
7

RaPTEX: Rapid Prototyping Tool
for Embedded Communication Systems

JUN BUM LIM, BEAKCHEOL JANG, SUYOUNG YOON, MIHAIL L. SICHITIU,
and ALEXANDER G. DEAN
North Carolina State University

Advances in microprocessors, memory, and radio technology have enabled the emergence of em-
bedded systems that rely on communication systems to exchange information and coordinate their
activities in spatially distributed applications. However, developing embedded communication sys-
tems that satisfy specific application requirements is a challenge due to the many tradeoffs imposed
by different choices of underlying protocols and their parameters. Furthermore, evaluating the cor-
rectness and performance of the design and implementation before deploying it is a nontrivial task
due to the complexity of the resulting system. This article presents the design and implementation
of RaPTEX, a rapid prototyping tool for embedded communication systems, especially well suited
for wireless sensor networks (WSNs), consisting of three major subsystems: a toolbox, an analyt-
ical performance estimation framework, and an emulation environment. We use a hierarchical
approach in the design of the toolbox to facilitate the composition of the network stack. For fast
exploration of the tradeoff space at design time, we build an analytical performance estimation
model for energy consumption, delay, and throughput. For realistic performance evaluation, we
design and implement a hybrid, accurate, yet scalable, emulation environment. Through three use
cases, we study the tradeoff space for different protocols and topologies, and highlight the benefits
of using RaPTEX for designing and evaluating embedded communication systems for WSNs.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]—
Real-time and embedded systems; D.2.2 [Software Engineering]: Design Tools and Techniques—
User interfaces; I.6 [Simulation and Modeling]

General Terms: Design, Verification, Experimentation

Additional Key Words and Phrases: Wireless sensor networks, rapid prototyping tool, analytical
performance modeling, real code simulation, RaPTEX, TinyOS

ACM Reference Format:
Lim, J. B., Jang, B., Yoon, S., Sichitiu, M. L., and Dean, A. G. 2010. RaPTEX: Rapid prototyping
tool for embedded communication systems. ACM Trans. Sensor Netw. 7, 1, Article 7 (August 2010),
40 pages. DOI = 10.1145/1806895.1806902 http://doi.acm.org/10.1145/1806895.1806902

This work was sponsored by the National Science Foundation under grant number CNS-0509162.
Authors’ addresses: Department of Electrical and Computer Engineering, North Carolina State
University, Raleigh, NC 27606; email:{jlim,bjang,syoon2,mlsichi,alex dean}@ncsu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1550-4859/2010/08-ART7 $10.00
DOI 10.1145/1806895.1806902 http://doi.acm.org/10.1145/1806895.1806902

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:2 • J. B. Lim et al.

1. INTRODUCTION

Owing to advances in microprocessor, sensor, and radio technology, we are
gradually moving toward an era of pervasive computing [Weiser 1991]. Tiny
smart devices will be deployed and interconnected to be interwoven in the
fabric of our everyday life. It is clear that this trend leads to a significant
increase in diverse needs and uses of embedded systems that deeply rely on
communication systems to exchange information and coordinate their activity
in spatially distributed applications.

The wide range of needs for networked embedded systems has led to the
creation of many different network protocols. For example, J1850, LIN, and
CAN were developed as networking bus-systems for data exchange between
electronic control units in vehicles. BACnet, LON, and DALI were devised for
building automation systems such as smart elevators, light control, and secu-
rity. In the Wireless Sensor Network (WSN) area, numerous communication
protocols [Ye et al. 2004, 2006; Buettner et al. 2006; Polastre et al. 2004; Woo
et al. 2003] have been proposed to meet the different performance requirements
such as energy consumption, delay, and throughput.

With the large number of existing protocols, there is little reason for a system
designer to reinvent the wheel and design a custom communication protocol
for a given application. It is very likely that, for every possible communication
need, there already exists a protocol, or a protocol suite that can be easily
customized to meet that need.

However, many of these protocols may not be known to system designers,
especially nonspecialists, and there are often obvious tradeoffs from different
configurations or combinations of different protocols. Furthermore, there is no
protocol that performs best in every situation, as shown in Section 6. Therefore,
deciding the best communication protocols that fit best to a specific purpose is
one of the most time-consuming and difficult tasks for designers of distributed
embedded systems.

In addition to choosing protocols, it is required for system designers to sys-
tematically validate their design choices and implementations before deploy-
ing into the real environment by evaluating the expected system performance.
Generally, there are three basic methods for predicting the performance of a
network system: theoretical analysis, network simulations, and testbed imple-
mentations. Each of these method has the potentials and limitations which
have been widely discussed in literature, (e.g., Jain [1991]).

While theoretical analysis produces immediate performance results and of-
fers elegant solutions for estimating the performance of simple networking
systems, accuracy is often sacrificed to oversimplifications and assumptions.
Simulation is probably the most popular method, which can predict the per-
formance of complex and large networking systems that are theoretically very
difficult to analyze without the cost in time and money required for a testbed.
The accuracy of the result, however, is dependent on the accuracy of the simu-
lation model, which needs to be written separately from the real implementa-
tion. As a result, simulation has not been able to completely supplant the use
of real hardware. Finally, a testbed usually produces the most accurate results

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:3

because it runs real implementations and takes into account most of the real
factors such as signal propagation, interference, and other deployment vari-
ables. The main drawback of using testbeds is that it is time consuming and
expensive. Furthermore, very large systems (e.g., large sensor networks) are
difficult or impossible to replicate in a testbed. Therefore, any single evaluation
method limits the accuracy of the result and/or the network size, while utiliz-
ing multiple methods requires a considerable effort from experienced system
designers.

Our work is motivated by the fact that system designers, especially non-
network specialists, face difficulties in developing embedded communication
systems with best-fit protocols and in evaluating them. The main goal of the
work presented in this article is to bridge the gap between the need for embed-
ded communication systems and the difficulty in their design, implementation,
and evaluation. To this end, we have developed a tool enabling rapid proto-
typing of embedded communication systems, which consists of three major
subsystems:

—The first subsystem provides a collection of commonly used communication
protocols and a graphical toolbox in which users can build a protocol stack for
each node, virtually deploy the nodes, and compose a customized source code.
The resulting network stack is used as an input for the other two subsystems,
which evaluate the performance of the resulting system.

—The second subsystem offers a method of performing a fast analytical perfor-
mance estimation for the selected protocols to allow users to quickly evalu-
ate the theoretical performance of the system. This feature enables informed
choices and a fast but thorough exploration of the offered tradeoff space.

—Finally, RaPTEX provides an assembly code-level emulation environment to
execute the complete source code for each network node with a simulation
for physical layer effects and node mobility, while facilitating debugging and
postprocessing for performance analysis.

With these three subsystems, RaPTEX offers the user the power of iterative
design, numerous protocol choices and configurations, and fast and accurate
performance estimation of the system. Hence, the user will be able to iteratively
adjust the design choices until the desired performance is achieved. When the
system performance is satisfactory, a single command is used to generate the
byte code to be uploaded to the microcontrollers of the embedded system.

Because embedded communication systems cover a very broad area, in this
article, we focus on the specific application domain of Wireless Sensor Net-
works (WSNs) based on TinyOS components and the Berkeley motes. For il-
lustration purposes, the current RaPTEX communication library contains two
MAC and two routing protocols available with TinyOS. The emulation environ-
ment supports Mica2 as its default hardware platform. RaPTEX is also being
used for creating ultrasonic underwater communication systems for sensor
networks [Peng et al. 2010; Parsons et al. 2008].

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:4 • J. B. Lim et al.

The remainder of this article is organized as follows. We provide a sum-
mary of the related work and its limitations in Section 2. In Section 3, the
communication library and toolbox are described in detail. Analytical and
emulation-based performance evaluations are explained in Sections 4 and 5,
respectively. We then present how RaPTEX is useful in real system develop-
ment process through three use cases in Section 6. Finally, we conclude the
article and present future directions in Section 7.

2. RELATED WORK

Building an embedded communication system, especially an application for
WSNs, is a highly complex task, which involves a variety of design, devel-
opment, and validation methodologies and tools, making it a nontrivial and
errorprone task. Previous projects have partially facilitated each of the de-
velopmental steps, but few, studies provided an integrated environment that
covers all the developmental procedure with an overall network perspective.

2.1 Developmental Tools

There have been several projects that have provided a developmental envi-
ronment to facilitate the software design and implementation through graph-
ical composition tools, high-level language, and libraries. TinyDT [Sallai et al.
2005], SNACK [Greenstein et al. 2004], and GRATIS [Volgyesi and Ledeczi
2002] are development tools for WSN applications based on TinyOS.

TinyDT [Sallai et al. 2005] is a TinyOS plug-in for the Eclipse platform.
It focuses on providing editing functionalities such as syntax validation, code
navigation, and static wiring graph analysis. SNACK [Greenstein et al. 2004]
is a sensor network application construction kit, which consists of a new com-
ponent composition language, configurable high-level service libraries, and a
new compiler. Within the boundary of high-level services, SNACK facilitates
application design, but the process of developing configurable services is not
trivial. Moreover, SNACK requires learning a new language and compiler-
specific functionality. GRATIS [Volgyesi and Ledeczi 2002] features graphical
block composition interfaces that provide a clear overview of the TinyOS ap-
plication structure and make it possible for nonspecialists to easily develop
WSN applications by simply choosing preexisting nesC components. However,
GRATIS only supports source code-level components (nesC components), lim-
iting the ability of tuning the high-level service components. Moreover, none of
these tools supports a validation process.

