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Abstract

We consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon set-
ting. Our general model considers risk aversion, portfolio constraints (e.g., no short positions), return
predictability, and transaction costs. This problem is naturally formulated as a stochastic dynamic pro-
gram. Unfortunately, with non-zero transaction costs, the dimension of the state space is at least as large
as the number of assets and the problem is very difficult to solve with more than one or two assets.

In this paper, we consider several easy-to-compute heuristic trading strategies that are based on
optimizing simpler models. We complement these heuristics with upper bounds on the performance with
an optimal trading strategy. These bounds are based on the dual approach developed in Brown, Smith
and Sun (2009). In this context, these bounds are given by considering an investor who has access to
perfect information about future returns but is penalized for using this advance information. These
heuristic strategies and bounds can be evaluated using Monte Carlo simulation.

We evaluate these heuristics and bounds in numerical experiments with a risk-free asset and three
or ten risky assets. In many cases, the performance of the heuristic strategy is very close to the upper
bound, indicating that the heuristic strategies are very nearly optimal.

Subject Classifications: Dynamic Programming, Portfolio Optimization
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1. Introduction

Dynamic portfolio theory – dating from the seminal work of Mossin (1968), Samuelson (1969) and Merton

(1969, 1971) – provides a rigorous framework for determining optimal investment strategies in idealized

environments that assume there are no transaction costs. The solutions to these models rely heavily on

the absence of transaction costs. For example, in some models, the optimal solutions recommend holding

constant fractions of the investor’s wealth in different assets. To implement such a strategy, an investor must

continually buy and sell assets in order to maintain the target fractions as asset prices fluctuate. In practice,

transactions are costly and continual rebalancing can be quite expensive. If expected returns vary over time,

the situation may be even worse as the investor continually trades to adjust to a moving target.

Constantinides (1979) studied a general discrete-time model of portfolio optimization with transaction

costs and obtained the strongest structural results in the setting with power utility, proportional transaction

costs, and two assets. Specifically, he showed that there is a two-dimensional convex cone of asset positions

where it is optimal to not trade and that, when the asset position is outside of this cone, it is optimal to

trade to bring the asset position to the boundary of the cone. Davis and Norman (1990) and Shreve and

Soner (1994) analyzed continuous-time versions of this model with one risky and one risk-free asset and

established analogous results. Muthuraman (2006) and others have developed numerical methods for the

case with a single risky asset.

Of course, practitioners must actually contend with multiple risky assets and, unfortunately, this problem

is much more difficult to solve. The portfolio optimization problem is naturally formulated as a stochastic

dynamic program. With no transaction costs, the optimal investments typically depend on the investor’s

wealth but not the investor’s asset positions. However, with transaction costs, the optimal investments

depend on the investor’s initial asset positions and the dimension of the state space is at least as large as

the number of assets considered. The resulting dynamic program suffers from the “curse of dimensionality”

and is very difficult to solve with more than one or two risky assets.1

In this paper, we consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon

setting. Our general model considers risk aversion (we maximize the expected utility of terminal wealth),

portfolio constraints (e.g., no short positions), the possibility of predictable returns, and convex transaction

costs. We introduce several easy-to-compute heuristic trading strategies that are based on solving simpler

optimization problems. The first heuristic is a “cost-blind” strategy that follows the trading strategy given

by ignoring transaction costs; this is considered primarily as a benchmark for evaluating the performance

of the other heuristics and bounds. The second heuristic is a “one-step” strategy that can be viewed

1The special case with a quadratic utility and quadratic transaction costs and no portfolio constraints can be formulated
as a linear quadratic control problem that is straightforward to solve; see Gârleanu and Pedersen (2009).
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as approximating the dynamic programming recursion by taking the continuation value to be the value

function for the model that ignores transaction costs; transaction costs are considered in the current period

only. Finally, we consider a “rolling buy-and-hold” strategy where, in each period, we solve an optimization

problem with transaction costs with the simplifying assumption that there will be no further opportunities

to trade over a fixed horizon; the continuation value at the end of the horizon is again taken to be the value

function for the model that ignores transaction costs.

We complement these heuristics with upper bounds on the performance with an optimal trading strategy.

These bounds are based on the dual approach developed in Brown, Smith and Sun (2009). In this context, the

bounds are given by considering an investor who has access to perfect information about future returns but is

penalized for using this advance information. The dual approach of Brown, Smith and Sun (2009) generalizes

the dual approach developed for option pricing problems by Rogers (2002), Haugh and Kogan (2004), and

Andersen and Broadie (2004) (see also related earlier work by Davis and Karatzas (1994)) to consider general

stochastic dynamic programs; this generalization is essential for the application to portfolio optimization

problems. In this paper, we generate penalties using the approach for “good penalties” suggested in Brown,

Smith and Sun (2009) and develop a new gradient-based approach for generating penalties that exploits the

convex structure of the underlying stochastic dynamic program. These heuristic strategies and bounds can

be simultaneously evaluated using Monte Carlo simulation.

We evaluate these heuristics and bounds in numerical experiments with a risk-free asset and three risky

assets (with predictable returns) or with ten risky assets (without predictability). The results are promising:

the run times are reasonable and, in many cases, the performance of the heuristic strategy is very close to

the upper bound, indicating that the heuristic strategies are very nearly optimal.

Brandt (2009) provides a recent survey of research in portfolio optimization and touches briefly on

issues related to transaction costs. Closer to this paper, Akian, Menaldi and Sulem (1996), Leland (2000),

Muthuraman and Kumar (2006) and Lynch and Tan (2009) consider portfolio choice problems with multiple

risky assets and transaction costs in various settings. These papers develop analytic frameworks for the case

with many assets, but focus on numerical examples with two risky assets; the numerical methods employed

are based on grid approximations of the state space and do not scale well for problems with more risky assets.

Muthuraman and Zha (2008) describe a numerical procedure that scales better: their procedure assumes a

particular form of trading strategy, estimates the value function given this trading strategy using simulation,

and then updates the trading strategy. The computational effort required by this scheme scales polynomially

in the number of assets. Their example with seven risky assets requires approximately 62 hours to compute

a trading strategy; there is no guarantee that the resulting strategy is optimal or any indication of how

much better one might do with an optimal strategy. Chryssikou (1998) studies portfolio optimization with

2



quadratic transaction costs and no constraints using a pair of heuristic strategies, one of which is similar to

our rolling buy-and-hold strategy.

We view our contributions to be (i) the study of some easy-to-compute heuristic trading strategies that

may be useful in practice and (ii) the development of a dual bounding approach that can be used to evaluate

the quality of these and other heuristics. Both the heuristics and dual bounds are fairly flexible and can be

adapted to problems with different forms of utility functions, different forms of transaction costs (provided

they are convex), different forms of portfolio constraints and different models of returns.

There is also a recent literature that uses dual methods to evaluate portfolio strategies with portfolio

constraints. For example, Haugh, Kogan, and Wang (2006) and Haugh and Jain (2010), following Cvitanić

and Karatzas (1992) and others, use Lagrange multiplier methods to “dualize” portfolio constraints in

continuous time portfolio allocation models; see Rogers (2003) for a review and synthesis of related theory.

