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Abstract-A versatile envelope distribution which may be
useful for both terrestrial and satellite fading channel modelling
is the generalized Gamma (GG) distribution. By considering the
product of N GG random variables (RV)s, useful expressions for
its moments-generating and cumulative distribution functions are
obtained in closed-form. These expressions are used to derive a
closed-form union upper-bound for the distribution of the sum
of GG distributed RVs. The proposed bound turns out to be an
extremely convenient analytical tool for studying the performance
of N-branch equal-gain combining receivers operating over GG
fading channels. For such receivers, novel union upper-bounds
for the outage and the average bit error probability are derived
and evaluated in terms of the Meijer's G-function. The tightness
of the proposed bounds is verified by performing comparisons
between numerical evaluation and computer simulations results.

I. INTRODUCTION

A general envelope distribution which includes many well-
known channel models for both multipath as well as for
shadow fading is the so-called generalized Gamma (GG)
distribution. This distribution was introduced by Stacy, back
in 1962, as a generalization of the (two-parameter) Gamma
distribution [1] and it includes the Rayleigh, Nakagami-m,
Weibull, and Lognormal. Due its great flexibility, it may be
used in statistical modelling of both terrestrial and satellite
wireless applications for which only very recently the topic of
performance analysis of digital receivers over this generalized
channel has gained renewed interest. Particularly, in an early
work on this topic [2], Coulson et al. presented expressions
for the average bit error probability (ABEP) of single-branch
receivers operating over a GG fading environment, with binary
phase-shift keying (BPSK) and binary frequency-shift keying
(BFSK) modulations, as infinite series. In another related
work [3], Yacoub introduced the at-p distribution and gave
a physical justification for the origin of the GG model. More
recently, Aalo et al. presented a closed-form expression for
the ABEP for both coherent and noncoherent/differentially
coherent binary digital modulations [4].

The performance of diversity receivers has been extensively
studied in the past for the most important fading channel
models, Rayleigh, Nakagami-m, and Weibull (e.g. see [5]-
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[8]). However, a performance study of diversity and specifi-
cally equal-gain combining (EGC) receivers over GG fading
channels has not been presented yet. The main difficulty
in studying EGC receivers is that the distribution of the
sum of fading envelopes is required. The derivation of this
distribution in terms of tabulated functions is a very difficult
task [5]. Conceming this well-recognized but cumbersome
statistical problem, several approaches aiming in providing
possible solutions have been published in the open technical
literature. In possibly one of the earliest works, Stacy in his
original GG paper developed an infinite series approach for
determining the cumulative density function (cdf) of the sum
of GG distributed random variables (RV)s [1]. Many years
later, in an independent from [1] approach, Beaulieu derived
an infinite series approach for determining the cdf of the sum
of Rayleigh distributed RVs [9]. Helstrom has computed the
distribution of such a sum using saddle-point integration for
uniformly weighted RVs [10], as well as for arbitrary weights
[11]. Filho and Yacoub in [12] have derived an approximated
probability density function (pdf) expression for the sum of
Nakagami-m RVs. Very recently, Karagiannidis et al. have
presented a closed-form union upper-bound for the cdf of the
weighted sum ofN independent Rayleigh RVs [13]. All in all,
although the problem of finding the distribution of the sum of
fading envelopes has been extensively studied in the past for
various distributions, the majority of the published methods
are approximate solutions usually involving a truncation error.
Hence, the derivation of an exact solution, in terms of tabulated
functions, even for the simplest Rayleigh distribution, when
N > 2 and with nonidentical statistical parameters, still
remains an open research problem.

In this paper, in an effort to provide a solution to this prob-
lem and within the framework of studying the performance
of EGC receivers over GG fading channels, another approach
is proposed. Since an analytical solution for the distribution
of the sum of RVs is very difficult to be derived, the use of
union bounds is proposed. In particular, by deriving a useful
expression for the cdf of the product of N GG RVs and
based on the well-known inequality between arithmetic and
geometric means, closed-form union upper-bounds for the cdf
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of the sum of GG distributed RVs are obtained. These bout
which turn out to be quite tight, are used to analyze the AE
and outage performance of N-branch EGC receivers operat
over GG fading channels.

