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Abstract—This paper considers the problem of temporally 
fusing classifier outputs to improve the overall diagnostic 
classification accuracy in safety-critical systems. Here, we 
discuss dynamic fusion of classifiers which is a special case of the 
dynamic multiple fault diagnosis (DMFD) problem [1]-[3]. The 
DMFD problem is formulated as a maximum a posteriori (MAP) 
configuration problem in tri-partite graphical models, which is 
NP-hard. A primal-dual optimization framework is applied to 
solve the MAP problem. Our process for dynamic fusion 
consists of four key steps: (1) data preprocessing such as noise 
suppression, data reduction and feature selection using 
data-driven techniques,  (2) error correcting codes to transform 
the multiclass data into binary classification, (3) fault detection 
using pattern recognition techniques (support vector machines 
in this paper), and (4) dynamic fusion of classifiers output labels 
over time using the DMFD algorithm. An automobile engine 
data set, simulated under various fault conditions [4], was used 
to illustrate the fusion process. The results demonstrate that an 
ensemble of classifiers, when fused over time, reduces the 
diagnostic error as compared to a single classifier and static 
fusion of classifiers trained over the entire batch of data. The 
results for sliding window dynamic fusion are also provided. 

I. INTRODUCTION 
LASSifier fusion has been widely investigated in diverse 
fields, such as image segmentation, data mining from 

noisy data streams, credit card fraud detection, sensor 
networks, image, speech and handwriting recognition, fault 
diagnosis, to name a few. In the literature, classifier fusion is 
variously referred to as classifier ensembles, consensus 
aggregation, decision fusion, committee machines, classifier 
selection, mixture of experts, etc. The objective of classifier 
fusion is to achieve better classification accuracy by 
combining the results of individual classifiers.   
 Our focus here is on combining class labels from multiple 
classifiers over time. The key motivation for performing 
dynamic classifier fusion in our application context is to 
improve the on-board diagnostic accuracy of safety-critical 
systems, such as aircraft, automobiles, nuclear power plants 
and space vehicles. An accurate on-board diagnostic process 
will ensure performability, maintainability and survivability 
of safety-critical systems.  
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It is generally believed that classifier fusion may enhance 
the diagnostic accuracy in situations when the constituent 
classifiers have low correlations among their classification 
errors or, equivalently, more diversity among their outcomes 
[5]. Multiple classifiers can avoid the risk of picking the 
output of a single classifier, and, consequently, overcome the 
weaknesses of individual classifiers. If the individual 
classifiers are already performing well, then fusion accuracy 
is not expected to increase significantly, but the variability in 
its classification performance decreases.  

In this paper, we formulate the dynamic classifier fusion 
problem as one of maximizing the a posteriori probability of 
a hidden state sequence given uncertain classifier outcomes 
over time. For simplicity of classifier fusion, we transform the 
data into binary classes by selecting the individual classifiers 
to correspond to the columns of an error correcting code 
(ECC) matrix [6]. In fault diagnosis area, we refer to classes 
as components and classifiers as tests. Thus, the binary 
classifiers (binary tests) correspond to the columns of the 
ECC matrix, and the components correspond to the rows of 
the ECC matrix. The ECC matrix may be viewed as a 
diagnostic matrix (D-matrix, diagnostic dictionary, 
reachability matrix), which defines the cause-effect 
relationship among fault sources/components (rows) and tests 
(columns).  

Though not demonstrated experimentally in this paper, a 
major advantage of our multistage fusion architecture is that 
it allows the use of a heterogeneous set of classifiers over 
time. For example, in a scenario with 30 time epochs, the first 
10 epochs may employ a data-driven classifier such as the 
SVM, a knowledge-based classifier (e.g., TEAMS-RT [7]) 
for the next 10 epochs,  and for the last 10 epochs a 
model-based classifier (e.g., [8]). Our fusion approach 
provides a flexible framework to optimize diagnostic systems 
with respect to data pre-processing, number and type of 
classifiers, the ECC matrix, as well as the temporal 
complexity measured in terms of time epochs used for fusion. 

II. PREVIOUS RESEARCH 
In the literature, many techniques are proposed for 

classifier fusion. They can be divided into two categories: 
classifier combination and classifier selection. Classifier 
combination is an effective technique for combining 
independent classifiers with high accuracy and high diversity. 
Classifier combination can be applied to class labels, class 
rankings or confidence estimates on class labels. In [9]-[11], 
several methods are proposed for classifier combination, such 
as the hierarchical mixture of experts, voting methods, 
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behavior-knowledge space method, Borda count method, 
Bayesian fusion, fuzzy integrals, Dempster-Shaffer 
combination, and artificial neural networks, to name a few.  