In contrast, we treat portfolio constraints directly and “dualize” the nonanticipativity constraints that require

the investor to use only the information available at the time a decision is made; our penalties can be viewed

as Lagrange multipliers associated with these nonanticipativity constraints. This interpretation is discussed

in more detail in Brown, Smith and Sun (2009).

In the next section of the paper, we describe our basic model and note some structural properties of

the model. In §3, we describe our heuristics. In §4, we describe our approach to dual bounds in general

and discuss the specific bounds we consider in our numerical experiments. In §5, we describe our numerical

experiments and results. The appendix contains proofs the propositions in the paper as well as some detailed

assumptions and results for the numerical experiments.

2. The Portfolio Optimization Model

Time is discrete and indexed as t = 0, . . . , T , with t = 0 being the current period and T being the terminal

period. There are n risky assets and a risk-free asset (cash). The risk-free rate rf is assumed to be known

and constant over time. The returns of the risky assets are stochastic and denoted by rt = (rt,1, . . . , rt,n)

where rt,i ≥ 0 is the (gross) return on asset i from period t-1 to period t.

The monetary values of the risky asset holdings at the beginning of period t are described by the vector

xt = (xt,1, . . . , xt,n); the cash position in period t is denoted ct. We let the trade vector at = (at,1, . . . , at,n)

denote the amounts of risky assets bought (if at,n > 0) or sold (if at,n < 0) in period t. The transaction costs

associated with trade vector at are given by κ(at). In our general analysis and approach, we will assume that

κ(at) is a nonnegative and convex function of the trades at with κ(0) = 0. In our numerical experiments,
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we will focus on the special case of proportional transaction costs with

κ(at) =

n∑
i=1

(
δ+i a

+
t,i − δ

−
i a
−
t,i

)
, (1)

where a+t,i = max(at,i, 0) and a−t,i = min(at,i, 0) denote the positive and negative components of the trades

and δ+i , δ
−
i ≥ 0 are the proportional costs for buying and selling (respectively) asset i. Alternatively, we

could use a quadratic function for transaction costs to capture a “linear price impact,” where trades lead to

temporary linear changes in prices. Many other forms are also possible.

Taking transaction costs into account, the asset holdings and cash position evolve according to:

xt+1 = rt+1 · (xt + at), (2)

ct+1 = rf (ct − 1′at − κ(at)). (3)

Here · denotes the componentwise product of two vectors (so xt+1,i = rt+1,i(xt,i + at,i)) and 1 is an n-vector

of ones. The investor’s wealth wt in period t is the sum of the total dollar holdings across the risky assets

and cash, i.e.,

wt = 1′xt + ct. (4)

The investor’s goal is to maximize the expected utility of terminal wealth, E [U(wT )], where U is a non-

decreasing and concave utility function. Note that in this formulation, we define wealth in terms of the

market value of the portfolio. We could have instead defined wealth in terms of the liquidation value

of the portfolio, including the transaction costs associated with liquidation. In this case, we would take

wt = 1′xt − κ(−xt) + ct. Our general approach works in either case, though the numerical results would

obviously be somewhat different.

We will assume that the investor’s trades at in period t are restricted to a closed, convex set At(xt, ct).

In our numerical experiments, we will focus on the case where the investor is not allowed to have short

positions in risky assets or cash, so given an asset position (xt, ct), the allowed trades are

At(xt, ct) = {at ∈ Rn : xt + at ≥ 0, ct − 1′at − κ(at) ≥ 0} . (5)

We will also consider numerical results for the case where short positions are allowed, but there is a margin

requirement that limits the total (long or short) position in risky assets to be no more than ` times the
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investor’s post-trade wealth. In this case, the set of allowed trades is also convex and can be written:

At(xt, ct) =

{
at ∈ Rn :

n∑
i=1

|xt,i + at,i| ≤ ` (1′xt + ct − κ(at))

}
. (6)

In general, we consider sets of allowed trades At(xt, ct) defined in terms of a set Ht of allowed final positions

(or holdings): at ∈ At(xt, ct) if and only if (xt +at, ct−1′at−κ(at)) ∈ Ht. We assume that the allowed set

of final positions Ht is closed, convex and nondecreasing in ct (if (xt, c
1
t ) ∈ Ht and c1t ≤ c2t then (xt, c

2
t ) ∈ Ht).

This implies that At(xt, ct) is convex for each (xt, ct).

We will allow the possibility that returns exhibit some degree of predictability. To model this, we let zt

denote a vector of observable market state variables that provides information about the returns rt+1 of the

risky assets. We will assume that zt follows a Markov process. The returns rt+1 may depend on zt but,

given zt, the returns are assumed to be conditionally independent of prior returns and earlier values of the

market state variable.

This portfolio optimization problem can be formulated as a stochastic dynamic program with state

variables consisting of the current positions in risky assets and cash (xt, ct) and the market state variable

(zt). We take the terminal value function to be the utility of terminal wealth, VT (xT , cT , zT ) = U(1′xT+cT ),

and earlier value functions Vt are given recursively as

Vt(xt, ct, zt) = max
at∈At(xt,ct)

Wt(at,xt, ct, zt) (7)

Wt(at,xt, ct, zt) = E [Vt+1(r̃t+1 · (xt + at), rf (ct − 1′at − κ(at)), z̃t+1) | zt] . (8)

In (8), expectations are taken over the random asset returns r̃t+1 and the next-period market state z̃t+1. We

will assume that these expectations (and other expectations in the paper) are well defined and that maxima

in (7) are attained by some set of trades.

The following proposition states some key properties of this portfolio optimization model.

Proposition 2.1. Properties of the portfolio optimization model.

1. For any market state zt, Vt(xt, ct, zt) is nondecreasing in cash ct and jointly concave in the asset

position (xt, ct).

2. For any market state zt, Wt(at,xt, ct, zt) is jointly concave in the trades at and asset position (xt, ct).

Thus, for any given market state zt and asset and cash position (xt, ct), the optimization problem (7) is

convex: we are maximizing a concave function over a convex set. Unfortunately the dimension of the state

space makes the portfolio optimization problem very difficult to solve, even with just a few risky assets.
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For example, suppose the market state variable zt is one-dimensional. If we approximated the state space

using a grid with 20 points for this market state variable and 100 points for each of the n+1 asset positions,

the state space would consist of 20 × 100n+1 states. To determine the value function Vt(xt, ct, zt) on this

grid, we would have to solve the optimization problem (7) for each of these 20 × 100n+1 states in each

period. In our numerical examples with n = 3 risky assets and predictability, the state space would include

20× 1004 = 2 billion elements. With n = 10 risky assets and no predictability, the state space would include

10011 = 1022 elements. Moreover, each of these optimization problems involves expectations (8) over the

(n+1)-dimensional space of (rt+1, zt+1) outcomes and we would have to somehow interpolate between grid

points when solving for the optimal trades.

If there are no transaction costs (κ = 0), the portfolio optimization problem can be greatly simplified

by taking the dynamic programming state variables to be the current wealth (wt) and market state variable

(zt); we no longer need to consider the specific asset positions (xt, ct). In this simpler dynamic program, the

decision variables are the post-trade positions in risky assets x̂t = xt +at. Let Xt(wt) denote the set of pos-

sible post-trade positions in risky assets given initial wealth wt; that is Xt(wt) = {x̂t : (x̂t, wt − 1′x̂t) ∈ Ht}.