In RaPTEX, we provide the graphical toolbox with predefined high-level
protocol components to help users build a protocol stack in an easy and con-
sistent way. Through RaPTEX’s top-down approach, a user can explore the
system from the system view to a single node. By interconnecting software
components in different diagrams, users can easily develop, configure, and
deploy their systems. The resulting system is used as an input to the other
subsystems for theoretical analysis and emulation-based evaluation without
any modifications.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:5

2.2 Analytical Models

Before committing to a particular implementation, designers often use an ana-
lytical model for the newly proposed algorithm or designed system to evaluate
the performance and explore alternatives.

Many researchers used stochastic analysis to model the performance of
WSNs characterized by sleep and active dynamics. By modeling the state of the
sensor nodes as Markov chains while considering channel contention and rout-
ing issues, performance measures such as energy consumption, data delivery,
delay, and network capacity were studied by Chiasserini and Garetto [2004].
Kwon and Agha [2006] also used a discrete Markov chain with a specialized
iLTL analyzer.

Some energy-efficient sensor MAC protocols, such as BMAC [Polastre et al.
2004], XMAC [Buettner et al. 2006], and SCPMAC [Ye et al. 2006] also pro-
vide analytical models for their energy efficiency. Energy consumption in these
models is approximately predicted by calculating how much time is spent in
each mode of radio operations. Although these models are simple and offer
the insight of the proposed protocols, the protocol-specific assumptions make
it difficult to fairly compare different protocols, and analysis is isolated to the
MAC in a single-hop network, making it difficult to estimate the influence of
protocols at other layers in a multihop environment.

The analytical model adopted in RaPTEX uses the same assumptions for
all protocols included in RaPTEX’s communication library, allowing users to
fairly compare different protocols. The model also uses values from real im-
plementations and takes into account the position and amount of traffic from
neighbor and children nodes to increase the accuracy of the estimation in a mul-
tihop environment. The accuracy of RaPTEX’s analytical model is presented in
Section 4.3.

2.3 Simulation

Many simulation-based approaches have also been proposed to validate system
designs. Based on classical discrete event network simulators such as ns-2 [Rice
University 1999], OMNeT++ [Varga 2001], and J-Sim [Sobeih et al. 2005], node
and wireless specific simulation models were added.

SensorSim [Park et al. 2003] extends ns-2 to make it suitable for WSN spe-
cific simulations by incorporating a power model, channel sensing, and hybrid
simulations with real nodes. JSim [Sobeih et al. 2005], which is a Java-based
general-purpose simulator with a component-oriented architecture, provides
a sensor network package featuring a power model, a sensor model for phe-
nomenon detection, and connection of real hardware to the simulator. Castalia
[NICTA 2009] is a WSN simulator based on OMNeT++, providing configurable
radio, channel, and MAC protocol models. In NesCT [Dulman et al. 2005], the
nesC syntax is translated into C++ for OMNeT++ simulation using source-to-
source compilers.

Due to their model-based nature, which is relatively flexible and scalable,
these high-level simulators are useful when looking at systems from a
high-level and are suitable for the first-order validation of an algorithm before

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:6 • J. B. Lim et al.

moving to implementation on a specific platform. The effect of channel models,
topology, mobility, and routing protocols can be appropriately inspected at this
level.

However, the coarse-grained representation of the microcontroller, the ab-
straction of low-level protocols, and the packet-level interaction limit the use
of these simulators for studies that require highly accurate low-level timing
interactions or fine-tuning, or for debugging implementations of distributed
algorithms.

Instead of providing a separate simulator, RaPTEX adopts a hybrid ap-
proach in which we integrate an instruction-level emulator and a network-level
simulator to combine the benefits of both. From the network-level simulator,
RaPTEX inherits the power of node mobility and diversity in channel models.
The accuracy (clock cycle level) of single node execution and inspection of low-
level run-time properties such as interrupt monitoring, energy consumption
tracking, memory monitoring, serial monitoring, or byte-level packet interac-
tions are guaranteed by the underlying emulator.

2.4 Emulation

In order to accurately inspect and verify detailed run-time properties, emula-
tors, which run actual source codes, have been widely used.

TOSSIM [Levis et al. 2003] is a TinyOS-specific network emulator that runs
nesC code without any modification except hardware control codes that are
replaced by linking to libraries that emulate the behavior of devices. This
hardware abstraction leads to a lack of accuracy caused by the loss of fine-
grained timing information and prevents low-level inspection (e.g., monitoring
interrupts or the behavior of low-level protocols). Power-TOSSIM [Shnayder
et al. 2004], an extension of TOSSIM, provides a power model for sensor nodes.
Although Power-TOSSIM inherits the high scalability of TOSSIM, the hard-
ware abstraction of TOSSIM makes it impossible to compare different duty
cycle MAC protocols. By supplementing a network simulator with the rich and
detailed models and capability of node emulation, sQualNet [Varshney et al.
2007] achieves enhanced fidelity, scalability, and heterogeneity. It, however,
takes a similar approach to emulation as TOSSIM. Therefore, the drawbacks
resulting from using a hardware abstraction remain.

The most accurate approach is an instruction-level emulator that takes as-
sembly code as an input and runs the code at the instruction cycle granularity,
emulating hardware devices such as the processor and the radio chip. Both
ATEMU [Polley et al. 2004] and Avrora [Titzer et al. 2005] are cycle-accurate
AVR emulators. ATEMU offers very accurate results by synchronizing every
node at every clock cycle, but, at the same time, it sacrifices the speed and
scalability for exact synchronization.

To overcome the scalability problem of ATEMU, Avrora adopts a new syn-
chronization strategy in which multiple nodes run simultaneously as sepa-
rate threads during a given interval; the default interval is 1 byte time, (i.e.
the time to send 1 byte). When a node has to synchronize with its neigh-
bors, for example, to receive data or to perform carrier sense, the node waits

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:7

until every node reaches the same simulation time. Therefore, it is allowed
for a node to be further ahead in simulation time than other nodes until
synchronization is required. By adopting this synchronized run-and-wait ap-
proach, Avrora achieves better scalability than ATEMU, while maintaining
accuracy.

However, the Avrora’s CPU-oriented nature lacks network-level supports
such as diversity in channel models, mobility, and topology flexibility. In addi-
tion, because Avrora’s multithreaded structure uses a shared memory, it can
only be run on a single machine. Thus, Avrora has limited scalability, presented
in more detail in Section 5.5.

For accurate emulation, RaPTEX adopts Avrora as an underlying emulator.
However, to overcome Avrora’s drawbacks, we strengthen network-level sup-
port by integrating it with a network simulator, OMNeT++ [Varga 2001], and
extend Avrora’s synchronization mechanism to distribute the emulation over
several host machines. The resulting scalability properties are presented in
Section 5.5.

2.5 Integrated Development

Despite the availability of several tools facilitating the development and eval-
uation of WSN systems, few systems provide an integrated developmental and
evaluation environment for WSNs.

Worldsens [Fraboulet et al. 2007] is a prototyping tool for WSNs based on two
different level of simulators. The tool helps users validate the high-level designs
using a network-level simulator (WSNet), and verify the implemented system
through an instruction-level simulator (WSim). Although this tool draws from
the advantages of the two simulators and enables the cross-validation between
different developmental steps, there is no consistent support for system de-
sign and real source code implementation. In RaPTEX, we provide a graphical
toolbox with a set of commonly used protocols as component blocks to help
users compose a network stack, configure each protocol, and deploy virtual net-
work nodes. The configuration and composed source code are used as inputs to
the other subsystems for theoretical analysis and emulation-based evaluation
without any modification (shown in Figure 1).

Mozumdar et al. [2008], presented a framework that allows users to build
and simulate an application algorithm and generate application code for a
specific OS, based on MathWorks [The MathWorks, Inc. 1994] tools. Although
the framework facilitates application development and validation, the main
focus of the framework is on the functional correctness of an application logic
itself, not on the entire system (e.g., underlying protocols). The code generator
also focuses on generating code for application-level logic, although often the
expected performance and correctness of an embedded communication system
cannot be accurately determined without considering the underlying protocols.
The model-based simulation with the simple packet-level interactions from the
fixed two-dimensional connection graph also introduces inaccuracies into the
simulation. Being based on commercial software, unfortunately, also prevents
it from being widely used.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:8 • J. B. Lim et al.

Fig. 1. Developmental process using RaPTEX.

Viptos [Cheong et al. 2005] provides a graphical developmental environment
for the nesC component composition and a simulation environment in which
TOSSIM [Levis et al. 2003] and VisualSense [Baldwin et al. 2004] are merged
into a single simulator. It allows a user to easily explore TinyOS application
structures and to simulate actual TinyOS programs. Although the current
Viptos simulator only supports TinyOS-based systems, it can be extended to
support other languages and can be merged with a non-TinyOS simulator.

A very important feature of RaPTEX is the capability to theoretically es-
timate the performance of the selected communication protocols, providing
instant feedback to the user. This enables informed choices and a thorough
exploration of the offered tradeoff space. Furthermore, RaPTEX realistically
emulates the designed system using a functional, cycle-accurate emulation of
each component of the system and simulation of common physical layer effects.
The emulation will enable exact measurements of relevant performance pa-
rameters and resource requirements, while facilitating the debugging of these
notoriously difficult-to-debug distributed systems.

3. TOOLBOX AND COMMUNICATION LIBRARY

The first characteristic of RaPTEX is that users can design and evaluate their
systems in a single integrated toolbox, which was designed with the following
requirements:

—A common code is used for both the design and evaluation stages without
reimplementation of protocols and separate setup of scenarios for consistency
during the entire developmental process.

—To facilitate system design, a user selects, configures, and deploys graphical
components to build the desired customized communication system with a
whole network perspective.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:9

Fig. 2. Screenshot of the network topology diagram.

—The tool contains a collection of commonly used communication protocols
with several tuning parameters enabling design choices.

