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ABSTRACT 

This paper addresses the development of a novel anti-
sway control approach for marine shipboard cranes, 
offering stability, safety, and efficiency during lifting, 
handling, transportation, and other manipulation. The 
proposed idea consists of the development of an 
integrated system with control strategies to both reduce 
the effect of three-dimensional payload pendulation and 
to minimize wave impact during shipboard crane 
manipulation. We propose to use a control mechanism 
based on energy dissipation. The simulation results 
confirm the principle and effectiveness of the proposed 
methods for damping out pendulation. In future work, 
we aim to minimize wave impact on the payload by 
reducing the dynamic forces through controlling the 
length of the hoist cable while adapting to the lateral 
wave velocity. During the final phase of this project, the 
proposed control strategy will be implemented as a real 
physical prototype for controlling different kinds of 
shipboard cranes. 

 
I. INTRODUCTION 

Shipboard cranes are widely used to handle and transfer 
objects from large container ships to smaller lighters or 
to the quays of the harbours. The control of cranes is 
always a challenging task which involves many 
problems such as load sway, positioning accuracy, 
suppression, collision avoidance, and manipulation 
security. Generally, shipboard cranes are relatively big, 
heavy, stiff, and rely on complex kinematic models of 
their system as well as an equally complex model of the 
environment with which they interact. Typical 
shipboard crane operations are shown in Figure 1. There 
are two big challenges during crane operation. First, 
unlike cranes mounted on solid bases, load sway is 
affected by the ship’s motion when the load is hoisted 
by a shipboard crane. This motion produces large 
pendulations of the hoisted cargo and causes operations 
to be suspended. Second, when the payload is hit by 
waves on the surface of the sea, it is subject to an 
impulsive hydrodynamic slamming force, which, in 
harsh sea conditions, can damage the payload. 

 
The pendulation caused by the payload and the sway 
caused by the waves not only limits the functionality of 
marine facilities in adverse weather conditions, but also 
poses a threat to the safety of personnel and equipment 
during off-shore operations. The pendulation is often 
induced by a combination of the vessel's motions and 
the crane operator's normal actions. In general, the 
payload acts as a spherical pendulum whose attachment 
point is manoeuvred using the crane's degrees of 
freedom. As the operator commands the various axes of 
the crane to affect rigid body payload translation and 
rotation, the payload's sway degrees of freedom can be 
excited. This payload pendulation problem becomes 
much more complicated if the crane is mounted to a 
moving vessel. An experienced operator can often 
generate crane inputs correctly, in such a way that the 
payload is sway-free at the end of the manoeuvre. 
However, training an operator to use a crane requires 
significant resources and poses potential hazards. 
Imagine the challenge of installing a 200 ton sub-sea 
module at 2000 meters sea depth with an accuracy of 
centimetres! When considering both working efficiency 
and safety, quality control is impossible to achieve.  
 

     
 
Figure 1 Typical shipboard Crane operation. 

We propose a combined control strategy that both 
reduces the effects of payload pendulations and 
minimizes wave impact on shipboard crane 
manipulation. The new control approach will improve 
the safety of demanding marine operations. In this 
paper, we only present the first phase and current work 
of this project. The research result will be integrated 
with the current “crane/winch simulator” developed by 
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the Offshore Simulator Centre. Finally, a real prototype 
will be built and tested at the Rolls-Royce marine AS. 
 