For example, with no transaction costs, the case described by (5) where the investor is not allowed to have

short positions corresponds to a feasible set of post-trade asset positions of the form

Xt(wt) = {x̂t ∈ Rn : x̂t ≥ 0, 1′x̂t ≤ wt} . (9)

We can then write the recursion for this “frictionless model” as follows: The terminal value function is

V fT (wT , zT ) = U(wT ) and earlier value functions are

V ft (wt, zt) = max
x̂t∈Xt(wt)

W f
t (x̂t, wt, zt) , (10)

W f
t (x̂t, wt, zt) = E

[
V ft+1

(
r̃′t+1x̂t + rf (wt − 1′x̂t), z̃t+1

)
| zt
]
. (11)

This frictionless model also has a convex structure and its results can be related to those of the more

complicated model with transaction costs.

Proposition 2.2. Properties of the frictionless portfolio optimization model.

1. For any market state zt, V
f
t (wt, zt) is nondecreasing and concave in wealth wt.

2. For any market state zt, W
f
t (x̂t, wt, zt) is jointly concave in the post-trade asset positions x̂t and wealth

wt.

3. For any market state zt and asset position (xt, ct), Vt(xt, ct, zt) ≤ V ft (1′xt + ct, zt).
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Thus, to solve the frictionless model, we need to solve a convex optimization problem for each market state

zt and wealth wt. For example, if the market state variable zt is one-dimensional, we could solve this

dynamic program on a two-dimensional grid involving zt and wt. The expectations over (r̃t+1, z̃t+1) in

(11) will still be high-dimensional if we have many assets, but can be evaluated using various methods. In

our numerical experiments, we will approximate these expectations using discrete approximations of the

underlying distributions; see §5.1 below.

If the investor has a power utility function, the frictionless model simplifies further. Specifically, suppose

U(wT ) =
1

1− γ
w1−γ
T , (12)

where γ > 0 is the coefficient of relative risk aversion; in the case where γ = 1, U(wT ) = ln(wT ). We can

then write the value function as

V ft (wt, zt) =
1

1− γ
w1−γ
t φt(zt) , (13)

where φt(zt) is defined recursively with φT (zT ) = 1 and

1

1− γ
φt(zt) = max

θ̂t∈Xt(1)
E
[

1

1− γ
(r̃′t+1θ̂t + rf (1− 1′θ̂t))

1−γ φt+1(z̃t+1) | zt
]
. (14)

Here θ̂t = (θ̂1, . . . , θ̂n) are the post-trade fractions of wealth wt invested in the risky assets. In this case, the

dimension of the state space is equal to the dimension of the market state variable zt.

Note that if the next-period market state z̃t+1 and the returns r̃t+1 are independent given zt, then

equation (14) factors and it is optimal to pursue a myopic trading strategy that maximizes the expected

utility of next period’s wealth. However, if the next-period market state z̃t+1 and the returns r̃t+1 are not

independent and the investor has a relative risk aversion coefficient γ > 1 (as is considered to be typical),

the optimal trading strategies will include some degree of hedging against unfavorable changes in the market

state variable: compared to the myopic strategies, these strategies tend to have higher next-period wealth

in scenarios with poor future prospects (i.e., with high values of φt+1(z̃t+1)) and lower next-period wealth

in scenarios with better future prospects (i.e., with low values of φt+1(z̃t+1)).

3. Some Heuristic Trading Strategies

Given that the portfolio optimization model with transaction costs is difficult to solve, it is natural to

consider heuristic trading strategies based on solutions to approximate models that are simpler to solve. We

will consider several such heuristic strategies.
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3.1. Cost-Blind Strategies

First, we consider cost-blind strategies that ignore transaction costs and simply follow the optimal trading

strategy recommended by the frictionless model. To simulate such a strategy, we need to first solve the

dynamic program for the frictionless model (10) to find the optimal post-trade asset positions x̂t or fractions

θ̂t = x̂t/wt for each period t, market state zt and wealth level wt; we do this once and store the results. In

the body of the simulation, in each period, we choose trades at to move to the investor to the recommended

fractions θ̂t for the current market state zt and wealth level wt. Given this trade, we generate random

returns rt+1 for the risky assets and calculate next-period asset positions (xt+1, ct+1) using equations (2)

and (3), deducting transaction costs from the cash position. We then generate the next-period market state

zt+1 and continue the simulation process for the next period.

Though this cost-blind strategy may perform reasonably well when the transaction costs are small or

when it is optimal to put all of the investor’s wealth in a single asset, with larger transaction costs and more

balanced investments we would expect this strategy to trade too much in pursuit of marginal improvements

in asset positions that do not exceed the cost of executing the trade.

3.2. One-Step Strategies

Second, we consider a heuristic strategy where the investor uses the value function from the frictionless

model as an approximate continuation value, but includes transaction costs in the current period. In this

case, in each period, the investor chooses trades at that solve:

max
at∈At(xt,ct)

E
[
V ft+1

(
r̃′t+1(xt + at) + rf (ct − 1′at − κ(at)), z̃t+1

)
| zt
]
. (15)

To simulate such a one-step strategy, we first solve the dynamic program for the frictionless model (10)

to determine the value function V ft (wt, zt); we do this in advance of the simulation and store the value

function. In the body of the simulation, for each period in each trial, we solve the optimization problem (15)

to find the recommended trade at for the then-prevailing (xt, ct, zt) scenario. We then generate random

returns rt+1 for the risky assets, calculate next-period asset positions (xt+1, ct+1) using equations (2) and

(3), generate a new market state zt+1 and continue to the next period. Note that the objective function in

(15) is concave in the trades at (this follows from the assumption that the transaction cost function κ(at)

is convex and the fact that V ft (wt, zt) is nondecreasing and concave in wealth wt; see Proposition 2.2), so

(15) is a convex optimization problem. The optimization problem is, however, complicated by the presence

of the high-dimensional expectation in (15): these expectations must be evaluated to calculate the objective

function for any candidate trade at.
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While the cost-blind strategies are likely to trade too much because they neglect the costs of trading,

we would expect these one-step strategies to trade too little because they underestimate the benefits of

moving towards the optimal position without transaction costs. Or, put another way, the frictionless model

underestimates the cost of being out of the optimal position because it assumes the investor can costlessly

adjust the position in the next period. If the optimal asset positions change slowly over time, moving towards

the optimal position in one period may provide benefits in future periods as well as the current one.

Though we would have to solve the full portfolio optimization problem (7) to exactly capture the long-term

impacts of adjusting portfolio positions, we can perhaps approximate this effect by reducing the transaction

costs κ(at) appearing in the objective function in (15). There are a variety of ways we might modify these

costs and we can experiment to find a good modification. In our numerical experiments, we consider monthly

trades and focus on the case where we adjust the transaction costs by dividing κ(at) by dividing by a time-

dependent constant. Specifically, we focus on the case where we divide by the smaller of 6 or the number

of periods remaining (T − t). The intuitive interpretation of this adjustment is that the benefit of adjusting

the asset positions lasts approximately 6 months. We will call these trading strategies modified one-step

strategies and consider alternative divisors in §5.4.