3.1 Developmental Process

RaPTEX uses the approach shown in Figure 1 to allow straightforward protocol
stack design, synthesis, and analysis. A user selects and configures a network
stack from predefined protocols or directly composes source-level components in
the graphical toolbox. From the user’s design choices, formulae for theoretical
analysis and source code with files are composed. The source code is then
compiled to assembly code to be injected in the emulation. The evaluation
results derived from theoretical analysis and the emulation are used to refine
the system design until it satisfies the performance requirements.

3.2 Toolbox

RaPTEX’s toolbox adopts a hierarchical architecture of three different graph-
ical diagrams: the network topology diagram (Figure 2), the protocol diagram
(Figure 3), and the source component (nesC) diagram (Figure 4). This archi-
tecture allows easy transitions between a network-level view of a system to
low-level node implementations. Each diagram handles a different type of XML
file.

In the network-level view, RaPTEX provides the network topology diagram
(Figure 2), where a user can deploy virtual network nodes. For the topology

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:10 • J. B. Lim et al.

Fig. 3. Screenshot of the node protocol diagram.

representation, we define an XML format called TXML, which contains in-
formation about the locations of each node, and each node holds a pointer to
another XML (NXML) file referring to detailed node information.

For the theoretical estimation in Section 4, the TXML file is used to calculate
the expected number of packet transmissions and receptions of each node as
it contains information about neighbor nodes and routing paths toward the
selected sink nodes. For the emulation in Section 5, the locations of each node
in the TXML are converted to the topology description script in the omnetpp.ini
file of OMNeT++ [Varga 2001] and used as initial values for mobility patterns
of each node. The GUI of the emulation environment is shownt in Figure 5.

In a node-level view, the protocol diagram (Figure 3) is provided, in which
the user composes and configures the network stack for a node. For example,
in Figure 3, we choose BMAC [Polastre et al. 2004] as a MAC protocol and
MintRoute [Woo et al. 2003] as a routing protocol and configure the BMAC’s
wakeup interval (BMAC WAKEUP INTERVAL). To represent a node, we de-
fine an XML format named NXML, which only contains information about what
protocols are selected and how they are interconnected. An NXML file consists
of PXML files; each PXML holds outline information about a protocol, includ-
ing the path to source components, configurable parameters, and interfaces to
different layers for the compatibility check.

To allow a user to easily handle protocol source code directly, RaPTEX pro-
vides the source component diagram (Figure 4). With this diagram, a user can

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:11

Fig. 4. Screenshot of the source component (nesC) diagram.

navigate each module of the code and directly edit the code. In this version
of RaPTEX, we support nesC for TinyOS as the source component diagram.
To represent the nesC components, we use the existing capability of the nesC
compiler, which generates outline information of nesC components in an XML
format by using the -fnesc-dump option.

The RaPTEX code generator composes the source files including the selected
template application code, the selected protocols, and a Makefile that glues
together all the source files and the user’s configurations. The composed pro-
totyping source code is used for the emulation as presented in Section 5 or
uploaded to the real device without any modifications. If the performance of
the prototyping system is acceptable, application developers can concentrate on
application logic by modifying the template application code without modifying
the details of protocol-level implementation.

3.3 Communication Library

To enable a wide range of design choices, especially for low-energy budget ap-
plications for WSNs, RaPTEX provides a communication library with a suite
of protocols featuring several options at each layer. For flexibility and interop-
erability, each class of protocols has an identical interface and different packet
types are unified into a single format by transforming packets between the
MAC and routing layers. For consistency in the configuration and performance
evaluation, we define common configuration interfaces and add interfaces for

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:12 • J. B. Lim et al.

Fig. 5. Screenshot of the emulation environment over OMNeT++.

debugging and energy measurement. Although the internal composition of a
protocol and its tunable parameters are protocol specific, the top-level protocol
component is exposed through common interfaces and described as a PXML.
Therefore, RaPTEX users can treat the protocol as a form of high-level graphi-
cal design components in the protocol diagram, and swap out different protocols
easily.

We instantiate the communication library based on TinyOS components.
Figure 6 illustrates the layered structure of each class of protocols and their
interfaces. Since our focus is on providing users with an easy way of choosing
protocols and tuning them based on existing protocols, we reuse the existing
TinyOS interfaces as much as possible. Although many protocols in TinyOS are
implemented through the common interfaces, in cases when a protocol is im-
plemented with proprietary interfaces or tunable parameters are not explicitly
exposed (e.g. changing parameters requires changing source code), we modify
the protocol to explicitly expose configurable parameters and its functionality
through the common interfaces.

For packet I/O, each layer provides and uses SendMsg and ReceiveMsg.
The routing layer provides the Intercept interface to allow the application
layer to snoop or aggregate multihop messages. RouteControl and MACControl
allow control of the operations of protocols such as start/startDone(),
stop/stopDone(), and init/initDone(). The RaptexEnergy enables measure-
ments of the energy consumption by tracking the total time a radio device

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:13

Fig. 6. Interfaces for the RaPTEX communication library for TinyOS.

spend in each mode of radio operations. To allow each protocol to print debug
messages through the UART, we define RaptexDebug, which cooperates with the
SerialMonitor of the RaPTEX emulator for the debugging purpose described
in Section 5. Because each class of protocols exposes identical interfaces to up-
per/lower layers, swapping different protocols becomes possible. However, some
protocols also need to expose protocol-specific interfaces, especially for tunable
behaviors.

There are two ways to define tunable parameters. First, the parameters are
simply defined using #ifndef and #define in the header files. Second, the pa-
rameters are accessed through functions defined in protocol-specific configura-
tion interfaces (e.g., LowPowerControl shown in Figure 7) and the interfaces are
gathered and implemented in a configuration component such as RouteConfig
and MacConfig shown in Figure 8. By changing the connection (wiring) between
the protocol logic component (e.g., RaptexComLibBmacM) and the configuration
component, the actual value of the tunable parameters are decided in a flexible
manner, and it also enables preprocessing before being used in the protocol

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:14 • J. B. Lim et al.

Fig. 7. The LowPowerControl, which is implemented in BMAC’s MacConfig.

Fig. 8. The MacConfig for BMAC, which bridges the BMAC protocol implementation and tunable
parameters.

Fig. 9. Steps of parameter passing from the GUI to protocol implementation.

logic components. Protocol logic components are wired with default configura-
tion components for the case when there is no external wiring.

For example, Figure 9 shows how tunable parameters are passed from the
GUI to source code. User configurations are passed to the source code as compile
time options (-D), and MacConfig (Figure 8) that is wired with the real protocol
component (RaptexComLibBmacM) allows the parameters to be accessed by the
protocol through function calls. For example, the LowPowerControl (Figure 7)
defines two functions that will be called by the BMAC implementation. The
detail of the functions are decided in BMAC’s MacConfig at compile time based
on the compile option (e.g., BMAC WAKEUP INTERVAL=200) passed by the
Makefile generated by the RaPTEX code generator. Code snippets of the top-
level Makefile are shown in Figure 21 in Section 6.

The current communication library of RaPTEX contains two well-known
energy efficient MAC protocols for TinyOS, BMAC [Polastre et al. 2004] and
SMAC [Ye et al. 2004]. It also includes DefaultRoute [Buonadonna 2003] and
MintRoute [Woo et al. 2003] at the routing layer. In the application layer, we
provide two types of templates for continuous monitoring and event-driven
applications [Madden et al. 2003], to which users can add their specific codes.
The tunable parameters for each layer are summarized in Table I. Tradeoffs
from different combinations of these protocols and parameters are discussed
in Section 6.2. Although the current communication library does not cover

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:15

Table I. Tunable Parameters in RaPTEX

Parameter Default
Data packet generation interval 10 s
Expected event rate during a sample period 1
Routing packet transmission rate 20 s
Routing forwarding queue size 16 Packets
Routing link estimator period 200 s
BMAC acknowledgment No
BMAC wakeup interval 20 ms
BMAC Initial backoff window size 32 Slots
BMAC congestion backoff window size 32 Slots
SMAC maximum number of RTS 7
SMAC wakeup interval (duty cycle) 257 ms (50%)
SMAC sync packet period 12000 ms
SMAC data retransmission limit 3
SMAC max. number of different schedules 4
SMAC max. number of neighbors 20
Transmission power (1-255) 15
Frequency 915 MHz

all the TinyOS protocols available, we believe that these protocols constitute a
representative sample of existing protocols for WSNs, and by standardizing the
top-level interfaces and generating a new PXML, one can add a new protocol
in RaPTEX’s communication library.

For example, to add SCPMAC [Ye et al. 2006] in the communication library,
outline information of the protocol should be described in a new PXML af-
ter standardizing the protocol implementation for the common interfaces and
packet format. Figure 10 shows code snippets of the PXML, which holds out-
line information about the protocol, including the path to the top-level source
component, the class path for the estimation model, the configurable parame-
ters, and the interfaces to different layers for the compatibility check. Since the
parameters defined in the PXML are also defined in the source code as #define
or SCPMAC’s MagConfig, the Makefile generated by RaPTEX code generator
will bridge the parameters and real source code at compile time. The analytical
estimation model [Yoon 2007] for SCPMAC will be invoked by the estimation
framework, which is presented in Section 4.

By generating the same format of the XML files, RaPTEX can also support
other sets of protocols for different software platforms. For example, to sup-
port MANTIS [Bhatti et al. 2005], outline information of existing protocols
implemented with the interfaces of MANTIS should be described in PXML. A
template application using NET or COM interface should be written to pro-
vide users with the start point of writing application logic. The theoretical
estimation formula for the protocols can be written by modifying the model in
Section 4. If the mechanism of a protocol is same as the one in TinyOS, for
example, cc1000 bmac in MANTIS, then the formula can directly be reused
by defining the same Java class path for the formula in the PXML. Since an
assembly code is used for the emulation, no additional support is required if
the hardware platform is the same.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:16 • J. B. Lim et al.

Fig. 10. Code snippet of an example PXML for SCPMAC.