II. RELATED WORK 

There are two challenging problems of handling 
shipboard cranes. To date, cargo loading operations at 
sea are often paused in case of unfavourable weather 
conditions. Without an efficient control mechanism, a 
modest movement of the ship can result in a large sway 
motion of the cargo. This can lead to dangerous 
situations. As a consequence, time and money are often 
wasted on waiting for better weather conditions, or 
worse, the risk may be taken to load the cargo in 
dangerous conditions. Once sea conditions build to a 
low sea state 3 (as defined by the Piersion-Moskowitz 
Sea Spectrum, with significant wave heights in the 
range of 1.0 - 1.6 m), hoisted payload pendulations on 
crane ships become dangerously large and operations 
must be suspended [1]. An analysis of worldwide 
weather and sea-condition data show that more than 
35% of all potential joint logistics over the shore 
operations (JLOTS) sites have sea conditions of sea 
state 3 or higher 50% of the time during which 
operations would be suspended [1], [2]. Nojiri and 
Sasaki [3] calculated that payload pendulations due to 
excitation frequencies near the resonance frequency of 
the cable-payload assembly also have a pronounced 
effect on the rolling and pitching motion of the crane 
vessel under the influence of both regular and irregular 
waves. 
 
The other problem during the lifting and transportation 
of shipboard cranes with long hoist cables is wave 
impact. When the payload is hit by the waves on the 
surface of the sea, it is subject to an impulsive 
hydrodynamic slamming force which, in harsh sea 
conditions, can damage the payload. Also in this case, if 
the sea conditions become prohibitive, the operations 
have to be suspended. 
 
Regarding the load pendulation, many researchers 
investigated the problem for fixed-base cranes. As the 
rolling motion of a ship is dominating, and the cranes 
usually work from the sides of the ship, the swaying of 
the payload is mainly confined to two dimensions. 
Some controllers were originally designed for boom 
cranes, while others were modifications of earlier work 
on gantry cranes. Two main approaches can be 
identified among this research: one targets pendulation 
suppression throughout the whole transport manoeuvre, 
while the other is more concerned with end-of-
manoeuvre pendulation suppression, the so-called 
"elimination of residual pendulation". In both 
approaches, limited research included the operator as a 
part of the model plan. Lewis et al. [4] and Parker et al. 
[5] presented a three-dimensional linear model of a 
boom crane. A controller applies quasi-static filters to 
the operator's input commands to avoid exciting the 
natural frequency of the cable-payload assembly. 
Experimental results showed a significant reduction in 

both the in-plane and out-of-plane payload 
pendulations. 
 
Balachandran et al. [6, 7] modified the common boom-
crane configuration in order to suspend the payload 
from a pivot that in turn was suspended under the boom. 
The pivot acted as a non-linear vibration absorber, a 
mechanical filter, to absorb the cargo oscillations. They 
derived two-dimensional and three-dimensional models 
of this new configuration. Their simulations showed that 
the absorber can suppress sub-critical bifurcations and 
shift the bifurcation points arising from the non-linear 
dynamics of the cable-payload assembly. Current ship 
cranes use a Rider Block Tagline System (RBTS). In 
this method, the intention is to change the natural 
frequency of the pendulum. The current RBTS has 
many deficiencies. As a result, Hunt et al. [8] proposed 
a new crane structure to suppress the pendulation using 
adjustable damping to dissipate the pendulation energy. 
In 1999, Kimiaghalam et al. [9] studied a crane with an 
additional tagline connecting the rope and the boom. 
They used the length of the tagline as the single control 
parameter, and designed a fuzzy controller in order to 
keep the load in place. However, they found that load 
oscillations were decreased by only about 50 %. In 
2000, Kimiaghalam et al.[10] considered a crane with a 
rope suspended from two points on the boom, with the 
cargo hanging from a pulley in the middle. They 
showed that it is possible to almost eliminate sway 
motion by applying a combination of feedback and 
feed-forward control to the rope length and luffing angle 
of the boom. Thus, an implementation of this system 
seems to solve the problem of in-plane payload-
pendulation. In their approach, Kimiaghalam et al. 
focused on keeping the equilibrium position of the 
pulley in place, which they approached by using 
feedback and feed-forward control on the angle of the 
boom with the horizon. Although this approach has 
proven to lead to good results for small rolling angles, 
we expect it to quickly break down under more extreme 
conditions. We state that real-time tracking of the load 
position is essential in order to cope with heavy weather 
conditions. The main reason for this is that the distance 
from the suspension point to the actual cargo can be 
very large, and as such, a tiny movement of the 
suspension point can lead to large oscillations of the 
cargo. In addition, not only the angle of the boom is of 
importance, but also the position and velocity of the 
payload should be considered at the same time. This 
becomes more important at larger rolling amplitudes of 
the ship.  
 