3.3. Rolling Buy-and-Hold Strategies

Finally, we consider a heuristic trading strategy where, in each period, the investor chooses trades to maximize

the expected utility of wealth at some horizon h periods into the future, taking transaction costs into account,

but assuming that there will be no opportunities to adjust the portfolio over this time horizon. As in the one-

step strategy, the continuation value at the horizon is approximated by the value function for the frictionless

model. That is, in period t, the investor chooses trades at that solve:

max
at∈At(xt,ct)

E
[
V ft+h

(
(r̃t+h · . . . · r̃t+1)′(xt + at) + rhf (ct − 1′at − κ(at)), z̃t+h

)
| zt
]
, (16)

with the understanding that we use the terminal utility U(wT ) in place of V ft+h(wT+h) whenever t+ h > T .

Though this objective function assumes that there are no future opportunities to adjust the portfolio over

this time horizon, when simulating or executing this strategy, the investor solves the same problem in the

next period. As with the one-step strategies, the objective function in (16) is concave in at and, when

simulating with this strategy, we must solve the convex optimization problem (16) once for each period of

each simulated trial.

As with the modification of the one-step strategies, some degree of experimentation may be required to

identify a good horizon h for a particular problem. In our numerical experiments with monthly trading, we
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will focus on the case where the horizon h is 6 months, but will consider alternatives in §5.4. We will refer to

these heuristic trading strategies as the rolling buy-and-hold strategies. Chryssikou (1998) studies a similar

heuristic but with the horizon fixed at the terminal period T , i.e., with terminal utility U(wT ) in place of

V ft+h(wT+h) in (16).

4. Dual Bounds

We can evaluate the heuristic strategies of §3 using simulation and we can rerun these simulations with

variations of these strategies (e.g., adjusting the modification of transaction costs for the one-step strategies or

the horizon for the rolling buy-and-hold strategies) in an attempt to improve their performance. When doing

these experiments, it would be helpful to know how much better we could possibly do. The frictionless model

provides an upper bound on performance (see Proposition 2.2), but when transaction costs are substantial,

this “no transaction cost bound” may be rather weak.

In this section, we will derive upper bounds on performance using the dual approach developed in Brown,

Smith and Sun (2009). This dual approach consists of two elements: (i) we relax the “nonanticipativity”

constraints that require the trading decisions to depend only on the information available at the time the

decision is made and (ii) we impose penalties that punish violations of these nonanticipativity constraints.

We first describe this dual approach in general and then describe the penalties we will use in our numerical

experiments. As we will see, these dual bounds are typically tighter than the bound given by the model that

ignores transaction costs.

4.1. The Dual Approach

In our discussion of the dual bounds, it helps to introduce notation to describe the full sequences of market

states z = (z0, . . . ,zT ), returns r = (r1, . . . , rT ) and trades a = (a0, . . . ,aT−1). Using this notation, we

write the pre-trade asset and cash positions as xt(a, r) and ct(a) and wealth as wt(a, r); these are calculated

according to equations (2)-(4) and are given by

xt(a, r) =

t−1∑
τ=0

(rt · . . . · rτ+1) · aτ + (rt · . . . · r1) · x0

ct(a) =

t−1∑
τ=0

rt−τf (−1′aτ − κ(aτ )) + rtfc0

and wt(a, r) = 1′xt(a, r) + ct(a). Similarly, we write the set of feasible trade sequences a as A(r). Note

that, for any given return sequence r, the position in risky assets xt(a, r) is linear in the trade sequence

a and, with convex transaction costs, the cash position ct(a) and wealth wt(a, r) are concave in the trade

sequence a.
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A trading strategy can be viewed as a function α(r, z) that maps from sequences of returns r and market

states z to a trade sequence a. A trading strategy α is feasible if (i) α(r, z) is in A(r) for each (r, z), and

(ii) α is nonanticipative in that the trade at selected in period t depends only on what is known in period

t; that is, at depends on the market states (z0, . . . ,zt) and the asset returns (r1, . . . , rt), but not the future

market states or returns. We let A denote this set of feasible strategies. In this notation, we can rewrite the

portfolio optimization problem (7) compactly as

max
α∈A

E [U(wT (α(r̃, z̃), r̃))] . (17)

Here the expectations are taken over sequences of returns r̃ and market states z̃, with trading strategy α

selecting trades in each (r̃, z̃) scenario.

In deriving dual upper bounds for this problem, we will focus on a “perfect information relaxation” that

assumes the investor knows all market states z and all asset returns r before making any trading decisions.

The penalties π(a, r, z) depend on the sequence of trades a, returns r, and market states z in a given

scenario; we say a penalty π is dual feasible if E [π(α(r̃, z̃), r̃, z̃)] ≤ 0 for any feasible trading strategy α. We

can then state the duality result as follows.

Proposition 4.1. Dual bound. For any feasible trading strategy α and any dual feasible penalty π,

E [U(wT (α(r̃, z̃), r̃))] ≤ E
[

max
a∈A(r̃)

{
U(wT (a, r̃))− π(a, r̃, z̃)

}]
. (18)

The problem on the right of (18) is perhaps easiest to understand by considering how we estimate this

expression using simulation. In each trial of the simulation, we generate a sequence of market states z and

asset returns r, drawing samples according to their joint stochastic process. We then solve a deterministic

“inner problem” of the form:

max
a∈A(r)

{
U(wT (a, r))− π(a, r, z)

}
(19)

to find the sequence of trades a in A(r) that maximizes the penalized objective, U(wT (a, r)) − π(a, r, z),

assuming perfect foresight, i.e., assuming that the full sequences of market states z and asset returns r are

known. We obtain an estimate of the dual bound (18) by averaging the optimal values from these inner

problems across the trials of the simulation. Note that since wealth wT (a, r) is concave in the trade sequence

a and the utility function is increasing and concave in wealth, the utility of final wealth is concave in a for

a given return sequence r. If we consider penalties π(a, r, z) that are convex in the trade sequence a for
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given sequences of returns r and market states z, the inner problem (19) will be a deterministic convex

optimization problem in a and will not be difficult to solve.

It is not hard to see that inequality (18) holds with any dual feasible penalty, for any feasible strategy

α. To see this, note:

E [U(wT (α(r̃, z̃), r̃))] ≤ E [U(wT (α(r̃, z̃), r̃))− π(α(r̃, z̃), r̃, z̃)] (20)

≤ E
[

max
a∈A(r̃)

{
U(wT (a, r̃))− π(a, r̃, z̃)

}]
.

The first inequality follows from the assumption that π is dual feasible; since α is assumed to be a feasible

trading strategy, this implies E [π(α(r̃, z̃), r̃, z̃)] ≤ 0. The second inequality follows from the fact that the

value with perfect foresight must meet or exceed the value of any feasible trading strategy α: The investor

with perfect foresight could choose the sequence of trades that would be chosen by α in each scenario and

obtain the same value. However, the investor with perfect foresight can usually do better by choosing a

different sequence of trades that maximizes the penalized objective in the given scenario.

The bound (18) is a special case of the weak duality result from Brown, Smith and Sun (2009). Brown,

Smith and Sun (2009) also show that strong duality holds in this framework in that there exists an optimal

penalty π∗ such that the inequality in (18) will hold with equality with this π∗ and an optimal strategy

α∗; “complementary slackness” also holds in that an optimal penalty π∗ will lead to trades a in the dual

problem that match those of an optimal strategy.