Classifier selection, as its name implies, chooses the best 
classifier for each test sample. A static classifier selection 
method decides on the best classifier a priori during training. 
The input patterns are partitioned, and the best classifier is 
nominated for each partition. While a static fusion method 
employs constant weights for each classifier based on 
training, a dynamic fusion method changes the weights of 
each classifier based on the observed test pattern [12]. For 
example, the distance of a test pattern to its nearest neighbor 
for each individual classifier may be used to compute the 
dynamic weights. 

A prototypical classifier selection method is the decision 
templates approach. Decision templates are the estimated 
averages of the decision profiles (DP) of the samples of each 
class in the training set. The DP is a matrix of classifier 
outcomes where ith  row of the DP matrix contains output of 
ith classifier and jth column refers to the support from all the 
classifiers for class j. The fusion is performed by comparing 
the decision profile of a test set with the stored decision 
templates of the classes. A classifier is selected based on the 
elements of DP matrix. The process involves selecting the 
minimum value in each column of the DP matrix, and then 
declaring a classifier with the maximum value of these 
minimum values in each column as the best classifier. This 
method is used in [12] to classify meeting events. 

Genetic algorithms are employed to select features in 
multiple classifier systems in [13]. Another approach is to 
estimate a local regression model for each partition of input 
data, and to dynamically decide on the combination function 
[9]. In [14], classification is performed by selecting the 
classifier with the highest classifier local accuracy (CLA) in a 
local region of the feature space. A priori and a posteriori 
selection methods are proposed to estimate CLA. In an a 
priori selection method, CLA is estimated as the ratio of the 
numbers of patterns correctly classified in the neighborhood 
to the total number of patterns in the neighborhood of the 
unknown test pattern. In an a posteriori selection method, 
CLA is estimated as the probability that a classifier assigns 
the test pattern to a particular class (e.g., as in a k-nearest 
neighbor method). A dynamic classifier selection (DCS) 
algorithm is proposed by selecting a CLA threshold, and 
rejecting classifiers below the threshold.  

Kim et al. [15] proposed a dynamic integration system, 
which selects the best classifier from multiple base classifiers. 
The system focuses on learning the local region in which the 
classifier is the best. In [16], a feature-oriented dynamic 
classifier selection method is proposed for noisy data streams. 
Here, the evaluation set is split into subsets based on feature 
values of each pattern. Then, the classification accuracy of 
each base classifier is evaluated using these subsets during 
training. 

 

  
TABLE  I 

 ERROR CORRECTING CODE (ECC) MATRIX 
 

1C  2C  3C  4C  

1x  0 1 0 0 

2x  1 1 1 1 

3x  0 0 1 0 

4x  0 1 1 0 

5x  1 1 0 1 

 
During testing, the feature values of a test pattern are used to 
select a subset and the concomitant best classifier for that 
subset. Next, we describe our dynamic fusion method. 

III. DYNAMIC FUSION PROCESS OVERVIEW 
Our approach to dynamic fusion is shown in Figure 1. It 

involves four key steps: (1) data preprocessing (noise 
suppression, data reduction and feature selection) using 
data-driven techniques, such as multi-way partial least 
squares (MPLS) to perform data reduction, computing 
statistical moments, etc., (2) error correcting codes to 
transform the multiclass data into dichotomous choice 
situations (binary classification), (3) fault detection using 
pattern recognition techniques (e.g., support vector 
machines),   and (4) fault isolation via dynamic fusion of 
classifier output labels over time using the DMFD algorithm.  
Next, we discuss each step of the dynamic fusion process in 
detail. 

A. Feature Extraction or Data Pre-processing  
 Feature extraction involves signal processing methods 
such as wavelets, fast Fourier transforms (FFT) and statistical 
techniques to extract relevant information for diagnosing 
faults. In our experiments, we perform pre-processing using 
data reduction techniques, such as MPLS to transform the 
data to low-dimensional structures for implementation in 
limited memory electronic control units (ECUs) of an 
automotive system [4]. 