4. ANALYTICAL PERFORMANCE ESTIMATION

It is important that at least a rough approximation of the projected performance
is available at the time of the design of the protocol stack. Thus, the goal of
the RaPTEX’s analytical performance estimation is to allow users to quickly
explore the performance tradeoffs involved when choosing certain protocols or
changing parameters.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:17

Table II. Symbol Used in Analytical Model

Symbol Meaning
E Energy consumed during T
T Sampling period
TX Time spent for X during T , where X ∈ {tx, rx, overhear, idle, startup, sleep}
PX Power consumed for X, where X ∈ {tx, rx, oh, idle, startup, sleep}
EX Energy consumed for Y during T , where X ∈ {tx, rx, oh, idle, startup, sleep}
t f Frame size (tf = tsleep + tlisten)
tlisten Active listening period within t f

K Number of frames during one sample period T (T = T · t f)
tsleep Sleeping period within the frame
tlpl Time for low-power listening
tsync,interval Synchronization packet interval
tX Time to send/receive a packet of type X, where X ∈ {data, rts, cts, ack, sync}
tpreamble Time to send a preamble
twakeup Time for radio transition from sleep to a fully awake state
troute,interval Routing packet transmission interval
ζi Set of children of node i
ϒi Set of nodes whose transmissions can be received by node i
Ne(i) Number of events that node i expects to detect during T
Nhop(i) Number of hops from node i to sink
Nneighbor(i) Number of neighbors of node i (cardinality of ϒi)
Ntx,X(i) Number of packets of type X that node i sent during T , where

X ∈ {data, ack, rts, cts}
Nrx,X(i) Number of packets of type X that node i received during T , where

X ∈ {data, ack, rts, cts}
Nhear,X(i) Number of packets of type X that node i hears during T , where

X ∈ {data, ack, rts, cts}
Ntx,route(i) Number of routing packets sent during T
Nrx,route(i) Number of routing packets received from its neighbors during T

In this section, we determine analytically the power consumption, end-to-end
average delay, and throughput of several well-known MAC protocols for WSNs.
Since the lifetime is the most important design issue in WSNs [Ye et al. 2004],
we mainly focus on the power consumption by calculating how much energy is
consumed in each operation mode of the transceiver. To validate the analytical
model, we measure energy consumption, end-to-end delay, and throughput of
both single-hop and multihop networks on a testbed using Mica2 motes and
compare the results.

4.1 Analytical Model

The analytical model assumes that node i generates data packets when it
detects events at the rate Ne(i)

T , where T is the fixed sample period and Ne(i)
is the number of events that node i expects to detect during T . In case of the
continuous monitoring application, Ne(i) = 1. The packets are forwarded to the
sink through the multihop network. For simplicity, the network has sufficient
capacity to transport the data and there are no collisions. This assumption is a
reasonable approximation of reality in systems with very low-duty cycles and
low contention. The notation we use for the analysis is summarized in Table II.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:18 • J. B. Lim et al.

The total energy consumption E during each period T is the sum of the
expected energy spent in each mode of radio operations during T :

E = Ttx Ptx + Trx Prx + Toh Poh + Tidle Pidle (1)

+ Tstartup Pstartup + Tsleep Psleep,

T = Ttx + Trx + Toh + Tidle + Tstartup + Tsleep, (2)

where Ttx, Trx, Toh, Tidle, Tstartup, and Tsleep are time spent for transmission,
reception, overhearing, idle listening, startup, and sleeping during T , respec-
tively, and Px is the power needed for radio operation x.

The number of data packets that node i receives (Nrx,data(i)), transmits
(Ntx,data(i)), and hears from its neighbors (Nhear,data(i)), in a multihop network
during T is dependent on the topology, routing protocol, and aggregation mech-
anisms. For simplicity, in this model, we assume all traffic is forwarded to a
single base station through a shortest-path routing tree without aggregation:

Nrx,data(i) =
∑
k∈ζi

(Ne(k)), (3)

Ntx,data(i) = Nrx,data(i) + Ne(i), (4)

Nhear,data(i) =
∑
k∈ϒi

(Ntx,data(k)), (5)

where ζi is the set of children of node i and ϒi is the set of nodes whose
transmissions can be received by node i. In the current RaPTEX topology
diagram (Figure 2), by default, ζi is decided by the minimum hop count.

Depending on the routing protocol, routing packets are periodically broad-
cast, which influences the total number of packet transmissions and receptions.
The average number of routing packets that node i transmits and receives dur-
ing T (not necessarily an integer) is

Ntx,route(i) = T
troute,interval

, (6)

Nrx,route(i) = T
troute,interval

Nneighbor(i), (7)

where troute,interval the routing packet transmission interval, which is config-
urable in the protocol diagram (Figure 3).

In many MAC protocols for WSNs, nodes save energy by going to sleep if
they do not have data to sense, receive, or transmit. The analytical models
of MAC protocols vary depending on the energy saving mechanism that each
MAC protocol uses. We classify energy-efficient MAC protocols for WSNs into
two groups; synchronization-based and preamble-based.

In synchronization-based MAC protocols, the sampling period (T) is divided
into fixed size frames, T = tf K. Within the frame, nodes stay awake at least
a portion of the frame to send/receive data, or go to sleep to save the energy
according to the schedule of the MAC protocol. To send and receive packets,
all nodes in a neighborhood wake up and go to sleep at the same time. There-
fore, synchronization-based MAC protocols provide (and use) synchronization

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:19

mechanisms. Synchronization-based MAC protocols include SMAC [Ye et al.
2004], TMAC [van Dam and Langendoen 2003], and SCPMAC [Ye et al. 2006].

In preamble-based MAC protocols, the nodes are not synchronized with each
other. Instead, senders use a long preamble to wake up receivers. In these pro-
tocols the receiver sleeps for a long time and wakes up for a very short time to
check for the existence of a preamble. If the receiver does not detect any pream-
ble, it goes back to sleep immediately. If it detects the preamble, the node goes
back to sleep after performing the protocol-specific radio operations. We define
a frame in the preamble-based protocols as the time combining the sleep time
and the time to check the preamble. Unlike in synchronized-based protocols,
the number of frames during each sampling period in preamble-based proto-
cols varies depending on the traffic load during the sampling period. Preamble-
based protocols include BMAC [Polastre et al. 2004] and X-MAC [Buettner
et al. 2006].

In this article, we present the model for SMAC [Ye et al. 2004] and BMAC
[Polastre et al. 2004]. The detail analytical model for other protocols such as
XMAC [Buettner et al. 2006], TMAC [van Dam and Langendoen 2003], and
SCPMAC [Ye et al. 2006] are described in [Yoon 2007].

4.1.1 SMAC. Each SMAC node sleeps for some time, and then wakes up
and listens to determine if it needs to receive a packet. The sleep schedules
of all nodes in a neighborhood are synchronized and nodes use SYNC packets
to maintain synchronization. SMAC also provides a mechanism that handles
the situation where there exist nodes with different sleep schedules (thus be-
ing suitable for multihop networks). In this case, the border nodes maintain
multiple schedules to bridge the different schedules. However, to make the
comparison with other protocols fair, we only consider the power consumption
in a single schedule.

For one data packet, the sender spends tdata + trts seconds for transmitting
and spends tcts + tack seconds for receiving, and the receiver spends tdata + trts

seconds for receiving and spends tack + tcts seconds for transmitting. For SYNC
packets, each sensor node, on the average, transmits T

tsync,interval
1

Nneighbor(i)+1 and

receives T
tsync,interval

Nneighbor(i)

Nneighbor(i)+1 SYNC packets during one sampling period T .
Therefore, the total time in each sampling period for transmitting and receiving
packets are given by (8) and (9), respectively:

Ttx = Ntx,data(i) (tdata + trts) + Nrx,data(i) (tcts + tack)

+ tsync
T

tsync,interval

1
Nneighbor(i) + 1

+ Ntx,route(i)tdata,

(8)

Trx = Nrx,data(i) (tdata + trts) + Ntx,data(i) (tack + tcts)

+ tsync
T

tsync,interval

Nneighbor(i)
Nneighbor(i) + 1

+ Nrx,route(i)tdata.

(9)

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:20 • J. B. Lim et al.

Overhearing time (Toverhear) for a sensor node i is the time spent on receiving
packets meant for other nodes. Overhearing only occurs for RTS and CTS
packets in listen (active) state of all frames because SMAC nodes return to
sleep state when the data transmission is completed:

Toverhear = Noverhear,rts(i)trts + Noverhear,cts(i)tcts. (10)

To compute Noverhear,rts, we subtract the number of data packets that node i
should receive from the total number of data packets that node i hears from its
neighbors:

Noverhear,rts = Nhear,data(i) − Nrx,data(i). (11)

The number of CTS packets that node i hears from its neighbor j is Nrx(j),
which is one less than Ntx(j) if we assume Ne(j) = 1 (recall that Ne(j) is the
number of events that node i expects to detect during T). Therefore, from (4) and
(5), the total number of CTS packets that node i hears is Nhear,data(i)−Nneighbor(i).
Among Nhear,data(i) − Nneighbor(i), only Ntx,data(i) are CTS packets that node i
should receive because node i receives a CTS packet for each of its data packet
transmissions:

Noverhear,cts = Nhear,data(i) − Nneighbor(i) − Ntx,data(i). (12)

Idle listening also occurs only during the listen period. We compute the idle
listening time by subtracting the radio operation time from the total listen
period time of the sampling period:

Tidle = tlisten
T
tf

− Ntx,data(i)(trts + tcts)

− Nrx,data(i)(trts + tcts)

− Toverhear − tsync
T

tsync,interval

− (
Ntx,route(i) + Nrx,route(i)

)
tdata.