Note that the penalty π = 0 is trivially dual feasible. In this case, the inner problem (19) amounts to

finding an optimal trading strategy given perfect knowledge of all future returns and the dual bound (18)

is the expected utility with perfect information. This inner problem is straightforward to solve, but the

bound is typically quite weak. To obtain tighter bounds, we need to choose a penalty that reduces the

benefit provided by having advance knowledge of future market states and returns. In addition, to ensure

reasonable computational times, the penalties should be easy to compute and lead to an inner problem (19)

that is easy to solve. We will consider two types of penalties. First we will consider penalties that are

constructed following the prescription for “good penalties” from Brown, Smith and Sun (2009). Second, we

will consider a new type of penalty that exploits the convex structure of the primal problem.

4.2. Penalties Based on Approximate Value Functions

Brown, Smith and Sun (2009) suggest constructing penalties by choosing a sequence of generating functions

(g0, . . . , gT ) that approximate the continuation value functions for the dynamic programming model. In this

context, the generating functions gt(a, r, z) may depend on the full sequences of returns r and market states

12



z, but depend only on trades up to period t, (a0, . . . ,at). The penalty is then taken to be

π(a, r, z) =

T∑
t=0

(gt(a, r, z)− E [gt(a, r̃, z̃) | r1, . . . , rt, z0, . . . ,zt]) . (21)

Brown, Smith and Sun (2009) show that penalties constructed this way are dual feasible. Moreover, if we

take the generating functions gt(a, r, z) to be the optimal continuation values Vt+1(xt+1(a, r), ct+1(a), zt+1)

for the original portfolio optimization program (7), the resulting “ideal penalty” is optimal: it provides a

dual bound equal to the optimal value for the primal and the optimal trades in the dual problem are feasible

and optimal for the primal problem.

We can approximate this ideal penalty using approximations of the continuation values as generating

functions. For example, consider the continuation values for the one-step strategies; we could approximate

the continuation value using the continuation value from the frictionless model (10) by taking the generating

function gt(a, r, z) to be V ft+1(wt+1(a, r), zt+1). Though this frictionless value function is reasonably easy to

compute, it leads to an inner problem that is not easy to solve: V ft+1(wt+1(a, r), zt+1) is a concave function

of the trades a but when used to generate a penalty π using (21), V ft+1 enters into the objective for the inner

problem with both positive and negative signs, leading to an objective function that is neither convex nor

concave and an inner problem that is generally not easy to solve.

To overcome this difficulty, we will take gt(a, r, z) to be a linear approximation of V ft+1(wt+1(a, r), zt+1)

based on a first-order Taylor series expansion in the trades a around the trades a∗ given by some fixed

trading strategy. For example, in the case with proportional transaction costs given by equation (1), the

linear approximation of V ft+1 yields a generating function of the form

gt(a, r, z) = V ft+1(wt+1(a∗, r), zt+1) (22)

+ V f ′t+1(wt+1(a∗, r), zt+1)

t∑
τ=1

n∑
i=1

(
∂wt+1

∂a+τ,i

(
a+τ,i − a

∗+
τ,i

)
+
∂wt+1

∂a−τ,i

(
a−τ,i − a

∗−
τ,i

))
,

where V f ′t+1 denotes the derivative of V ft+1 with respect to wealth and a+t,i, a
−
t,i, a

∗+
t,i , and a∗+t,i denote the positive

and negative components of a and a∗. With a power utility function, V ft+1 can be calculated analytically as

V f ′t (wt, zt) = w−γt φt(zt), where φt(zt) is determined when solving the frictionless model (14); in other cases,
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V ft+1 may have to be estimated numerically. The partial derivatives in (22) are given by:

∂wt+1

∂a+τ,i
=

t+1∏
τ ′=τ+1

rτ ′,i − rt+1−τ
f

(
1 + δ+i

)
∂wt+1

∂a−τ,i
=

t+1∏
τ ′=τ+1

rτ ′,i − rt+1−τ
f

(
1− δ−i

)
.

With a generating function of the form of (22), using (21) we obtain a dual feasible penalty π that is linear

in the trades a (or, more precisely, linear in the positive and negative components of a), for any sequence

of returns r and market states z. The objective for the inner problem (19) is then concave in a and the

resulting inner problem is a deterministic convex optimization problem that is not difficult to solve. Note

that there are high-dimensional expectations (over returns rt+1 and the market state zt+1) in the definition

of the penalty (21); however, these expectations only affect the weights associated with the trades in this

linear penalty and the weights need only be calculated once when solving the inner problem in a simulated

scenario. In our numerical experiments, we will consider bounds generated by penalties of this form, taking

a∗ to be the trades suggested by the modification of the one-step heuristic strategy. We will call these

bounds the modified one-step bounds.

We can construct a similar penalty using a generating function based on the analogue of the continuation

value used to determine the rolling buy-and-hold strategy,

E
[
V ft+h

(
(r̃t+h · . . . · r̃t+2)′xt+1(a, r) + rh−1f ct+1(a), z̃t+h

)
| zt+1

]
. (23)

Note that this is a function of the period-t+1 market-state zt+1 (by conditioning) and returns rt+1 (through

xt+1), but does not depend on later market states or returns as these are integrated out in the expectations.

Here too we will consider a generating function based on a first-order Taylor series expansion of (23) in the

trades a around the trades a∗ given by some heuristic strategy; the details are provided in the appendix. As

with the modified one-step penalty, this leads to a dual feasible penalty π that is linear in the positive and

negative components of a for any sequence of returns r and market states z. In our numerical experiments,

we will consider bounds generated by penalties of this form, taking a∗ to be the trades suggested by a rolling

buy-and-hold strategy. We will call these the rolling buy-and-hold dual bounds.

4.3. Gradient-Based Penalties

We will also consider gradient-based penalties that exploit the convex structure of the primal optimization

problem. To understand the motivation for this approach, assume (for the sake of this motivating discussion)

that the utility of terminal wealth U(wT (a, r)) is differentiable in the sequence of trades a and that an optimal
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trading strategy α∗ for the portfolio optimization problem with transaction costs is known. Then suppose

we take the penalty π(a, r, z) to be

π(a, r, z) = ∇aU(wT (α∗(r, z), r))′ (a− α∗(r, z)) (24)

where ∇aU(wT (a, r)) is the gradient of terminal utility with respect to the trade sequence a, for a given

sequence of returns r. Note that this penalty is linear in the trade sequence a.

We can view the primal problem (17) as a convex optimization problem with the decision variables

being the trading strategy α; this will be formalized in the proof of the proposition below. The first-order

conditions for this optimization problem can be shown to imply that

E [π(α(r̃, z̃), r̃, z̃)] = E [∇aU(wT (α∗(r̃, z̃), r̃))′ (α(r̃, z̃)− α∗(r̃, z̃))] ≤ 0 (25)

for any feasible strategy α. This means the penalty (24) is dual feasible.