In the rest of the paper, we will present our anti-sway 
approach. Firstly, in Section III, we outline the main 
control methods, which includes three important cases. 
In addition, we show simulation results for the different 
control algorithms. A series of simulation will be 
introduced to confirm the strategy. Finally, in section 
IV, we discuss the results and draw our conclusions as 
well as  describe our ideas for future work. 



 

 

 
III. INTEGRATED ANTI-SWAY APPROACH : 

METHODS AND RESULTS 

We model the crane/winch system as a frictionless, non-
elastic spherical pendulum. The motion of the pendulum 
is fully determined by algorithms steering the position 
of the support point and the length L of the cable via the 
winch, and external noise acting upon the position of the 
support point. Both the support and the wire are 
modelled as massless objects. The mass m of the load is 
in this approximation irrelevant for the motion of the 
pendulum. First, consider the simple pendulum moving 
in a plane, as shown in Figure 2, consisting of a mass m 
attached to a cable of lenght L.  
 
A load is connected to a massless cable that is 
suspended from a support point. The position of the 

pendulum is determined by its angle θ with its rest 
position (green) or the distance s from the rest position 
along its circular trajectory. The forces acting upon the 
load are the gravitational force Fg (pointing vertically 
down, not shown in the figure) and the centrifugal force 
Fcf (pointing outward along the cable). Fg and Fcf are 
given by (1), 
 

                             (1) 

where g is the gravitational acceleration and ω is the 
angular velocity of the load. If the lateral dispacement d 
of the support point is in the direction of the load, as 
shown in Figure 2, the work done is negative, such that 
energy is taken out of the system. 

 

Figure 2 Simple Pendulum 

At a given time t, the cable is under an angle θ with the 
vertical axis. We describe the position of the payload by 
the arc length s measured from the rest point along the 
trajectory of the payload. The equation of motion 
follows from Newton’s second law in the direction of 
the payload motion (2), 

    
    

 

   


  (2) 

where F and a are the force on the payload and its 
acceleration, both in the direction of motion. We find 
the well-known differential equation (3), which is most 
easily solved by numerical methods. 


 


                                              (3) 

In the present work, we propagate the motion of the 
pendulum in three dimensions, while we in addition 
freely move the support position which determines the 
motion of the pendulum. We derive the equations of 
motion from the Lagrangian L = K–V, in which K is the 
kinetic energy, as given in (4), 


  

    
                 (4) 

where r=(x, y, z) is the relative position of the load with 
respect to the support position r0 = (x0, y0, z0), and V is 
the potential energy (5), 


                                        (5) 

We use spherical coordinates to find the equations of 
motion as shown in (6).  



            
  
  

     
  

  
            
             









 (6) 

These equations have been implemented in a C program 
that propagates the system in time using Runge Kutta 4. 
The input of the system is given by the acceleration of 
the support point as a function of time. These equations 
are valid as long as the hoist cable is fully stretched, 
which was verified by testing for positive tension on the 
wire. 
 
In addition, the length L of the wire is controlled via the 
winch. Although the results presented in this paper are 
in 2 dimensions, all simulations were done in 3 
dimensions, and the methods presented here also are 
valid for 3-dimensional motion. 
 
In order to control the motion of the pendulum, we will 
subsequently consider the following cases: 
1. Damping out a large non-driven in-plane swaying 
motion. 
2. Transport of the load from one position to another.   
3. Damping out a driven planar oscillation. 
 