II. THE GG DISTRIBUTION AND ITS PRODUCT

Let us consider N > I independent three-parameters' I
distributed RVs {R}tIN with pdf given by [1, eq. (1)]

fR (r) - rmt ( exp ( ME r)
(Qeme)`n F(Me) Qe

where fe > 0 and me > 1/2 are two parameters related
the fading severity, Qe is related to the average fading po
as 9 (Re2) - (Qe/mf)2/,t r (me + 2//ye) /F (me), with E
denoting expectation, and r (.) being the Gamma function I
eq. (8.310/1)]. The distribution in (1) is very generic1 si
it includes commonly used fading models such as Rayle
(for de = 2 and me = 1), Nakagami-m (for Of = 2),
Weibull (for me = 1) as special cases. Moreover, for
limiting case of /3e -O 0 and mt -4 oc, (1) becomes
well-known Lognormal pdf. The the nth order moment of
can be expressed as

( Qe) n/t r (me±+ n//3e)

where n is a positive number.

A. Distribution of the Product of GG Variates
Let us define another RV, Y, as the product of the N

distributed RVs RE, i.e., Y = i=1 Ri.
Theorem 1: The moments-generating function (mgf) oi

is given by

My(s)= VG,p [W iAs;ml),,A( n2sM2) _,, Q(;MN

where G [] is the Meijer's G-function [14, eq. (9.301)]
AA(k; x) is defined as A(k; x) = x/k, (x + 1)/k,..., (J

k - 1)/k, with x being an arbitrary real value and k a posi
integer,

N1npN (n/fl)mi-l1/2
V = v/n- (v ) + P (mli)

and
N

W1n
nw

i=1

( nmi A

VmiOiJ

Moreover, n and p are two positive integers defined as n A

_=i ki and p = N j 1/,3i under the constraint that lte
Hi=1 ki/3e is a positive integer, with ke and le being also
positive integers.

'As pointed out in [4], the pdf of (1), introduced by Stacy in (1], is different
from the type of generalization for the Gamma distribution presented in [15]
which models the power of Rice-faded envelopes.

Proof: The proof is given in the full version of this
paper2. U
The values for ke and le can be found as follows: Depending

upon the value i1, k, and 11 are two minimum positive integers
such that 11 = ki/l31 holds (e.g. for 13 = 3.6, k, = 18 and
11 = 5). Similarly, ke and 1e are two minimum positive integers
such that le1j =1 ki//e holds. Note that for identical and
integer order fading parameters (3) significantly simplifies.
Lemma I (Cumulative distribution function): The cdf of Y

is given by

vf n--Fy(y)= fi

xGP' 1 yw 1 )
(5)

Proof: Applying the inverse Laplace transform L-1 (;.)
[14, Sec. 17.11] in (3), the pdf of Y [14, Sec. 17.11] fy(y) =
L1- {My(s); y} can be obtained in closed-form using [16,
eq. (21)]. Since the cdf of Y is given by Fy (y) = go' fy (x) dx
and by using [16, eq. (26)], (5) results. U

B. Distribution of the Sum of GG Variates

Let us define S to be the sum of N GG RVs,
(2) EZ1 Ri.

Theorem 2: The cdf of S is upper-bounded as

Fs(y) < y[ N)
Proof: Using the well-known inequality for

GG metic and geometric means [14, Sec. 11.116]

f v AN >gN

i.e., S-

(6)
the arith-

(7)

with AN -,Z;1 Ri/N and 5N = N Ri/N being the
arithmetic and geometric means, respectively, S can be lower-
bounded as S > N H$N RI/IN. Using (5), it can be easily
seen that the cdf of S can be upper-bounded as in (6). d

It is interesting to note that the problem of obtaining the
cdf of S with nonidentically distributed RVs Re may be
equivalently stated as finding the weighted sum of N i.i.d.
RVs having Qe = Q average power each, with weights
wE= IQeQ

III. PERFORMANCE ANALYSIS OF EQUAL-GAIN
DIVERSITY RECEIVERS

Let us consider an N-branch EGC receiver operating over
independent, but not necessarily identically distributed, GG
fading channels. The baseband received signal in the ith (E =
1, 2, ..., N) antenna is (e = s Re exp (p/e) + ne, where s is
the complex transmitted symbol, with Es = £ (Is82) being the
transmitted average symbols' energy, Re is the instantaneous
fading envelope being modelled as a GG distributed RV, 'e
is the instantaneous phase of the channel, and ne is the