Now consider the deterministic inner problem (19) given by this penalty:

max
a∈A(r)

{
U(wT (a, r))−∇aU(wT (α∗(r, z), r))′ (a− α∗(r, z))

}
. (26)

Since the penalty is linear in the trade sequence a, the inner problem (26) is a convex optimization problem

and its first-order conditions are necessary and sufficient for an optimal solution. The gradient of the objective

function in (26) with respect to the trade sequence a is

∇aU(wT (a, r))−∇aU(wT (α∗(r, z), r)) . (27)

Now note that if we take the trade sequence to be that selected by the optimal strategy, i.e., a = α∗(r, z),

the gradient (27) is equal to zero. Since this a is in A(r) and it sets the gradient equal to zero, this a

must be an optimal solution for the inner problem (26). Moreover, with a = α∗(r, z), the penalty (24)

is zero and the objective for the inner problem (26) reduces to U(wT (α∗(r, z), r)) and the dual bound is

E [U(wT (α∗(r̃, z̃), r̃))]. Thus, the penalty (24) is optimal: it yields a dual trading strategy that is optimal

for the primal problem and a dual bound equal to the optimal value for the primal.

Of course, in practice we do not know the optimal strategy α∗ for the portfolio optimization problem and

cannot use the penalty (24). We can, however, approximate the original problem and use similar penalties

based on the optimal solution to this approximate problem. For example, we can approximate the original

problem by considering the frictionless model (10). If we take ŵT (a, r) to be the terminal wealth without
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transaction costs and Â to be the set of feasible trading strategies without transaction costs (and let Â(r)

be the set of feasible trades in the approximate model given returns r), we can then write the approximate

optimization problem based on the frictionless model as

max
α∈Â

E [U(ŵT (α(r̃, z̃), r̃))] . (28)

Let α̂∗(r, z) be an optimal trading strategy for this approximating frictionless model and consider a gradient-

based penalty of the form of (24), but with ŵT in place of wT and α̂∗ in place of α∗, i.e.,

π̂(a, r, z) = ∇aU(ŵT (α̂∗(r, z), r))′ (a− α̂∗(r, z)) . (29)

The argument leading to (25) requires the strategy to be optimal for the chosen wealth function (i.e., for

(28)), but it does not require the strategy to be optimal for the true wealth function with transaction

costs. If the set of feasible strategies for the approximate model Â includes those for the real model A (i.e.,

A(r) ⊆ Â(r) for all r), then E [π̂(α(r̃, z̃), r̃, z̃)] will hold for all α in Â and this approximate penalty π̂ will

be dual feasible for the original problem. However, the inner problem with this approximate penalty,

max
a∈A(r)

{
U(wT (a, r))−∇aU(ŵT (α̂∗(r, z), r))′(a− α̂∗(r, z))

}
, (30)

will generally not be optimized by taking the trade sequence to be a = α̂∗(r, z). Nevertheless, because the

penalty is dual feasible, the dual problem with this approximate penalty will provide a valid upper bound

on the performance of any feasible trading strategy.

We can use this gradient-based approach with a variety of approximations of the wealth function as long

as the approximate wealth function is concave and we can identify an optimal strategy for the approximate

problem. The following proposition formalizes this gradient-based approach to penalties.

Proposition 4.2. Gradient-based penalties. Let α̂∗ be an optimal trading strategy for the portfolio choice

problem (28) with modified terminal wealth ŵT (a, r), assumed concave in a, and modified allowable trades

Â(r), assumed convex and satisfying A(r) ⊆ Â(r) for each return sequence r. Consider the penalty π̂ given

by equation (29):

1. π̂ is dual feasible.

2. If ŵT (a, r) = wT (a, r) and A(r) = Â(r) for each return sequence r, then the dual bound (18) holds

with equality with penalty π̂.
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3. If wT (a, r) ≤ ŵT (a, r), then,

max
a∈A(r)

{
U(wT (a, r))− π̂(a, r, z)

}
≤ U(ŵT (α̂∗(r, z), r)). (31)

The first two parts of the proposition formalize the results discussed earlier. We will discuss the last part

of the proposition in a moment. Note that our definition of gradient-based penalties π̂ in equation (29)

implicitly assumes that U and ŵT are differentiable so the necessary gradients exist and π̂ corresponds to a

directional derivative. If the gradient does not exist, we can define π̂ in terms of the directional derivative

instead; this directional derivative will exist whenever U ◦ŵT is concave. The use of the directional derivatives

is discussed in more detail in the proof of the result in the appendix.

In our numerical experiments, we will consider two examples of gradient-based penalties. The first is

based on the frictionless model, as discussed above. In this case, the approximate terminal wealth ŵT (a, r)

is given by taking the transaction costs to be zero and the allowable trade sequences Â(r) are the same as

in the original model but without the transaction costs: A(r) ⊆ Â(r) then follows from our assumption that

the set of feasible asset positions Ht is nondecreasing in cash. In this frictionless model, the gradient of the

utility of terminal wealth is ∇aU(ŵT (a, r)) = U ′(ŵT (a, r))∇aŵT (a, r), where U ′ is the derivative of the

utility function and ∇aŵT (a, r) is a nT × 1 vector with entries corresponding to trade at given by

∇atŵT (a, r) = (rT · . . . · rt+1)− rT−tf 1 .

We will call the resulting penalty the frictionless gradient-based penalty.

Note that with this approximation, the wealth with transaction costs wT (a, r) are less than or equal to

the wealth without transaction costs ŵT (r, z) (for all r and z), so the last part of Proposition 4.2 applies:

the optimal values for the inner problems with this penalty (on the left side of (31)) will be less than or

equal to the utility of final wealth with no transaction costs (on the right side of (31)) for every r and z.

This implies that the dual bounds using this frictionless gradient penalty must be at least as tight as the no

transaction cost bound given by the value function for the frictionless model.

Although the frictionless gradient penalty leads to tighter bounds than the frictionless model, we can

perhaps do better if we somehow incorporate the effects of transaction costs in the approximate model.

The key for the gradient penalty approach is to do this in a way that still allows us to find the optimal

solution for the approximate model. One way to do this is to consider a variation of the original model

where the transaction costs depend on the post-trade asset positions rather than the trades. In this case,

the transaction costs are of the form κ̂(x̂t), where x̂t = xt + at and the cash position evolves according to
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ct+1 = rf (ct − 1′at − κ̂(xt + at)), rather than equation (3). In such a case, we can represent the portfolio

problem as a dynamic program like that of the frictionless model (10) with wealth wt and the market state

zt as state variables and post-trade asset positions x̂t as decision variables, without considering the specifics

of the asset positions (xt, ct).

In our numerical experiments, we will consider a modified gradient-based penalty where we take κ̂(x̂t)

to be proportional to the post-trade asset positions x̂t. Specifically, we will take the proportional fee for

the asset positions to be equal to the proportional fee for trades divided by the number of periods (T ) in

the model. More generally, we could consider κ̂(x̂t) that assume transaction costs are proportional to the

difference between the post-trade position x̂t and some reference position. For example, we might take this

reference position to be the asset allocation recommended by the frictionless model for the same market

state or, alternatively, the initial (period 0) asset position. Our modified gradient bound can be viewed as

an example of this general form where the reference position is taken to be a zero position (i.e., with zero

investment in each risky asset), which is the assumed initial position in the experiments. Of course, there

are a number of possible variations on these ideas and we could experiment to perhaps find better bounds.