B. Error Correcting Codes (ECC) Matrix 
 The next step involves fault detection using binary 
classifiers corresponding to the columns of an ECC matrix. 
Error correcting codes are widely used in communications to 
decode messages sent over noisy channels by exploiting the 
redundancy in the transmitted code. We use an ECC matrix to 
project the data into a binary orthogonal space. Each column 
of the ECC matrix represents a classifier, and each row 
depicts a component or class. In the context of fault 
diagnosis, the ECC matrix can be viewed as a diagnostic 
matrix (D-matrix), which provides the cause-effect 
relationships between the faults (rows) and tests (columns). 
The ECC matrix provides a flexible and robust framework for 
combining the classifiers. For example, we can choose the  
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Fig.1. Overview of dynamic fusion process 

 
TABLE II 

 CONFUSION MATRIX 
 Estimated class  

 0 1 

0 
00N  01N  

 
True class  

1 
10N  11N  

 
first column to be any model-based classifier, a second 
column as any data-driven classifier, and third column to be 
any knowledge-based classifier, and so on. Table I shows an 
example of the ECC matrix. A column and a row of the ECC 
matrix represents a classifier ( ) and a component (jC ix ), 

respectively. For example, classifier  considers the data 
corresponding to faults in components 2, and 5 as class 1, and 
data for other faulty components as class 0. 

1C

C. Fault Detection using the Support Vector Machine (SVM) 
Classifiers 

The SVM introduced in [17], [18] is applied in areas such 
as handwritten digit recognition, anomaly detection in 
computers, text classification, fault diagnosis, etc. The SVM 
principle is to find a hyperplane that maximizes the separation 
between classes. SVM uses nonlinear pre-processing 
techniques (“kernel”) to project the data from a 
low-dimensional space (input space) to a high-dimensional 
space (feature space). The linear operation in the feature 
space is equivalent to non-linear operation in the input space. 
It finds an optimal hyperplane in the high dimensional space 
using quadratic programming. To obtain the SVM, we need 
to specify the kernel parameter γ and cost relaxation 
parameter . In this paper, these parameters are empirically 
computed. The probabilities of detection and false alarm 
(

C

jPd , jPf ) for all the SVM classifiers are learned from the 
training data by constructing the confusion matrix.   

Table II shows the confusion matrix, where  shows the 
number of patterns having true class  but having 

estimated class

abN
{0,1}a ∈

{0,1}b ∈ . The probabilities of detection and 
false alarm are computed from the sample statistics as 

and  01

00 01
j

N
Pf

N N
=

+
. 11

10 11
j

N
Pd

N N
=

+
 

D. Dynamic Fusion 
During the testing phase, we generate fault scenarios and 

the corresponding test patterns according to component 
failure and recovery rates. We assume that each fault is 
intermittent. The testing data is processed through the 
classifiers (columns of the ECC matrix) to obtain the 
classifier outcomes, i.e., sets of passed and failed classifier 
outcomes ( ( . These test outcomes are fed to the 
dynamic fusion block, along with the probability pairs 

), ( ))p fO k O k

( , )j jPd Pf  to obtain the fault isolation decisions.    

IV. DYNAMIC MULTIPLE FAULT DIAGNOSIS (DMFD) 
PROBLEM 

Our dynamic fusion process is based on an optimization 
framework that computes the most likely fault sequence over 
time. The dynamic fusion problem is a specific formulation of 
the dynamic multiple fault diagnosis problem (DMFD) 
[1]-[3]. In the DMFD problem, the objective is to isolate 
multiple faults based on test (classifier) outcomes observed 
over time. The dynamic fusion problem consists of a set of 
possible fault states in a system (component states, as in Fig. 
2), and a set of binary classifier outcomes that are observed at 
each sample (observation, decision) epoch. Evolution of each 
component states is assumed to be independent. Each 
classifier outcome provides information on a subset of the 
fault states (the entries with ones in the corresponding column 
of the ECC matrix). At each sample epoch, a subset of 
classifier outcomes is available. Classifiers are imperfect in 
the sense that the outcomes of some of the classifiers could be 
missing, and classifiers have missed-detection/false-alarm 
probabilities associated with them.  



 
 

 

Formally, we represent the dynamic fusion problem as 
{ , , , , , , }DF S C O ECC P Aκ= , where  is a finite 

set of m components (failure sources) associated with the 
system. The state of component si is denoted by 

1{ mS s s= ,..., }

( )ix k  at 
epoch k, where  if failure source si is present; 

, otherwise. Here,  is the set of 
discretized observation epochs. The status of all component 
states at epoch k is denoted by

( ) 1ix k =
( ) 0ix k = {0 1, }k Kκ = , ..., , ...