III.I DAMPING A NON-DRIVEN OSCILLATION 
 
We will start with the first case, damping out a non-
driven planar swaying motion. This is the main method 
that we propose to use in order to damp out swaying 
motion. The approach is based on reducing the energy 
of the system. In the current section, we use the method 
to damp out a non-driven oscillation. We will show that 
the method also works to damp out driven oscillations. 
In addition, we have tested the method in three 
dimensions, both for driven and non-driven oscillations, 
with similar results. Most importantly, we expect 
similar methods to work in combination with operator-
driven actions. 



 

 

When the amplitude of the pendulum is large, our 
approach is to dissipate the energy from the swaying 
motion as quickly as possible. We can do this by 
making the work performed by the support on the 
pendulum maximally negative. This, in turn is done by 
moving the support point into the direction of the 
displacement of the pendulum, as shown in Figure 2. 
 
The work performed by the support point on the 
pendulum can be obtained by (7): 

                                        (7) 

where Fsup is the force applied by the support point on 
the cable. The displacement r0 is in the horizontal 
direction whereas the force applied by the support point 
is directed along the direction of the hoist cable. The 
force applied by the support on the pendulum consists 
of three parts: a gravitational component Fg 

cosθ=mgcosθ, a centrifugal component Fcp=mω
2L and, 

if the support point in addition moves horizontally, a 
component depending on its acceleration: 

                     (8) 

First assume that the support point remains at its initial 
position. As the displacement is zero, we see from (7) 
that no work is performed by the support. In addition, 
we see from (8) that the applied force vanishes if the 
acceleration of the support is given by (9) 

   
 

  
                       (9) 

This may happen for large accelerations of the support 
of the order of the gravitational constant, and large 

angles θ near 45 degrees. In this case, the hoist cable is 
no longer stretched. Also in this case the support point 
does not perform any work (8), this time because the 
applied force is zero, rather than the displacement. We 
see that the larger the instantaneous acceleration of the 
support is, the less negative is the work dW. As we wish 
to make the applied work as negative as possible, it 
might seem beneficial to apply a low acceleration. 
However, it is not only the instantaneous work that 
determines the energy dissipation from the pendulum, 
but its integrated value over time. Since the applied 
work is proportional to the displacement of the support 
point, it is beneficial to initially accelerate the support 
point maximally in the lateral direction towards the load 
until the maximal velocity has been reached. This is the 
method we apply in order to quickly dissipate energy 
from the pendulum at large swaying amplitudes. The 
results can be seen in Figure 3. The figure shows that 
whenever the x position of the load crosses the x 
position of the support point, the latter starts 
accelerating at maximum acceleration amax into the new 
direction of the load, until its maximum velocity vmax 
has been reached. This method effectively dissipates 
energy from the pendulum, and eventually results in a 
situation where the support and load move together at a 
final velocity smaller than vmax (see Figure 3).  

We also propose a general method for dissipating 
energy from the system: While applying the Lagrange 
method to integrate the equations of motion, we choose 
a trial step for the acceleration of the support point 
during the next time step. We then compute and record 
the total kinetic plus potential energy K+V after this trial 

step. We repeat this for all possible accelerations 

  in 

all directions of the support point at the current position, 
and then choose the direction that leads to the state of 
minimal total energy. We then proceed to the next time 
step. In this way, energy is removed from the system as 
quickly as possible at all moments in time. 
 
However, as we have mentioned before, minimizing the 
instantaneous work at all time does not lead to the 
desired result of minimizing the integrated work over 
time. On the other hand, when we instead minimize the 
kinetic energy of the system at all moments in time, 
rather than the kinetic plus potential energy, the system 
does exactly what we want: The support point moves at 
its maximal velocity into the direction of the load, such 
that the latter loses its kinetic energy as quickly as 
possible. This is the algorithm we use to dissipate 
energy from the system and in this way damp out large 
swaying motions. The results can be seen in Figure 3. 
The methods have been verified to work for three-
dimensional oscillations as well (results not shown).  