5. Numerical Experiments

In this section, we describe the experiments that we use to test the proposed trading strategies and dual

bounds. We first describe the details of the models considered and then discuss the run times and numerical

results. We then consider variations on the heuristics and bounds as well as the constraints.

5.1. Model Details

We will test the heuristic strategies and dual bounds by evaluating these heuristics and bounds in a series

of simulations with varying parameter values. In all cases, we begin by solving the dynamic program for

the frictionless model (equations (10) and (11)) for the given parameter values; we also solve the analogous

dynamic program used to determine the modified gradient penalty of §4.3. We then repeatedly generate

random sequences of market states and returns. For each sequence of market states and returns, we “run” the

heuristic strategies of §3, determining the sequence of trades selected by the heuristic and the corresponding

terminal wealth and utility. We also solve the inner problem for each of the dual bounds in this same

scenario. We repeat this simulation process for a given number of trials.

In our experiments, we assume monthly time steps, proportional transaction costs κ(at) = δ
∑n
i=1 |at,i|,

and power utilities. We will consider a variety of parameters:

• time horizons T of 6, 12, 24, and 48 months;

• transaction cost rates δ of 0.5%, 1.0% and 2.0%;
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• relative risk aversion coefficients γ of 1.5, 3.0 or 8.0, reflecting low, medium and high degrees of risk

aversion.

In the next three subsections, we will focus on the case with constraint (5) ruling out short positions; we

consider limited leverage constraints of the form of (6) in §5.5. In all cases, we assume the investor starts

with all wealth invested in cash and normalize wealth to one, i.e., we assume x0 = 0 and c0 = 1. We will

consider 1000 trials in each simulation.

We consider two different models of returns. The first highlights the role of predictability and the second

considers a larger number of risky assets.

Model with Three Risky Assets and Predictability. We first consider a model with three risky

assets and one market state variable, based on Lynch (2001); Lynch studied the impact of predictability on

portfolio choices, without considering transaction costs. Specifically, letting ρt = ln rt, the model assumes

returns and market states evolve according to

ρt+1

zt+1

 =

ar + brzt

az + bzzt

+

et+1

vt+1

 , (32)

where the stochastic increments (et+1 vt+1) are multivariate normal with mean zero and covariance Σev. The

three risky assets correspond to value-weighted equity portfolios sorted by the size of the underlying firms

(i.e, small-, medium- and large-cap stocks) and the market state variable is a normalized index reflecting the

term spread (specifically, the difference between 20-year and one-month treasury bonds). Lynch estimates

this model using data from 1927 to 1996. The returns are inflation-adjusted and the risk-free rate rf is

1.00042. The other numerical assumptions are discussed in the appendix.

In this model, the market state variable has a significant impact on expected returns. With no transaction

costs and medium risk aversion (γ = 3.0), we find that with high values of zt (i.e., with a large term spread),

the investor should invest heavily in a mix of small- and medium-sized stocks and hold no cash. With zt = 0,

the investor should invest in a mix of all three assets, while holding substantial reserves in cash. With negative

values for zt, the investor should invest most of his wealth in cash. In our numerical experiments, we will

assume the initial market state is neutral (i.e., z0 = 0).

We follow Lynch (2001) and use discrete approximations of the uncertainties to calculate expectations.

We approximate the market state variable using a grid with 19 points. The idiosyncratic returns (et+1 in

equation (32)) are approximated using a Gaussian quadrature approach with three points per asset. This

Gaussian quadrature approximation exactly matches the mean and covariance structure for log returns ρt

and matches higher-order moments (3rd-5th) of this joint distribution as well. (See, e.g., Judd 1998, for an
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introduction to Gaussian quadrature methods.) Taken together, the joint distribution for returns and the

market-state variable is approximated using a four-dimensional grid with a total of 33 × 19 = 513 elements.

This discrete approximation scheme is used to calculate the expectations required to solve the dynamic

programming model for the frictionless model, to evaluate the expectations in the optimization problems for

the heuristic trading strategies (in §3), and to evaluate the expectations appearing in the penalties based

on approximate value functions (in §4.2). For consistency, we also use this discrete approximation in the

simulations, i.e., we generate sample returns and market states from this grid according to the probabilities

of the discrete approximation.

Model with Ten Risky Assets and No Predictability. We also consider examples with ten risky

assets and no predictability. In this case, we assume that the asset returns follow a discrete-time multivariate

geometric Brownian motion process, a special case of (32) with ρt = ln rt evolving according to ρt+1 =

ar + et+1 where the stochastic increments et+1 are multivariate normal with mean zero and covariance

Σe. In this example, the ten risky assets correspond to five equity indices (S&P 500, Russell 2000 Value,

MSCI World Gross, Russell 1000 Value Index, Russell MidCap Index), three bond indices (Lehman Brothers’

US government and corporate bond indices and Lehman Brothers’ Fixed Rate Mortgage Backed Securities

Index), a real estate index trust (NAREIT), and a composite index of 1-5 Year US Treasuries. The parameters

were estimated using monthly return data from 1981-2006 and are provided in the appendix. The risk-free

rate rf = 1.0048 is the average return on three-month US treasuries, estimated from the same data set.

These returns are not inflation-adjusted.

We also use discrete approximations of the uncertainties to calculate expectations in this model. The

idiosyncratic returns (et+1) are approximated using a multidimensional quadrature (or cubature) formula in

Stroud (1971, p. 317) that includes 2n + 2n points and exactly matches the first five moments of the return

distribution. With 10 assets, the return distribution is approximated using a ten-dimensional grid with a

total of 1044 elements. There are a variety of different approaches we could use to calculate expectations

in these models and there is a tradeoff between the accuracy of the approximation and the amount of work

involved. Stroud (1971) provides a comprehensive review of multidimensional quadrature formulas; one such

formula matches three moments of the underlying distribution and involves only 2n points. Alternatively,

we might consider evaluating these expectations using Monte Carlo or Quasi Monte Carlo methods; see, e.g.,

Judd (1998) or Glasserman (2004) for discussions of these approaches.

5.2. Run Times

Table 1 provides the run times for evaluating the heuristics and dual bounds in a simulation with 1000 trials

for the two different return models and four different time horizons (T ). In all cases, we consider the case
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Horizon 
(T)

No Trans. 
Cost

Modified 
Trans. Cost 
Model Cost Blind One‐Step

Modified 
One‐Step

Rolling 
Buy‐and‐
Hold

Zero 
Penalty

Modified 
One‐Step

Rolling 
Buy‐and‐
Hold

Frictionless 

Gradient 
Based

Modified 
Gradient

6 5.1    5.3    5.7    293.1    291.1    285.2    9.1    12.0    13.6    9.0    10.8   
12 10.1    10.4    10.2    622.3    591.9    583.9    12.2    17.0    21.3    12.0    14.7   
24 20.0    20.8    20.0    1214.8    1180.9    1215.4    21.6    33.0    41.8    22.2    29.9   
48 39.9    41.8    40.9    2482.6    2363.9    2558.7    72.2    80.0    105.1    62.4    89.8   

6 0.8    0.8    9.5    743.0    839.0    870.2    10.3    14.8    20.6    12.4    13.1   
12 1.5    1.5    16.9    1485.5    1643.7    1784.9    20.4    25.5    34.4    21.3    22.2   
24 2.8    3.1    34.0    3020.5    3243.0    3354.9    55.4    60.3    77.8    57.7    62.9   
48 5.6    6.3    66.6    6150.6    6742.6    7238.9    269.0    221.4    250.1    253.4    291.4   

Ten‐Asset Model without Predictability

Simple DP Models

Table 1:  Run Times (seconds) Required to Evaluate Heuristic Strategies and Dual Bounds

Three‐Asset Model with Predictability

Heuristic Strategies Dual Bounds

with risk aversion coefficient γ = 3 and the transaction cost rate δ = 0.01; changes in these two parameters

do not appreciably affect the run times. These computations were run on a Dell personal computer with a

2.55GHz Intel Core 2 Quad CPU processor and 3.25GB of RAM, running Windows XP. The calculations

were done using Matlab with a single processor; the run times were estimated using Matlab’s Profiler utility.