1 2( ) { ( ) ( ) ( )}mx k x k x k x k= , ,..., . 
We assume that the initial state (0)x  is known (or its 
probability distribution is known). The observations at each 
epoch are subsets of binary outcomes of classifiers 

, i.e.,  1 2{ }nO O O O= , ,..., ( ) { } {0,1}.jO k pass fail∈ , =
Figure 2 shows the dynamic fusion problem as a tri-partite 

graph at epoch k. Component states, classifiers and classifier 
outcomes represent the nodes of the digraph. Here, the true 
states of the component states are hidden. The true states of 
classifiers are also hidden because the classifiers are 
imperfect. We also define the ECC matrix [ ]ijECC e=  as the 
diagnostic matrix (D-matrix), which represents the full-order 
dependency among failure sources and classifiers. Each 
component state is modeled as a two-state non-homogenous 
Markov chain. For each component state, e.g., for component 
si at epoch k, ( ( ), ( )i i )A Pa k Pv k=  denotes the set of fault 
appearance probability ( )iPa k  and fault disappearance 
probability  defined as  
and . Figure 3 shows fault 
appearance and disappearance mechanisms of the two-state 
HMM.  

( )iPv k ( ) Pr( ( ) 1 ( 1) 0)i i iPa k x k x k= = | − =

=

}

( ) Pr( ( ) 0 ( 1) 1)i i iPv k x k x k= = | −

Here,  is a finite set of n available 
binary classifiers, where the integrity of the system can be 
ascertained. At each observation epoch, k, 

1 2{ nC C C C= , ,...,

k κ∈ , classifier 
outcomes upto and including epoch K are available, i.e., we 
let 1{ ( ) ( ( ) ( ))}K K

p f kO O k O k O k == = , , where KO  is the set of 
observed classifier outcomes upto and including epoch K, 
with  and  as the sets of 
passed and failed classifier outcomes at epoch k, respectively. 
The classifiers are partially observed in the sense that 
outcomes of some classifiers may not be available, i.e., 

. In addition, classifiers exhibit 
missed detections and false alarms. 

( )( ( ))pO k O k⊆ ( )( ( ))fO k O k⊆

( ( ) ( )) ( )p fO k O k O k⊂∪
{ ,j j}P Pd Pf= represents 

a set of probabilities of detection and false alarm, which is 
associated only with each classifier . Formally, 

 and . 
Figure 4 illustrates these probabilities.  

jC
Pr( ( ) 1| ( ) 1)j j jPd o k C k= = = =Pr( ( ) 1| ( ) 0)j j jPf o k C k= =

The dynamic fusion problem is one of finding, at each 
decision epoch k, the most likely fault state candidates 

( ) {0 1}mx k ∈ , , i.e., the fault state evolution over time, 
{ (1) ( )}KX x x K= ,..., , that best explains the observed 

classifier outcome sequence KO . We formulate this as one of 
finding the maximum a posteriori (MAP) configuration:  
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Fig. 2. Tri-partite graph for dynamic fusion problem 
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Fig. 3.  Fault appearance and disappearance probabilities 
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Fig. 4.  Detection and false alarm probabilities 
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The NP-hard nature of the primal dynamic fusion problem 
motivates us to decompose it into a primal-dual problem 
using a Lagrangian relaxation approach. By defining new 
variables and constraints, the dynamic fusion problem 
reduces to a combinatorial optimization problem with a set of 
equality constraints. The constraints are relaxed via Lagrange 
multipliers. The relaxation procedure generates an upper 
bound for the objective function. The procedure of 
minimizing the upper bound via a subgradient or surrogate 
subgradient optimization produces a sequence of dual 
feasible and the concomitant primal feasible solutions to the 
dynamic fusion problem. Details of the DMFD algorithm, 
subgradient method and dynamic programming are provided 
in our previous papers [2],[3]. 

During the online monitoring of the system, the 
observations and potential fault sequences are usually very 
long hence in order to reduce the amount of computation and 
storage, the DMFD problem is solved using the sliding 
window method. The sliding window DMFD method solves 
the diagnostic problem over a set of observations. The 
window size is selected based on the performance criteria 
such as low diagnostic error and low false alarm rate. 



 
 

 

V. SIMULATIONS AND RESULTS 
 A realistic automotive engine model of Toyota Camry 
4-cylinder engine is simulated under various fault conditions 
in a custom-built ComputeR Aided Multi-Analysis System 
(CRAMAS®) simulator and controlled via a prototype ECU 
(Rtype) [4]. We simulated the engine model under eight faults 
conditions inserted manually via the CRAMAS® control 
panel. Eight faults inserted were: air flow sensor fault, fault 
leakage in air intake system, blockage of air filter, throttle 
angle sensor fault, less fuel injection, added engine friction, 
air/fuel sensor fault and engine speed sensor fault. We 
collected measurements from five sensors: air flow meter, 
air/fuel ratio, vehicle speed, turbine speed and engine speed. 
For each fault component, we performed simulations for 40 
different severity levels (0.5 % to 20 %); each run is sampled 
at 5 ms sampling interval with 2,000 time points (10 s of  
data). The fault severity level refers to deviation of the sensor 
value from its nominal value e.g. 10% severity level of air 
flow sensor fault refers to the change in the air flow from its 
nominal value by 10%. 