 

Figure 3 Basic control method: Damping by crane motion 
only. Positions of the load (black line) and support point (red 
line) as well as the acceleration of the support point (pink line) 
are shown as a function of time. 

 
In Figure 3, the length of the hoist cable is 20 meter, the 
maximum speed of the crane vmax is 3 m/s and its 
maximum acceleration    . The initial 
displacement of the load is 45 degrees. The support 
point always moves at maximum speed towards the load 
position. The support point starts decelerating in 
advance when it approaches the lateral position of the 
load, in order to prevent an overshoot. When the 
maximum velocity of the support vmax has been reached, 
the acceleration is set to zero. In the final situation, the 
support point and the load move together at constant 
velocity. 

In order to assure that the load is not accelerated into the 
wrong direction, the time of the next crossing between 
the x positions of the support and the load is calculated 
by extrapolation, in order to let the acceleration vanish 
exactly at this point in time. The lateral distance 



 

 

between the position of the load and the support at 
which the support point has to start its acceleration into 
the new direction is given by (10): 

              (10) 

where    
 is the time it takes to decelerate the 

support point to a standstill. In this way, motion of the 
the load and the support is always in opposite directions. 
Since the positions of the support point and the load are 
close, we neglect the acceleration of the load in the 
above computation. 

Another method to dissipate energy from the pendulum 
in order to damp out a large swaying motion is by using 
the winch to vary the length of the hoist cable over time. 
We can study how the length of the cable should be 
varied in order to minimize the work performed by the 
winch. As before, the force applied by the load is 
always directed downward, along the direction of the 
cable, as long as there is tension on the wire. In this 
case, that means that the downward acceleration of the 
winch should not be larger than the component of the 
gravitational acceleration of the load along the cable, 

plus the acceleration caused by the centripetal force 

 . 

We see that the force applied by the winch at the 
position of the support point is directed along the 
direction of the cable, i.e. pointing away from the 
direction of the load, under all normal circumstances. 
As a consequence, in order to minimize the 
instantaneous work performed by the winch on the 
pendulum, the cable should at all times be extended, and 
the acceleration should at the same time be small 
enough to keep a positive tension on the cable. To 
indefinitely extend the length of the cable is, of course, 
undesirable, although it is possible to damp out the 
swaying motion in this way. Instead, it is preferable to 
reduce the cable length at times when the force on the 
cable is minimal, and extend it when the force is largest. 
In this way, the applied work is smaller than zero. We 
can achieve this by using the winch to lift the load when 
it is at its highest points (with maximum potential 
energy; the force on the cable is minimal), and lowering 
it when it is at its lowest point (with maximum kinetic 
energy; the force on the cable is maximal). In effect, this 
means shortening the wire at constant speed when the 
load moves away from the support and lengthening it at 
constant speed when the load moves towards the 
support. 
 
Figure 4 and Figure 5 show the simulation results for 
this method. It can be seen that this method uses a long 
time to dissipate energy from the pendulum, especially 
for longer cable lengths.  

 

                            Figure 4 Winch damping. 

In Figure 4, an initial displacement of 45° of the 
pendulum is damped out by adjusting the length of the 
cable by operating the winch. The maximum 
acceleration and velocity of the winch are 5 m/s2 and 3 
m/s, respectively, the cable length is varied between 10 
and 15 meters. 

 

Figure 5 Winch damping for a long cable. 

Figure 5 shows the same simulation results as those in 
Figure 4, the only difference being that the length L of 
the cable now equals 30 meters and is varied between 
25 and 35 meters. It is seen that the damping process 
takes very much longer in this case. 

 

Figure 6 Damping by the combined effect of crane and winch.  
 