(13)

Nodes turn on the radio once per each frame, therefore twakeupK is needed for
radio startup in each period T :

Tstartup = twakeupK. (14)

From (2), the total sleep time Tsleep during the sampling period is computed
by subtracting the time for ratio operations from the sampling period.

4.1.2 BMAC. BMAC [Polastre et al. 2004] uses a preamble to implement a
low-power listening (LPL) scheme. Nodes sleep and wake up periodically. When
a node wakes up, it turns on its radio and checks for activity on the channel. If
the node does not detect any activity on the channel, it goes immediately back
to sleep. If it detects the activity, the node keeps the radio on and receives the
packet. After receiving the packet, the node goes back to sleep. Senders transmit
a long preamble before each payload, such that receivers can detect the channel
activity and remain active. To reliably receive the data, the preamble length

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:21

should be greater than or equal to the interval that the channel is checked for
activity.

When it has a packet to transmit, BMAC first sends a long preamble (of
length tpreamble) followed by the payload. For a meaningful comparison to the
other protocols, we assume that BMAC enables acknowledgments (which are
optional in BMAC):

Ttx = Ntx,data(i)(tpreamble + tdata) + Nrx,data(i)tack

+ Ntx,route(i)(tpreamble + tdata), (15)

Sensor nodes, on average, receive half the entire preamble for every packet
destined to them:

Trx = Nrx,data(i)(0.5tpreamble + tdata) + Ntx,data(i)tack

+ Nrx,route(i)(0.5tpreamble + tdata). (16)

When the packets are destined to other nodes (overhearing), sensor nodes
only receive the preamble and the data, but they do not send ACK:

Toverhear = Noverhear,data(i)(0.5tpreamble + tdata)

= (Nhear,data(i) − Nrx,data(i))(0.5tpreamble + tdata). (17)

Unlike SMAC, where the number of frames per sampling interval is constant
and therefore the startup time (Tstartup) is also constant for each sampling period
(14), the number of frames in BMAC varies depending on the amount of data
to send or receive. There are two types of frames in BMAC: the idle frame and
the active frame. If there is any packet to receive when node i wakes up for the
LPL, or if node i wakes up for a transmission, then the frame is active. The
total number of active frames is

Kactive = Ntx,data(i) + Ntx,route(i) + Nhear,data(i) + Nrx,route(i). (18)

If there are no packets to receive or transmit at LPL time, then the frame is
idle. The total number of idle frames is:

Kidle =
(

T
tf

)
− Kactive. (19)

The idle listening time in BMAC is dependent on Kidle because a node wakes
up periodically and keeps radio in reception mode during tlpl to detect incoming
packets:

Tidle = Kidletlpl, (20)

where tlpl is the time for low-power listening. In the real BMAC implementation,
the radio remains in the receive mode for 8 ms to detect an incoming packet
after waking up.

Because a node wakes up in every frame, the total radio startup time during
T is

Tstartup = (Kidle + Kactive) twakeup. (21)

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:22 • J. B. Lim et al.

For delay, we only consider the sleeping delay, which is dominant in systems
with on/off sleep schedules. In SMAC, each node sends one data packet after
the RTS/CTS exchange during a frame (tf); therefore, the expected delay from
node i to the sink is as follows:

Dsleep,smac(i) = (tsleep + trts + tcts + tdata)Nhop(i), (22)

where Nhop(i) is the hop count from node i to the sink.
To make sure a receiver detects an incoming packet during LPL, BMAC

sends a long preamble followed by data packets. The expected end-to-end delay
of node i over BMAC is

Dsleep,bmac(i) = (tpreamble + tdata)Nhop(i). (23)

Assuming low traffic in the network, we consider the throughput to be equal
to the offered load [Chiasserini and Garetto 2004]; hence the expected number
of bits transmitted by node i during the period T is

Throughput(i) = Ntx,data(i) ∗ Lpacket ∗ 8
T

, (24)

where Lpacket is the data packet size in bytes.

4.2 Estimation Framework

RaPTEX offers a method of performing an analytical performance estimation
based on an object-oriented performance estimation framework that facilitates
the implementation and execution of the adopted analytical model. The frame-
work consists of three basic software elements: the engine, the protocol compo-
nent, and the pipe. First, the engine acts as a controller that manages the flow
of the estimation. Second, the protocol component provides templates (base
classes) for the implementation of analytical models in each network layer.
By deriving a protocol component from the base classes in the framework, a
protocol designer can easily integrate the new analytical model in RaPTEX.
Because the PXML contains a Java class path for the corresponding ana-
lytical model implementation, the user’s protocol choices can be seamlessly
transformed to run analytical estimations in a single tool. Last, the input and
output pipes are defined in each component and connect components in differ-
ent layers. As shown in Figure 3, the estimation result will be displayed as a
graph.

4.3 Estimation Results

We compare the performances of an application with different MAC protocols,
BMAC and SMAC, both in a multihop and a single-hop network using the
analytical model, the RaPTEX emulator (Section 5), and a real testbed.

In the single-hop scenario, we show the tradeoffs of different energy-saving
mechanisms. Five nodes generate a packet every 5 s and every node can hear
all the other nodes. The battery capacity for all energy consumption tests is
assumed to be 2500mAh. Figure 11 shows the expected lifetime as a function
of the sleep time. With a short sleep time, SMAC’s short wakeup interval

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:23

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200

E
xp

ec
te

d
lif

et
im

e
(d

ay
)

Sleep time (msec)

BMAC analytical model
BMAC emulation

BMAC real device
SMAC analytical model

SMAC emulation
SMAC real device

Fig. 11. Expected lifetime (single hop).

reduces the node lifetime due to the frequent idle listening (128 ms), while, as
the sleep time increases, the lifetime of BMAC decreases due to the increased
preamble size. Although there are small differences between the results from
the analytical model and the real testbed, the RaPTEX’s emulator provides
very accurate results.

In the multihop scenario, we build a 10-hop chain topology to isolate the
multihop forwarding effects. Each node generates a packet every 10 s and
data packets are forwarded to the sink through DefaultRoute. Every node is
configured for 135 ms sleep time for BMAC, and 50% duty cycle (129 ms sleep
time) for SMAC. As shown in Figures 12 and Figure 13, the analytical results
capture the funneling effect of BMAC; nodes close to sink are exposed to more
packets and spend more energy. On the other hand, due to SMAC’s fixed idle
listening time, all SMAC nodes consume almost the same energy regardless
of the traffic load. Figure 14 shows that the end-to-end average delay in the
considered WSN is a linear function of the overhead of the sleep time of each
MAC over the multihop topology [Polastre et al. 2004].

Although there are differences between RaPTEX’s evaluation methodologies
and the real testbed in the multihop test, the differences are small and can be
explained by the assumption of the absence of collisions and by ignoring con-
tention and retransmissions in the analytical model and the idealized channel
model in the emulator, not accounting for the interference in our lab.

5. EMULATION ENVIRONMENT

For quick exploration of the performance tradeoffs of a chosen protocols, RaP-
TEX provides the estimation environment explained in the previous section,

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:24 • J. B. Lim et al.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

E
xp

ec
te

d
lif

et
im

e
(d

ay
)

Hop

BMAC analytical model
BMAC emulation

BMAC real device
SMAC analytical model

SMAC emulation
SMAC real device

Fig. 12. Expected lifetime (10 hop).

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

T
hr

ou
gh

pu
t(

bp
s)

Hop

BMAC analytical model
BMAC emulation

BMAC real device
SMAC analytical model

SMAC emulation
SMAC real device

Fig. 13. Throughput (10 hop).

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:25

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

A
ve

ra
ge

 d
el

ay
 (

s)

Hop

BMAC analytical model
BMAC emulation

BMAC real device
SMAC analytical model

SMAC emulation
SMAC real device

Fig. 14. Average delay (10 hop).

which approximates the projected performance at the time of the composition of
the protocol stack. For a more realistic performance evaluation, in this section,
we present a hybrid, accurate, yet scalable, emulation environment designed
from the following requirements:

—The emulator should run the complete source code either generated from the
toolbox, or modified by a user, and the source code can be uploaded to the
real device without any modification.

—Run-time properties at every clock cycle during the execution should be
accurately captured.

—Network-level properties such as physical layer effects, asymmetric links
from different levels of transmission power, hidden terminal effects, and
packet collisions should be accurately accounted for.

—High-level system properties such as mobility patterns, heterogenous appli-
cations, or deployment strategies should be available.

—The emulation environment should be scalable for large networks in terms
of the number of nodes.

5.1 Cycle-Accurate Emulator Over Network Simulator

For performance evaluation of a system design and implementation specific to
WSNs, there are many popular simulation and emulation environments avail-
able [Levis et al. 2003; Titzer et al. 2005; Polley et al. 2004; Park et al. 2003;
Sobeih et al. 2005]. However, none of the previous works studies have satisfied
all our design requirements. Our primary approach is to execute the complete

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:26 • J. B. Lim et al.

Fig. 15. Software architecture of the RaPTEX emulation environment.

source code (assembly code) of each independent node by emulating the micro-
controller with cycle-level accuracy. However, the CPU-oriented nature of node
emulation often lacks network-level support such as plug-in channel models,
mobility, and topology flexibility and limits scalability, presented in more detail
in Section 5.5. To overcome this drawback, we propose a hybrid emulation en-
vironment in which we improve the network-level support by integrating the
node emulation with a network simulator and solve the scalability problem by
supporting distributed emulation.

For accurate execution of real code, we base our emulation on Avrora [Titzer
et al. 2005], which emulates the 7.3728-MHz ATMega128L microcontroller and
the CC1000 radio at cycle-level accuracy. For supporting network-level effects,
we adopt the Mobility Framework (MF) of OMNeT++ [Varga 2001] as a network
simulator, which supports node mobility and diverse wireless channel models
with the programming framework for extension.

