 16 and 64 are considered (a–c, respectively). The
Daubechies wavelet with 2 vanishing moments is used when resampling.
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Fig. 10. As inFig. 9but Daubechies wavelet with 6 vanishing moments is used when resampling.
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repeated for Site 2 with similar findings (figures not
shown).

Finally, the proposed WB method can be readily ex-
tended to multivariate data to compute cross statistics
such as the co-spectrumCuw. To preserve the local cor-
relations among the multivariate data, this extension is
achieved by performing the same set of random per-
mutations to the detailed wavelet coefficients of each
time series. InFig. 7, we show the co-spectraCuw com-
puted for the cluster time series for Site 1 along with
the WB surrogates. Analysis of the figure shows that
the co-spectra computed using the surrogate time se-
ries mimic the cluster co-spectra, and the spread of
the synthetic data can be used to asses the variability
of the cluster co-spectra when only one realization is
used. A typical measure of interest in the spectral and
co-spectral analysis is the exponent in the inertial sub-
range.Table 2shows the exponent and the standard
deviation (computed both on the cluster and on the 500
WB realization) of the spectra andCuw within the iner-
tial subrange for both experimental sites. The analysis
in the table support the aforementioned results.

5. Conclusions

Numerous studies pointed out to the need for de-
veloping statistical methods that generate an ensemble
of realizations from a single run for hierarchical time
series. As discussed in[29], developing resampling
m en-
s cale
u om-
i ge
r eno
l s in
s al tes
f ical
a use
m ow
f , and
i ents
o

eme
t d to
t tion
b tic
e adily

accommodate unevenly spaced time series[16]. Data
sets from atmospheric surface layer turbulence exper-
iments were used to construct clusters of time series
ensembles, and resampling was applied to one of these
time series with the aim of reproducing the cluster (or
ensemble) statistics. Given that the cluster ensemble
spectra shows little variations, while the cluster pdf
shows some variations, the wavelet resampling method
was forced to match the spectrum and to within 15%
the sample pdf. The comparison between the two re-
sampling methods and the ensemble data demonstrated
that the stationary wavelet method reproduces several
features related to intermittency of the turbulence
cascade when compared to the Fourier phase ran-
domization. In particular, the wavelet based surrogate
runs do exhibit an increase in energy activity and in
non-Gaussianity with increasing frequency consistent
with the cluster ensemble; moreover the ‘anomalous’
behaviour of the scaling exponents of the velocity
structure functions confirms that WB retains some of
the small scale intermittency buildup but not all of it.
The Fourier phase randomization bootstrap yielded no
increase in energy activity with scale, near Gaussianity
at all frequencies within the inertial subrange, and
‘normal’ scaling coefficients following the K41 model
[19]. The extension of the wavelet based resampling
approach to the multivariate case is demonstrated via
the conservation of the co-spectra between longitu-
dinal and vertical velocity time series. It was shown
that the variability of the wavelet based surrogate
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ncertainties in the re-sampling procedures is bec

ng crucial in inference testing for climate chan
esearch. Turbulence serves as a common phenom
ogical process for many hierarchical processe
ciences and finance and hence serves as a logic
or resampling methodologies. This phenomenolog
nalogy to turbulence is commonly invoked beca
any hierarchical processes exhibit information fl

rom large to small scales, non-Gaussian statistics
ntermittency. These attributes are defining elem
f the well-studied turbulent energy cascade.

In this study, a wavelet based resampling sch
hat can accommodate both features is compare
he traditional Fourier based phase randomiza
ootstrapping within the context of a turbulent kine
nergy cascade. The wavelet domain can re
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o-spectra, generated from 500 runs, is consistent
he co-spectral variability observed within the clus

Finally, we end this study with several caution
omments about WB. We showed that the inter
ency corrections to K41, often formulated in term
!u)p = Cpr

ξp were not precisely captured. For exa
le, we showed that when the log-normal modelξp =
/3 + µ/18(3p− p2) is fitted to the cluster data a

he WB surrogates, the resultingµ were 0.25 and 0.1
espectively. That is, the nonlinearities inξp beyond
/3 were clearly damped by WB by more than a fa
f 2. Despite this dampening, WB remains a major
ancement over FB that yielded aµ = 0 (as expected
urthermore, the randomization of wavelet coefficie
cross blocks and between scales in WB leads
rtifical rapid decay in the space-scale correla

unction with distance for inertial subrange scales. T
ong-range dependence of the space-scale corre
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function has been shown to play a significant dynamical
role in the turbulence cascade ([1,2,8,26,27]). Future
efforts to improve WB may consider a wavelet-based
re-sampling scheme that uses a two-dimensional win-
dow (in space and scale) so as retain canonical features
of the space-scale correlation function decay. Depend-
ing on the duration of the experiment, this criteria will
likely competewith the need to produce sufficient vari-
ability among the surrogate series in boot-strapping.
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6, and 10 vanishing moments respectively. Analysis of
the figure shows some distortion of the power spectrum
in the inertial subrange toward white noise (this draw-
back is significant when inspecting the power spectra in
the Fourier domain). This whitening is a typical draw-
back of several re-sampling strategies when applied to
highly structured data.

Turbulence time series are characterized by large
integral time scales and the wavelet transform does
not completely remove the correlation among coef-
ficients within the same level; hence the independent
term-by-term wavelet resampling is not satisfactory.
Fig. 9 shows the spectra computed for the same
sample using fixed length non-overlapping blocks
resampling strategy. Blocks of length 4, 16 and 64
are considered (a–c, respectively) to preserve the
correlation structure among the wavelet coefficients.
The Daubechies wavelet with two vanishing moments
is used to decorrelate the data.Fig. 10 repeatsFig.
9 but using a Daubechies wavelet with six vanishing
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