In Figure 6, an initial displacement of the pendulum is 
damped out by a combination of the above methods for 
energy dissipation by crane motion and winch control. 
The positions of the load (black line) and support point 
(red line) as well as the acceleration of the support point 
(pink line) are shown as a function of time. Parameters 
are the same as in Figure 3; in addition the maximum 
velocity of the winch is set to 3 m/s, its maximum 



 

 

acceleration is set to 5 ms-2. As can be seen by 
comparison to Figure 3, the additional effect of damping 
by using the winch is small: a steady state is reached 
about 10 % earlier than by only crane motion. 

III.II TRANSLATION  

Besides damping out oscillatory motion (section III.I), 
another important method is to transport the load from 
one position to another, in the absence of external noise. 
This is a typical operation which a crane operator is 
trained at. Nevertheless, we implemented and tested the 
method for two reasons. Firstly, the method is ideal to 
damp out any lateral motion that is left after having 
damped out a motion by means of the methods in the 
previous section. Secondly, the method is an ideal test 
case for our simulations as a virtual operation which one 
can perform without needing an operator. Namely, the 
operation is able to perfectly move the load from one 
position to another, without any final oscillation. In the 
presence of noise, we can combine the translational 
motion with the methods for damping out oscillations of 
section III.I and III.III. 
 
The method is exact when the load is initially hanging 
still, and there are no perturbations. Importantly, the 
method can also be combined with the above-mentioned 
method for energy dissipation to damp out sway motion, 
both initially, and during the phase where the crane 
moves at constant velocity.  
 
In order to explain the method, it is easiest to first 
consider how the load can be accelerated from a 
standstill to a final velocity vf without causing it to 
sway. This is what is done during the first 5 seconds in 
Figure 7. In the second half of the translation in Figure 7 
(5 s < t < 10 s), the reverse process is applied, in which 
the load is decelerated back to a standstill. 
 
In order to first accelerate the support and load from 
standstill to a simultaneous movement at a velocity vf 
(at t=5 sec in Figure 5) we first accelerate the support to 

 by a constant acceleration aconst during a time tacc 

(although the method works as well for irregular 
accelerations over time). This is done during the first tacc 

≈ 0.5 seconds in Figure 7. Next, the support point keeps 
this exact velocity during a time t1/2, until the payload 
has exactly the same velocity ½ vf (slightly after 2 
secconds in Figure 7). Note that the position of the load 
at that moment in time still lags behind the support 
position, although the velocities vsup and vload are exactly 
equal. From here on, we let the support point keep the 

same velocity 

  for another time t1/2 (until the start of 

the second acceleration pulse, shortly after 4 seconds in 
Figure 7), and finally we accelerate it to vf using the 
same constant acceleration aconst during a time tacc (until 
the end of the second acceleration pulse, shortly after 4 
seconds). At the end (t=tend, shortly after 4 seconds in 
Figure 7), the support and the payload move together at 
a speed vf, without any sway. We can see this by using 

the fact that the system is time-reversible, and by 
applying the following Galilean transformation (11), 

               (11) 

 
where the subscript “end” indicates the place and time 
directly after the second acceleration pulse (shortly after 

4 seconds in Figure 7). Since both velocities at 

  

  are invariant under the above transformation, 

the transformation has to apply also for the rest of the 
trajectory: 

              (12) 

But then, it follows from symmetry that 

      
  

  (13) 

In conclusion, at t = tend the support and load move 
together at the same x position and velocity, such that 
we are able to accelerate the system to any desired 
velocity, starting from the system at rest. In the same 
fashion, we can decelerate suspension and payload from 
any given initial velocity to its rest position (see section 
III.II). This process is shown in the second half in 
Figure 7 (5 s < t < 10 s), where the payload is 
decelerated from a velocity of 3 m/s towards a standstill. 

 

Figure 7 Translational motion by the double pulse method. 

 
In Figure 7, the length L of the wire is 20 meters; the 
load is translated from a standstill at an intial position x 
= 0 m to a final position x = 16.5 m in 10 seconds. 
Maximum lateral acceleration and velocity of the 
support are 3 ms-2 and 3 ms-1, respectively. 
 