Figure 15 shows the architecture of the RaPTEX emulation environment
in which all nodes run as Java threads to execute independent assembly code
as if real devices are running on an actual deployment. The internal clocks of
each node are synchronized with each other and with the underlying network
simulator through the RaPTEX emulation synchronizer. The RaPTEX message
broker is responsible for passing all messages to the proper emulation threads
either in a local machine or in remote machines for the case of distributed
emulation. The RaPTEX message broker also bridges the emulation threads
written in Java and the process of OMNeT++ written in C++ through Java
Native Interface (JNI).

5.2 Synchronization

Since all node emulation threads execute an independent copy of assembly
code with their own internal clocks and event queues, they must be syn-
chronized with each other and with the underlying network simulator. The

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:27

RaPTEX emulation synchronizer coordinates individual emulation threads and
the underlying network simulator by extending the basic Avrora Synchronizer
class.

When a node needs to read data bits or sample the RSSI value at some
point of emulation time, it must be blocked until all neighbors reach that
emulation time to guarantee the reception of all transmissions from the neigh-
bors [Titzer et al. 2005]. However, the number of blocking nodes and their
local time should be managed by the synchronizer to prevent deadlock. Every
node is also synchronized every byte time (3072 cycles for Mica2) to guaran-
tee byte-level accuracy. Before moving to the next synchronization session, the
network simulator’s simulation time is also synchronized with the global emu-
lation time to conserve byte-level accuracy of the node emulation, which means
that the data interaction and the node mobility is simulated at the byte-time
granularity.

5.3 Network-Level Support

To prevent accuracy degradation at the network level, the RaPTEX’s basic
wireless channel module adopts byte-level rather than packet-level communi-
cation. When a node transmits a byte, which is a part of a packet, the RaPTEX
message broker passes the data to the selected wireless channel module; the
RaPTEX message broker implemented using Varga [2007] is an OMNeT++
module connected to the wireless channel module in the simulation description
file (ned file in OMNeT++). Because the mobility modules of each node up-
date the current position of the node according to their patterns, the selected
wireless channel module dynamically passes the data to all potential receivers
within the maximum interference range, based on the sender’s transmission
power and the current position of the nodes. Then receivers decide whether to
take the data from the calculation of the received signal strength. If receivable,
the RaPTEX message broker writes the data to the radio buffer of the proper
emulation threads either in a local machine or in remote machines for the case
of distributed emulation.

The bits received during the transmission collision period are bit-ORed at
the receiver’s buffer. Thus, the hidden terminal effect and packet collisions
are accurately supported by spatial and temporal synchronization between the
emulation threads and the network simulator.

The basic channel module is simple, but contains all the details for extensions
such as clock-level timing information for byte data interaction, transmission
power, and node location. By extending the basic channel module, developers
can implement more realistic channel models or plug in the existing models
shared in the OMNeT++ community.

5.4 Mobility Support

RaPTEX’s mobility architecture is based on the Mobility Framework of OM-
NeT++. There are two core components in the mobility architecture. First, the
global ChannelControl module manages the location of nodes and the connec-
tions between links. Second, the MobilityModule provides a way to describe

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:28 • J. B. Lim et al.

the mobility model of every individual node and communicates the location
changes of the nodes to the ChannelControl, which updates all connections
according to the location changes. To define a new mobility pattern, one has
to derive the mobility module from the BasicMobility, which provides basic
MobilityModule functionalities, writes a specific mobility pattern by overriding
makeMove(), and assigns the new mobility module to nodes that need to follow
the mobility pattern.

5.5 Distributed Emulation

Avrora’s computation-oriented nature enables accurate program emulation;
however, the accuracy comes at the cost of scalability. Avrora’s multithreaded
structure only allows it to be executed in a single machine. To support large
networks, we distribute the emulation threads over several host machines,
because, as the number of node increases, the emulation performance is limited
by the cost of executing each emulation thread rather than the synchronization
overhead.

In each emulation host, a subset of the emulation threads is executed. Like
the single-host emulation, each emulation thread executes its own assembly
code and sends/receives data via the RaPTEX message broker, and the local
RaPTEX emulation synchronizer ensures that each emulation thread is syn-
chronized with other threads in the same emulation host. For host-to-host
synchronization, each local synchronizer communicates with the RaPTEX dis-
tributed synchronizer running in a coordination server. Each host runs an
independent network simulator with identical configurations such as position
information for all nodes in the network under the same channel model. When-
ever data is injected from an emulation thread for transmissions, the corre-
sponding receiver nodes are identified by the channel model in the local host,
and the RaPTEX message broker relays the data either to an emulation thread
in the local host or to remote hosts that execute the intended receiver threads.
In addition to data interactions, when a node updates its location or changes its
transmission power, the RaPTEX message broker multicasts control messages
to all remote hosts to ensure that all hosts maintain the same snapshot of the
network topology.

While we use a peer-to-peer design for data interaction, a central coordinator
is used for the host-to-host synchronization. Whenever host emulation status
(e.g. all nodes are waiting for neighbors’ clock update for reception or all node
are waiting for next synchronization session) changes, each local synchronizer
sends control messages via the message broker to the distributed synchronizer
running in the coordination server. Then the distributed synchronizer gathers
the status of each host and coordinates each emulation host under the same
synchronization rules described in Section 5.2.

In the distributed emulation, the major source of overhead is network traffic
between remote hosts. Therefore, the way of partitioning nodes into emulation
hosts can directly influence the emulation performance. In general, the goal of
partitioning in graph theory is twofold: equal number of vertices in subdomains
and lowest number of edges between subdomains. Our goal is also exactly the

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:29

Fig. 16. The code snippet for the distributed emulation in the emulation configuration file
(omnet.ini).

the same as for the general case, because we need to evenly distribute the
number of nodes (vertices) among emulation hosts (subdomains) to prevent
any host from being the bottleneck of the whole emulation. We also need to
minimize the number of links (edges) between nodes running in different hosts
to reduce network traffic.

The optimal graph partitioning is known to be an NP-complete problem in
general, and many heuristic approaches have been proposed, including geo-
metric techniques, combinational techniques, spectral methods, and multilevel
schemes. Many open-source software packages for graph partitioning are also
available Chaco [Hendrickson and Leland 1995], Jostle [Walshaw and Cross
2007], ParMetis [George Karypis and Kumar 2003], etc. In our distributed emu-
lation, we use Chaco, which is the open source and provides all above-mentioned
partitioning schemes. From the RaPTEX’s topology diagram, Chaco’s input
graph file is created and the output file is used to assign a set of emulation
threads to each emulation host, which is described in omnet.ini file as shown
in Figure 16.

5.6 Scalability

We performed the distributed emulation and compared the scalability of RaP-
TEX emulation environment with that of pure Avrora. Each emulation host
was equipped with a Pentium Core2Duo 2.13 GHz and 2048 MB of RAM, and
connected to a 100-Mbps Ethernet LAN. We randomly deployed nodes and
evenly partitioned the topology into 2, 5, 10, and 20 machines, respectively.
Every node ran a simple application, which sent a packet every 1 s for 5 s over
BMAC (always-on mode). The average number of neighbors was 10 for the all
experiments. The experiment result is shown in Figure 17.

Due to the overhead of data delivery through the wireless channel model,
RaPTEX in a single machine is slightly slower than pure Avrora for any number
of nodes. Due to the network communication cost for data interactions between
remote hosts and host-to-host synchronization, there is also no benefit from
distributed emulation when the number of nodes is small.

However, as the number of nodes increased, the cost of running the emulation
threads surpassesed the communication overhead. With two machines, for 400
nodes, the RaPTEX emulation was 1.7 times faster than pure Avrora. Moreover,
due to the single-machine-running restriction of Avrora, the maximum number
of nodes that could be emulated in Avrora was limited to 400 nodes in our
experiment, while RaPTEX can emulate a larger number of nodes, depending
on the number of hosts available.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:30 • J. B. Lim et al.

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000

E
m

ul
at

io
n

tim
e

(s
ec

)

Number of nodes

Avrora
RaPTEX host : 1

RaPTEX hosts : 2
RaPTEX hosts : 5

RaPTEX hosts : 10
RaPTEX hosts : 20

Fig. 17. Emulation speed as a function of the number of nodes, for different number of hosts
running the RaPTEX emulator.

6. USE CASE

In this section, we present three use cases. First, we explain the sensor appli-
cation developmental process using RaPTEX under the given application re-
quirements. Second, we explore the tradeoff spaces of different protocol stacks
and configurations in terms of energy consumption, delay, and packet delivery
ratio. Finally, we explore the effect of different topologies in a large network.
All the protocol choices and configurations as well as evaluations and analyses
are performed in RaPTEX.

6.1 Use Case 1: Application Developmental Process

In this subsection, we develop a continuous monitoring application in WSNs,
which periodically collects sensor data every 1 min and reports the reading to
a sink node via a multihop routing protocol. An important goal in this class
of application is to maximize the lifetime of the network because the sensor
nodes operate on limited battery power in an unattended environment, and,
often, longer delays can be tolerated. Therefore, in this use case, we require
that the lifetime of the bottleneck node should be longer than 3 months, and the
per-hop delay should be smaller than 1 s. For the simplicity of the presentation,
we deploy this application in a 10-hp chain topology and use MintRouting as a
routing protocol.

To find the best combination of protocols and protocol configurations, we first
compose a protocol stack using SMAC, MintRoute, and the template monitoring
application in the protocol diagram, and build the 10-hop chain topology in the

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:31

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
xp

ec
te

d
lif

et
im

e
(d

ay
)

Sleep time (ms)

SMAC
BMAC

Fig. 18. Analytical estimation result; lifetime as a function of sleep interval at the bottleneck
node.

network topology diagram. Since, in this use case, we do not intend to change
the internal logic of the protocols, the nesC diagram is not used. Because the
lifetime of nodes and per-hop delay is mainly affected by the sleep time of the
chosen MAC, we set the SMAC sleep time as a range from 10 ms to 1000 ms.
The data packet generation interval is set to 1 min. The number of packets
a node overhears, receives, and forwards in the network is decided depending
on the location, transmission power, and the path loss model adopted in the
topology diagram.