Each fault class contains 40 patterns over a time period of 
2000 time epochs. This data is divided into training and 
testing data using 10 randomized datasets of 2-fold 
cross-validation. The training and testing data is reshaped 
into 2 dimensional (2D) so that a support vector machine 
(SVM) classifier can be used. In order to suppress the noise in 
the data, we run the fusion algorithm with a sampling interval 
of 0.5 seconds. Thus, we use a down sampling rate of 100, 
and obtain 20 time epochs for the dynamic fusion process. 
We employed multi-way partial least squares (MPLS) 
method to perform data reduction over a window of 100 
samples. The MPLS-based data reduction technique achieves 
high classification accuracy on high-dimensional datasets and 
is also computationally efficient [4]. This reduced data set 
was used as features to train the SVM classifiers. In the 
SVMs, we empirically computed the kernel parameter γ and 
cost relaxation parameter as  9*10-5 and 8*106 respectively. 
We used 15 classifiers, which are represented by the columns 
of the ECC matrix. The ECC matrix was generated using the 
Hamming code generation method [19]. 

C

 Table III shows the results of a single classifier, static 
fusion and dynamic fusion methods. In all the methods, the 
SVM was used as the base classifier. The static fusion method 
was performed using the ECC matrix and the final decision 
was made using Hamming distance between outputs and rows 
of the ECC matrix and binary weighted voting. In the 
dynamic fusion, Pdj and Pfj were learned using a coarse 
optimization technique and the optimal parameters were 

and  when the classifiers 
are part of the dynamic fusion. The dynamic fusion algorithm 
achieves the lowest diagnostic error and lowest standard 
deviation of the diagnostic error for CRAMAS® data. Figure 
5 shows the box plot shows the dispersion of the diagnostic 
error rate for 10 datasets. The whiskers are shown by 
extending the lines from each end of the box and the 
maximum length of the line is a function of the inter-quartile 
range.  
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Fig.5. Comparison of diagnostic error among various methods 
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Fig.6. Effect of window size on the diagnostic error rate  

 
TABLE III  

 RESULTS ON CRAMAS®  DATA 
 Single 

classifier 
Static  
fusion 

Dynamic 
fusion 

Diagnostic error rate 
± std dev in % 

8.19±2.52 12±2.26 3.7±1.3 

Computation time 
± std dev in sec 

0.02±0.01 0.03±0.005 0.12±0.001 

False alarm rate 
± std dev in % 

-- -- 5.13±0.83 

 
The box plot demonstrates that there is consistent reduction in 
the diagnostic error rate by temporally fusing the classifiers 
as compared to static fusion of classifiers trained over the 
entire batch of data. The static fusion achieves higher 
diagnostic error rate as compared to a single classifier 
because the classifiers are already performing very well and 
they are not diverse.   

Next, we discuss the results of sliding window dynamic 
fusion method. Figures 6 and 7 show the effect of window 
size on the diagnostic error and false alarms. A window size 
of 9 is a good candidate to perform on-line dynamic fusion 
because it not only achieves the diagnostic error similar to 
window size of 12 and but also it achieves the low false alarm 
rate as compared to window size of 12. 
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Fig.7. Effect of window size on the false alarm rate  

 
The window size of 6 achieves high diagnostic error so it is 
not a good choice to perform on-line dynamic fusion. The 
sliding window method improves the computation time of the 
dynamic fusion algorithm by using the Lagrange multipliers 
from the previous window computation in the DMFD 
algorithm. The on-line dynamic fusion reduces the 
computation time (in MATLAB on a 3.0 GHz clock speed 
processor machine) to 0.016 sec per window as compared to 
0.12 sec. per epoch in off-line dynamic fusion. These 
numbers are attractive practically, and they can be further 
reduced significantly by a careful implementation in C 
language. 

VI. CONCLUSION 
 This paper presented a systematic process to perform 
temporal fusion of classifier outputs. We presented the 
dynamic fusion algorithm which is implemented as a special 
case of the dynamic multiple fault diagnosis method. We 
validated the algorithm using an automotive system dataset. 
The dynamic fusion algorithm achieves lowest diagnostic 
error and lowest standard deviation in the diagnostic error 
estimate as compared to a single classifier and static fusion of 
classifiers, which verifies that fusing classifier outputs over 
time improves the diagnostic accuracy. On-line version of the 
dynamic fusion algorithm was performed using a sliding 
window method to illustrate significant reduction of 
computation time without much sacrifice in accuracy.  
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