III.III DRIVEN OSCILLATION  

 
We here consider the response of the pendulum to a 
lateral periodic disturbance. A cosine signal is fed to the 
x position of the support point. Without the presence of 
damping, the system is unstable. If the feeding 
frequency is similar to the  natural frequency of the 
system, the oscillations grow significantly in amplitude 
already after few oscillation periods.  
 
In order to damp out the oscillations, we apply the same 
methods as in section III.I. As shown in Figure 8, an 

initial displacement of the load of 45° and a driven 
lateral oscillation of the support are quickly damped out 



 

 

by the method considered under section III.I, in which 
the support at all times moves at its maximum speed 
into the lateral direction of the load. The used maximum 
acceleration and velocity of the support are 9 ms-2 and 3 
ms-1, respectively. The lateral oscillation of the support 

position in Figure 8 is given by     
while the wire length L is 20 meters. The pendulum’s 
resonance frequency is therefore (for moderate 

displacements) 




   , close to the driving 

frequency of 0.1 s-1. Without a control algorithm, the 
oscillation would therefore quickly gain amplitude. The 
amplitude of the periodic wave is as large as 5 meter, 
but still the algorithm is able to fully damp out the 
oscillations, resulting in a linear motion that simply can 
be compensated for by the method discussed under 
section III.II. 

 

Figure 8 Damping out a periodic input signal. 

IV. DISCUSSION AND CONCLUSION 
 
Our proposed idea consists of developing an integrated 
system with control strategies that reduce the effect of 
payload pendulation and that minimize wave impact on 
shipboard crane manipulation. We here present 
simulation results confirming the principle and 
effectiveness of the methods for damping out 
pendulation. 
 
An important advantage of the proposed methods for 
dissipating energy is that they are expected to be 
relatively easily combined with operator-induced 
actions. When a human operator is involved, it is 
unwanted and dangerous if the control algorithm 
without a warning performs actions opposite to those of 
the crane operator. With our proposed method, we 
expect to be able to effectively damp out oscillations by 
using values of amax and vmax that are small as compared 
to the accelerations and velocities used by the crane 
operator. In addition, the values of amax and vmax can 
easily be adapted to the the current sea state: Without 
the presence of external noise both values may be set to 
zero, at intermediate sea states the values are set to 
fractions of the maximum velocity and acceleration of 
the crane, while at extreme sea states they may be set to 
their maximal values. 
 

 

Figure 9 Combined crane-winch simulation. 

A simulation of a combined crane-winch operation is 

shown in Figure 9. An initial 45° displacement (position 
1 (pos. 1)) is damped out (pos. 1-3) by the combined 
crane and winch methods described under section III.I. 
Directly after this, the payload is translated over a (very) 
large distance of 62 meters. In order to do so, the 
support point is first accelerated (pos. 4-5) until it 
moves at fixed speed (pos. 6) and finally decelerated 
(pos. 7-9) until the prescribed position has been reached 
(pos. 10). The wire length is 20 meters and the total 
duration of the operation is 23 seconds. The simulation 
shows some of the working capabilities and efficiency 
of our integrated anti-sway approach. The simulation 
results were visualized by using Unity3D game engine. 
Although not shown in the figure, the same methods 
also apply when the system is under the influence of a 
driven planar perturbation during the operation, as well 
as a three-dimensional perturbation. 
 
There is still a great amount of work left for future 
research. Considering the difficulties of integrating 
features of hydraulic cranes into the control method, we 
are currently focusing on investigating the nonlinear 
dynamic models of all related hydraulic components in 
the crane system. The work will be integrated with the 
“crane/winch simulator” developed by the Offshore 
Simulator Centre. Finally, a real prototype will be built 
and tested at Rolls-Royce Marine AS.   
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