To quickly explore the performance tradeoffs involved with the protocol stack
and the configurations, we run an analytical estimation at the bottleneck node
(2 hops away from the sink). Since formulae for theoretical analysis are auto-
matically composed by the estimation framework, no extra configuration is re-
quired. RaPTEX displays the analytical estimation result as a graph. Figure 18
shows that with SMAC we cannot achieve the required lifetime (90 days) for
any sleep time in the given range. Therefore, we change the MAC protocol to
BMAC in the protocol diagram, and again set the sleep time as a range from
10 ms to 1000 ms. Figure 18 shows that BMAC provides its maximum lifetime
at sleep time 200 ms, which is lower than the per-hop delay constraint, and
the lifetime meets the application requirement. From the analytical estimation
result, we tentatively decide to choose BMAC in the MAC layer with a sleep
time of 200 ms.

To verify the decision more accurately, we execute the prototype applica-
tion in the RaPTEX emulation environment. Before executing the application,
RaPTEX composes the protocol source code and generates a Makefile as shown
in Figure 19. This Makefile includes user’s tunable parameters and all the

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:32 • J. B. Lim et al.

Fig. 19. The code snippet of a top level Makefile.

selected protocols, which follow the interface structure shown in Figure 6. The
path for the real source code is decided in MakeRaptex using compile option (-I),
which is generated based on the NXML and PXML from the protocol diagram
or directly from the nesC diagram.

The source code is then compiled to assembly code to be injected into each
of the emulation threads. For emulation-specific configurations such as emu-
lation time and monitoring options, RaPTEX provides emulation configuration
windows as shown in Figure 2. We run the emulation for 5000 s and the start
time of each emulation thread is randomly chosen within the first minute of
emulation. During the emulation, we trace all the packets sent and received at
the clock cycle level granularity and energy consumption for all nodes. Using
the emulation postprocessing tool, we import the emulation trace information
into the database and analyze the emulation result. The result shows our choice
of protocols and configurations satisfies the given application requirements. In
Figure 20, the lifetime of all nodes in the network is over 90 days. Figure 21

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:33

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

E
xp

ec
te

d
lif

et
im

e
(d

ay
)

Hop

Emulation
Design constraint

Fig. 20. Emulation result for energy; lifetime as a function of the number of hops from the sink,
when BMAC is used.

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10

E
nd

-t
o-

en
d

de
la

y(
s)

Hop

Emulation
Design constraint

Fig. 21. Emulation result for delay; end-to-end delay as a function of the number of hops from the
sink, when BMAC is used.

shows the end-to-end delay as a function of the number of hops from the
sink, and it is clear that the per-hop delay is under 1 s. The composed pro-
totyping source code can be directly uploaded to the real device without any
modifications.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:34 • J. B. Lim et al.

Table III. Test Cases for the First Use Case

Data MAC Routing Sleep Symbol

10 s

BMAC Default 20 ms HBDS
BMAC Default 135 ms HBDL
BMAC Mint 20 ms HBMS
BMAC Mint 135 ms HBML

10 s

SMAC Default 15 ms HSDS
SMAC Default 129 ms HSDL
SMAC Mint 15 ms HSMS
SMAC Mint 129 ms HSML

60 s

BMAC Default 20 ms LBDS
BMAC Default 135 ms LBDL
BMAC Mint 20 ms LBMS
BMAC Mint 135 ms LBML

60 s

SMAC Default 15 ms LSDS
SMAC Default 129 ms LSDL
SMAC Mint 15 ms LSMS
SMAC Mint 129 ms LSML

6.2 Use Case 2: Tradeoffs of Different Protocols and Configurations

Although numerous communication protocols and performance analysis tools
have been proposed in the WSN area [Malesci and Madden 2006], it is still
a nontrivial task to find the best combination of protocols and the configura-
tions for different application purposes due to the lack of data available about
the interaction between different protocols in different layers and configurable
parameters. The main purpose of this use case is to show tradeoffs of differ-
ent protocol stacks and configurations. Malesci and Madden [2006] shared the
same motivation and goal as this use case, but the article evaluated perfor-
mances only in terms of end-to-end throughput, and was based on the real
measurement, which is usually most accurate and realistic, but difficult to set
up and reproduce. We explain the sources of overhead of each protocol and ex-
plore performance tradeoffs in terms of delay, packet delivery ratio, and energy
consumption using the RaPTEX emulation environment, which is easy to set
up, yet accurate.

Because there is very wide range of configuration choices, we limited our
evaluation for 16 test cases to four factors: (1) data packet generation intervals
(High traffic and Low traffic), (2) MAC protocols (BMAC and SMAC), (3) routing
protocols (Mint and Default), and (4) sleep time of the MAC protocols (Short
and Long intervals). Table III shows the configurations and symbols for each
test. To isolate the multihop forwarding effects, we built a 10-hop chain topology
for each test using the network topology diagram (Figure 2). After generating
source code for each test, we executed the code in the RaPTEX’s emulation
environment.

Figure 22 shows emulation results for each test case in terms of lifetime,
delay, and packet arrival rate. Each performance metric is normalized by the
maximum value in that metric. BMAC provides a high lifetime when data
traffic is low and sleep time is long (LBDL and LBML) for two main reasons.
First, BMAC saves energy by performing the low power listening (LPL) at the

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

HBDS

HBDL

HBM
S

HBM
L

HSDS

HSDL

HSM
S

HSM
L

LBDS
LBDL

LBM
S

LBM
L

LSDS
LSDL

LSM
S

LSM
L

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Life time
Delay

Packet delivery ratio

Fig. 22. Performance trade-offs for use case 2; each performance metric is normalized by its
maximum value.

expense of long preambles. At a low data generation rate with long sleep time,
BMAC’s main overhead of sending long preambles is alleviated because of the
low data rate, while checking channel activity using LPL is still inexpensive.
Therefore, when we use BMAC, the sleep time should be carefully decided based
on the expected amount of traffic. Second, due to the absence of retransmissions
in BMAC, the arrival rates of LBDL and LBML are relatively low, which means
that packets are dropped in the middle of multihop forwarding so that the
number of packets to forward decreases. Therefore, if high reliability is required
for an application, BMAC’s ACK mode should be enabled and BMAC should
work with an upper-layer protocol which has a reliability mechanism because
BMAC itself does not handle the failure of receiving ACKs.

On the other hand, for both low and high data traffic, SMAC with short sleep
time (15 ms) and DefaultRoute combinations (HSDS and LSDS) provides the
best sink goodput because SMAC by default performs retransmission for both
RTS and data packets. However, the lifetime of SMAC is relatively low mainly
due to SMAC’s synchronization mechanism and reliability mechanism. The
synchronization mechanism periodically keeps the radio device in the receive
mode for a fixed listen time (128 ms in Mica2), which is the sum of the required
time to receive a SYNCH packet and a data packet. This fixed listen time is
the reason why SMAC’s energy consumption is not significantly affected by the
amount of traffic.

Figure 22 shows that it is not easy to find a single protocol stack and set
of parameters, which performs best in every situation for all the performance
metrics. Thus, depending on the constraints of a system, the designer may
favor one or the other of the choices of protocols and parameters (or continue

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:36 • J. B. Lim et al.

Fig. 23. The five topologies used for use case B: (a) tree, (b) star, (c) grid with four sinks, (d)
backbone, and (e) mobile sink.

and refine the search if none of the choices is appropriate). We believe this
development and validation process can be facilitated with RaPTEX.

6.3 Use Case 3: Different Topologies

In this third use case, we use the RaPTEX emulation environment to explore
the effect of different topologies for a 100-node network, with a continuous
monitoring application, which generates a data packet every 60 s.

For simplicity, we use the same network stack in all topologies, using De-
faultRoute and BMAC (135-ms sleep time). Nodes are deployed in five different
types of network topologies: a tree, star, grid with 4 sinks, relay backbone, and
mobile sink (as shown in Figure 23).

The single sink tree (a) and star topologies (b) are typical for many WSN
applications. The grid topology (c) has four sinks, one at each corner of the
grid. In the relay backbone topology (d), nodes with a higher transmission
range form a backbone to the sink through the deployment field. The other
nodes are connected (via multiple hops) to the nearest backbone node. By using
RaPTEX’s mobility capability, the last topology (e) employs a mobile sink that
gathers data from the deployed nodes. While moving, the mobile sink informs
nodes in transmission range about its presence by sending packets with long
preambles, and it never turn its radio off because we assume that batteries of
the mobile sink can be replaced. The sensor nodes, on the other hand, sleep
for 135 ms at a time, and send packets with minimum preamble size (8 bytes)
directly to the sink (when the sink is in their range).

Figure 24 shows the CDF of the packet delivery ratio for all nodes in each
network. The network with the mobile sink clearly shows the best delivery
ratio because nodes send short packets directly to the mobile sink only when
the presence of sink is detected: 5% of nodes show 98% packet delivery ratio and
95% of nodes achieve 100% delivery ratio. In the tree topology, none of nodes
can achieve more than a 65% delivery ratio due to the longest hop toward the
sink and high congestion near the sink. By placing the sink in the center of
the network, the star topology provides a slightly better delivery ratio than
that of the tree topology: 30% of nodes can achieve more than 65% delivery
ratio, but still none of nodes show more than a 80% delivery ratio. In the grid
network with four sinks, some nodes near the sinks can achieve more than
80% of the delivery ratio, but many nodes still drop packets due to the high

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:37

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Packet delivery ratio (%)

Tree
Backbone

4 sinks grid
Star

Mobile sink

Fig. 24. CDF of the delivery ratio in different network topologies for use case 3.

average node density of the grid leading to contention and a high collision rate.
In the backbone topology, backbone nodes avoiding the sleep mode increase the
delivery ratio. Therefore, the proximity to the backbone influences the delivery
ratio of regular nodes resulting in a stair shape CDF.