2N. C. Sagias, G. K. Karagiannidis, P. T. Mathiopoulos, and T. A.
Tsiftsis, "On the performance analysis of equal-gain diversity receivers over
generalized Gamma fading channels," sumbitted to the IEEE Trans. Wireless
Commun.
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instantaneous additive white Gaussian noise (AWGN) sample
with single-sided power spectral density No identical to all
channels. The usual assumption is made that the ~le's are
known to the receiver.
The instantaneous SNR per symbol at the £th diversity input

channel, -/e, is Ye = R2 Es/No with its corresponding average
SNR being 7e = (me)21,X (Qe/me)2/0' ES/No where (()u
is the Pochhammer symbol defined as ((), = F(( + u)/r(().
Based on an interesting property of the GG distribution,
that the nth power of a GG distributed RV with parameters
(me,/3e,Q) is another GG distributed RV with parameters
(me,/e/n,Q), it can be easily concluded that -ye is also a

GG distributed RV with parameters (me, 3e/2, (e 7e)3/2)

with Be = 1/ (me)2/,11. Hence, by using the formulae for
{Re} presented in the previous section, the corresponding
expressions for {1Ye} can be easily derived, replacing 3Je with
,3e/2 and Qle/me with (-e e)e/2 helping us to study the
performance of multi-branch diversity receivers operating over

GG fading channels.

A. Outage Probability
The cdf of Yegc can be derived by substituting y = (Th/N)N

in (5), i.e., as in (8) (see at top of this page).
If Yth is a certain specified threshold, then the outage

probability is defined as the probability that the EGC output
SNR falls below Yth. An upper-bound for this probability can

be obtained by replacing -y with Thth in (8) as

Pout (-Yth) < F-tegc (Thth). (9)

B. Average Bit Error Probability
The most straightforward approach to obtain the ABEP,

Pbe, is to average the conditional symbol error probability
PbeQ(y) over the pdf of -, i.e., Pbe = fj Pbe(Th) fyegc (Th) dy.
By taking the first derivative of (8) with respect to Ty, the
corresponding pdf can be obtained as

NV¶nV (y/27f) nl1fy (-y/N)ni;N fi

xG0P[W nn A(n;ml ), A ( 2;3 M2) ....*( 23N;MN) ]
(10)

Moreover, for Pbe(y) there are well-known generic expres-
sions for two different sets of modulation schemes:

i) For BPSK, BFSK, M-ary differentially encoded phase-
shift keying (M-DEPSK), quadrature phase-shift key-
ing (QPSK), M-ary phase-shift keying (M-PSK), M-
ary frequency-shift keying (M-FSK), square M-ary
quadrature amplitude modulation (M-QAM), and M-
ary differential PSK (M-DPSK) in the form of Pbe (y) =
A erfc (-\/iB) where erfc(.) is the well-known comple-
mentary error function [14, eq. (8.250/4)];

ii) For differential BPSK (DBPSK) and M-ary nonco-
herent frequency-shift keying (M-NFSK), in the form
Pbe(10) = A exp(-By).

The particular values of A and B depend on the specific
modulation scheme employed and can be found in [5]. Next,
Pbe is found in closed-form for the above two sets of signals.

I) BFSK, M-DEPSK, MA-PSK, MI-FSK, M-QAM, and M-
DPSK: Using (10) and in order to derive Pbe for this first
set of modulated schemes, it can be easily recognized that the
evaluation of definite integrals, which include Meijer's, power,
and exponential functions, is required. Since such integrals are

not tabulated, the solution can be found with the aid of [16,
eq. (21)], and thus the ABEP can be upper-bounded as in (13)
(see at top of this page).

2) DBPSK and M-NFSK: Similarly to the first set, for this
second set (i.e., for NBFSK and DBPSK), the ABEP can be
derived as in (14) (see at top of this page).

IV. PERFORMANCE EVALUATION AND DISCUSSION
In this section, using the previous mathematical analysis,

numerical and simulation results are presented for the perfor-
mance of EGC receivers operating over GG fading channels.
For these performance evaluation results we consider the
general case of not necessarily equal 7ye's. Particularly, an

exponentially decaying power delay profile (PDP) is adopted
5e= tY1 exp[-6 (t - 1)] with 6 being the power decaying

factor. For the convenience of the presentation of the perfor-
mance evaluation results and without any loss of generality, it
will be assumed that me = m and /3e Vt.

Having numerically evaluated (9), in Fig. 1, upper-bounds
for Po,ut are presented as a function of the normalized outage
threshold, -th/^7, for m = 2, i.i.d. input branches (i.e.,
7y = 5y), and different values of d and N. The obtained
results clearly show that P,ut improves with an increase of N
and/or A. In order to verify the tightness of the bounds, curves
obtained by means of computer simulations are also included
for comparison purposes. By comparing the performances
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Fig. 1. Outage probability (Pout) as a function of the average input SNR Fig. 3. ABEP of EGC with DBPSK modulation format as a function of the
for m = 2 and i.i.d. branch SNRs. average input SNR per bit for j3 = 3 and i.i.d. branch SNRs.
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Fig. 2. Outage probability as a function of the first branch normalized average
input SNR for = 2.5 and 7T = 0.5 72.

it is evident that the numerical results for the bounds (see
(9)) are very close to the equivalent simulated ones which
represent the exact Pout performance. This observation clearly
demonstrates the accuracy of the proposed bounds. It is also
noted that as /3 increases, the proposed bounds become even
tighter. However, as N increases, the difference between the
two performance results slightly increases. In Fig. 2, Pout is
plotted as a function of the first branch normalized outage
threshold, 7th/71, for : = 2.5, N = 2, and 71 = 0.5572-
These results suggest that the higher m is, the smaller are
the differences between numerical and computer simulation
results for Po,,t. For example, at Pout = 10-3, the differences
between them for m = 1, 2, and 4 are less than 2, 1, and 0.5

10~

._
io-

._

m0

l0
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C*

,< I -5

10.6
-5 0 5 10

Average Input SNR per Bit (dB)
15

Fig. 4. ABEP of EGC with DBPSK modulation format as a function of the
average input SNR per bit for m = 2 and i.i.d. branch SNRs.

dB, respectively. The trend of the performance, as illustrated
in Figs. 1 and 2, can be explained as follows. It is clear that the
lower the difference between the terms of the left hand side
(LHS) and right hand side (RHS) of (7), the tighter are the
bounds. In fact, the equality in (7) holds if and only if all Re's
are equal with each other, i.e., R1 = R2 = = RN. For
relatively large values of me's and/or /3's, all fading envelopes
Re will be, with high probability, close to their average value,
and thus, it is expected that Re's will take similar values. As
for N, the lower its value is the tighter are the bounds. This
happens because both bounds and exact curves move towards
the performance obtained for N = 1. In fact, from (7) it can
be seen that for N = 1 these two curves coincide.
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Fig. 5. ABEP of EGC with Gray encoded M-QAM modulation format as

a function of the average input SNR per bit for m = 2 /3 = 2.5 and i.i.d.
branch SNRs.

Using (13) and (14), the ABEP, Pbe, of N-branch EGC
receivers for several coherent and noncoherent binary and
multilevel modulation schemes can be obtained. In Figs. 3
and 4,Pbe of DBPSK is plotted as a function of 7y for i.i.d.
fading statistics. In Fig. 3, Pbe is plotted as a function of -,
for :3 and several values of m. As expected, the obtained
performance evaluation results show that Pbe improves with
an increase of 7y. For comparison purposes the curves for the
corresponding exact Pbe, obtained via computer simulations,
are also included in the same figure. By comparing the
numerically evaluated results with the computer simulated
ones, we deduce a close match between them. In Fig. 4, Pbe

is plotted as a function of 7, for m 2 and several values of
/. As for m, 3, and N, similar findings with those observed
from Figs. 1 and 2 can also extracted. Fig. 5 presents Pbe Of
M-QAM with Gray encoding as a function of t7 for m = 2,
,3 = 2.5, i.i.d. input branches, and several values of M. As
expected, for a fixed 7, Pbe degrades with increasing M.
Furthermore, the higher Al, the tighter the bounds. Finally,
in Fig. 6, Pbe of Gray coded 8-PSK is plotted as a function
of 77, for = 2.5, 6 = 0.2, and M = 8. Again here, note the
tightness of the proposed bounds.
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