Figure 25 shows the distribution of the delays. The delay of the tree topology
increases approximately linearly as a function of the distance to the sink. The
three extra sinks in grid topology reduce the number of hops in the network,
resulting in a smaller delay distribution, similar to the star topology. The delay
of the mobile sink WSN is highly dependent on the number of mobile sinks
and their speed, and is, therefore, not shown in this graph. For the backbone
topology, if a node is close to the backbone, it will experience a shorter delay
although it may be physically far from the sink.

In Figure 26, the network with mobile sink shows the best lifetime as the
sensor nodes are not required to forward multihop packets and sleep without
a long preamble transmission. Due to the forwarding costs, the tree topology
indicates the worst life, especially for nodes close to the sink (which have to
forward data on behalf of all other nodes in the network). In the backbone
network, nodes in range of the backbone are exposed to overhear backbone
traffic and nodes outside the range of the backbone only forward their own
packets (or for very few other nodes), leading to nodes at both extremes in the
lifetime spectrum.

Given the design constraints of a real system, the RaPTEX user can make an
informed decision on the best network topology for achieving a target system
performance.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:38 • J. B. Lim et al.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

D
el

ay
 (

m
s)

Distance (m)

Tree
Star

Backbone
4 sinks grid

Fig. 25. Distribution of delays as a function of distance to sink for use case 3.

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70 80

Li
fe

tim
e

(d
ay

)

Distance (m)

Tree
Star

Mobile sink
4 sinks grid

Backbone

Fig. 26. Distribution of lifetimes as a function of distance to sink for use case 3.

7. CONCLUSION

In this article, we present RaPTEX, a rapid prototyping tool for embedded
communication systems, while focusing on applications for WSNs. We designed
and developed a toolbox, an analytical model, and an emulation environment
to allow nonnetwork specialists to easily customize networking stacks and

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

RaPTEX • 7:39

to quickly and accurately evaluate their performance. We believe many re-
searchers in unrelated fields, but in need of communication protocols, will
benefit from the three subsystems of RaPTEX. Even researchers in the field
will benefit from the accuracy and scalability of RaPTEX for performance
evaluation. Potential future work will be to support more hardware and soft-
ware platforms and protocols. The current version of RaPTEX is available at
http://www.ece.ncsu.edu/wireless/MadeInWALAN/Raptex.

REFERENCES

BALDWIN, P., KOHLI, S., AND LEE, E. A. 2004. Modeling of sensor nets in Ptolemy II. In Proceedings
of IPSN.

BHATTI, S., CARLSON, J., DAI, H., DENG, J., ROSE, J., SHETH, A., SHUCKER, B., GRUENWALD, C.,
TORGERSON, A., AND HAN, R. 2005. MANTIS OS: MultimodAl NeTworks of In-situ Sensors.
http://mantis.cs.colorado.edu/index.php/tiki-index.php.

BUETTNER, M., YEE, G. V., ANDERSON, E., AND HAN, R. 2006. X-MAC: A short preamble MAC
protocol for duty-cycled wireless sensor networks. In Proceedings of SenSys.

BUONADONNA, P. 2003. tinyos-1.x/lib/route.
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-1.x/tos/lib/Route.

CHEONG, E., LEE, E. A., AND ZHAO, Y. 2005. A graphical development and simulation environment
for TinyOS-based wireless sensor networks. In Proceedings of SenSys.

CHIASSERINI, C. F. AND GARETTO, M. 2004. Modeling the performance of wireless sensor networks.
In Proceedings of INFOCOM.

DULMAN, S., KAYA, O. S., AND KOPRINKOV, G. 2005. NesCT. http://nesct.sourceforge.net.
FRABOULET, A., CHELIUS, G., AND FLEURY, E. 2007. Worldsens: Development and prototyping tools

for application specific wireless sensors networks. In Proceedings of IPSN.
GEORGE KARYPIS, K. S. AND KUMAR, V. 2003. ParMETIS: Parallel graph partitioning and sparse

matrix ordering library. Tech. rep. University of Minnesota, Minneapolis, MN.
GREENSTEIN, B., KOHLER, E., AND ESTRIN, D. 2004. A sensor network application construction kit

(SNACK). In Proceedings of Sensys.
HENDRICKSON, B. AND LELAND, R. 1995. The Chaco User’s Guide 2.0. Tech. rep. SAND95-2344.

Sandia National Laboratories, Albuquerque, NM.
JAIN, R. 1991. The Art of Computer Systems Performance Analysis: Techniques for Experimental

Design, Measurement, Simulation, and Modeling. Wiley-Interscience, New York, NY.
KWON, Y. AND AGHA, G. 2006. Scalable modeling and performance evaluation of wireless sensor

networks. In Proceedings of the IEEE Real Time Technology and Application Symposium.
LEVIS, P., N. LEE, M. W., AND CULLER, D. 2003. TOSSIM: Accurate and scalable simulation of

entire TinyOS applications. In Proceedings of SenSys.
MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. 2003. The design of an acquisi-

tional query processor for sensor networks. In Proceedings of SIGMOD.
MALESCI, U. AND MADDEN, S. 2006. A measurement-based analysis of the interaction between

network layers in TinyOS. In Proceedings of EWSN.
MOZUMDAR, M. M. R., GREGORETTI, F., LAVAGNO, L., VANZAGO, L., AND OLIVIERI, S. 2008. A frame-

work for modeling, simulation and automatic code generation of sensor network applications. In
Proceedings of SECON.

NICTA. 2009. Castalia. http://castalia.npc.nicta.com.au/.
PARK, S., SAVVIDES, A., AND SRIVASTAVA, M. B. 2003. SensorSim: A simulation framework for sensor

networks. In Proceedings of PLDI.
PARSONS, G., PENG, S., AND DEAN, A. G. 2008. An ultrasonic communication system for biotelemetry

in extremely shallow waters. In WUWNet, in Conjunction with ACM MobiCom 2008.
PENG, S., PARSONS, G., AND DEAN, A. G. 2010. RaPTEX: A resource-focused toolchain for rapid

prototyping of embedded communication systems. In INTERACT-14.
POLASTRE, J., HILL, J., AND CULLER, D. 2004. Versatile low power media access for wireless sensor

networks. In Proceedings of SenSys.

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

7:40 • J. B. Lim et al.

POLLEY, J., BLAZAKIS, D., MCGEE, J., RUSK, D., AND BARAS, J. S. 2004. ATEMU: A fine-grained sensor
network simulator. In Proceedings of SECON.

RICE UNIVERSITY. 1999. Wireless and Mobility Extensions to ns-2.
http://www.monarch.cs.rice.edu/.

SALLAI, J., BALOGH, G., AND DORA, S. 2005. TinyDT: TinyOS plug-in for the eclipse platform.
http://tinydt.sourceforge.net.

SHNAYDER, V., HEMPSTEAD, M., RONG CHEN, B., ALLEN, G. W., AND WELSH, M. 2004. Simulating the
power consumption of large-scale sensor network applications. In Proceedings of SenSys.

SOBEIH, A., CHEN, W.-P., HOU, J. C., KUNG, L.-C., LI, N., LIM, H., TYAN, H.-Y., AND ZHANG, H. 2005. J-
Sim: A simulation environment for wireless sensor networks. In Proceedings of the 38th Annual
Symposium on Simulation.

THE MATHWORKS, INC. 1994. MATLAB and Simulink for technical computing.
http://www.mathworks.com.

TITZER, B. L., LEE, D. K., AND PALSBERG, J. 2005. Avrora: Scalable sensor network simulation with
precise timing. In Proceedings of IPSN.

VAN DAM, T. AND LANGENDOEN, K. 2003. An adaptive energy-efficient MAC protocol for wireless
sensor networks. In Proceedings of Sensys.

VARGA, A. 2001. The OMNeT++ discrete event simulation system. In Proceedings of ESM.
VARGA, A. 2007. Jsimplemodule.
http://www.omnetpp.org/pmwiki/index.php?n=Main.JSimpleModule.

VARSHNEY, M., XU, D., SRIVASTAVA, M., AND BAGRODIA, R. 2007. sQualNet: An accurate and scalable
evaluation framework for sensor networks. In Proceedings of IPSN.

VOLGYESI, P. AND LEDECZI, A. 2002. Component-based development of networked embedded ap-
plications. In Proceedings of the 28th Euromicro Conference, Component-Based Software Engi-
neering Track.

WALSHAW, C. AND CROSS, M. 2007. JOSTLE: Parallel multilevel graph-partitioning software—an
overview. In Mesh Partitioning Techniques and Domain Decomposition Techniques. Civil-Comp.
Ltd., Kuppen Stirling, U.K.

WEISER, M. 1991. The Computer for the 21st Century. Sci. Amer. Sept., 94–100.
WOO, A., TONG, T., AND CULLER, D. 2003. Taming the underlying chanllenges of reliable multihop

routing in sensor networks. In Proceedings of SenSys.
YE, W., HEIDEMANN, J., AND ESTRIN, D. 2004. Medium access control with coordinated adaptive

sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12, 3 (June), 493–506.
YE, W., SILVA, F., AND HEIDEMANN, J. 2006. Ultra-low duty cycle MAC with scheduled channel

polling. In Proceedings of SenSys.
YOON, S. 2007. Power management in wireless sensor networks. Ph.D. dissertation, North

Carolina State University, Raleigh, NC.

Received July 2009; revised October 2009; accepted December 2009

ACM Transactions on Sensor Networks, Vol. 7, No. 1, Article 7, Publication date: August 2010.