In our calculations, we used the general purpose MOSEK optimization toolbox for Matlab to solve the convex

optimization problems. We could almost certainly improve the run times by developing more specialized

code for the particular forms of optimization problems that we consider.

The first two columns in Table 1 report the time required to solve the dynamic program for the frictionless

model. We also show the time required to solve the dynamic program with modified transaction costs that

is used to calculate the modified gradient bound. These models must be solved once, before running the

simulation. As expected, the run times for these two models are quite similar and grow linearly with the

number of periods in the model. The models without predictability take less time to solve: though they

have more assets (10 rather 3), they do not involve a market state variable and there is only one scenario to

evaluate in each period, as opposed to the 19 market states considered in the model with predictability.

Most of the time in the simulation is spent evaluating the heuristic strategies. The cost-blind heuristic is

quite easy to evaluate, as we simply move to the post-trade asset allocations recommended by the frictionless

model. The other heuristics require solving a convex optimization problem in each period to determine the

trades that optimize the heuristic’s objective in that scenario. The run times thus grow linearly with the

number of periods and the number of trials. The complexity of each of these convex optimization problems

grows more than linearly in the number of assets (in theory no worse than polynomially), but this depends

on the details of the optimization methods used.

The dual bounds take less time to calculate. Here we solve one deterministic inner problem for each

trial; the number of decision variables is the number of assets n times the number of periods T or 2nT

when we decompose the trades into their positive and negative components. The run times grow linearly
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in the number of trials and the complexity of the convex optimization problem grows more than linearly

in the number of decision variables involved (nT or 2nT ); this polynomial growth is evident in the run

times in Table 1 for the dual problems with increasing horizon T . The run times required to evaluate the

heuristic strategies are longer than the run times for the dual problems because the optimization problems for

the heuristic strategies involve high-dimensional expectations (over returns and market states) to calculate

objective function values for each setting of the decision variables.

Finally, remember that the run times in Table 1 are the times required to evaluate the quality of the

heuristic strategies and dual bounds. In practice, if we want to use the modified one-step or rolling buy-

and-hold heuristics to recommend a trade, we need only solve the corresponding optimization problems once

for the current state and period. Dividing the run times in Table 1 by the 1000 trials in the simulation and

the number of periods considered (T ), we see that trades recommended by these heuristic strategies can be

determined in a fraction of a second on a desktop PC.

5.3. Results

In each simulation, for each heuristic and dual bound, we calculate

• the average utility of final wealth or value for the dual bound,

• the mean “turnover,” defined as the average volume of trade in each period, 1
T

∑T−1
t=0

∑n
i=1 |at,i|

To simplify the interpretation of the results, we will convert the utilities and bounds to annualized certainty

equivalent returns. Given a time horizon of T months and a mean utility calculated in a simulation of µ̂,

the annualized certainty equivalent return is defined as the constant annual return r̂ that yields utility µ̂,

i.e., the r̂ that solves:

µ̂ = U
(
w0 r̂

T/12
)

(33)

where w0 is the initial wealth. We estimate mean standard errors for these certainty equivalent returns

and the duality gaps (the differences between upper and lower bounds on optimal returns) using the “delta

method” (see, e.g., Casella and Berger 2002, p. 240) based on a first-order Taylor series expansion of the

certainty equivalent formula (i.e., the inverse of equation (33)).

To reduce the variance in our estimates of the expected utilities, we use a simple control variate tech-

nique (see, e.g., Glasserman 2004, p. 185) using the utilities for the frictionless model as a control variate.
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Specifically, for a given strategy α, we estimate its expected utility as

µ̂ =
1

S

S∑
s=1

{
U(wT (α(rs, zs), rs)) + β

(
V f0 (w0, z0)− U(wfT (αf (rs, zs), rs))

)}
(34)

where S is the number of trials, rs and zs are the sequences of returns and market states in trial s, α(rs, zs)

and αf (rs, zs) are the trades for the chosen strategy and frictionless strategy in trial s, and wT and wfT are

the terminal wealths with and without transaction costs. V f0 (w0, z0) is the expected utility for the frictionless

model in the initial state; this is computed before we begin the simulation. The term inside the parentheses

in (34) has zero mean, so adjusting the estimate of expected utility by adding this term does not bias the

estimate. The regression coefficient β in (34) is given as (σy/σx)ρxy where σx is the standard deviation

of U(wfT (αf (rs, zs), rs)), σy is the standard deviation of U(wT (α(rs, zs), rs)) and ρxy is the correlation

between these quantities. The estimates for the gradient-based dual bounds of §4.3 are similarly adjusted

using control variates.

Table 2 shows the simulation results for the three-asset model with predictability, for a time horizon (T )

of 12 months; results for the other time horizons are shown in Table A3 in the appendix. Figure 1 summarizes

the results for all time horizons, transaction costs, and risk aversion levels, showing the certainty equivalent

returns for the best heuristic policy (the bottom end of the error bars) and the best dual bound (the upper

end of the error bar); the length of the error bar thus represents the duality gap for a particular set of

parameters. In these results, the annualized certainty returns are stated in percentage terms. For example,

in the first row of Table 2, we see that in the case with risk aversion coefficient γ = 1.5 and transaction

cost rate δ = 0.5%, the modified one-step heuristic has an annualized certainty equivalent return quoted as

6.55 percent; this corresponds to an estimated value of r̂ in equation (33) of 1.0655. The mean standard

errors are also quoted in percentage terms; the 95-percent confidence interval on r̂ for the modified one-step

strategy in this case is 1.0655± 1.96× 0.0012. The turnover means that an investor following the modified

one-step strategy would execute trades averaging 10.6% of his initial wealth in each period.

In Table 2, we see that the modified one-step and rolling buy-and-hold heuristic strategies perform

similarly and consistently outperform the cost-blind strategy and the (unmodified) one-step strategy. The

rolling buy-and-hold strategy “wins” in most cases, but its performance is typically only slightly better than

the modified one-step strategies. In most of these cases, the cost-blind strategies perform substantially worse

than these two heuristic strategies with larger differences occurring when the transaction costs are larger

and when the investor is less risk averse (has a low value of γ). Looking at the turnover, we see that, as

expected, the modified one-step and rolling buy-and-hold strategies trade less than the cost-blind strategy,

but more than the (unmodified) one-step strategy.
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Figure 1: Bounds on optimal returns in the three-asset example.

Examining the dual bounds, we see that the zero-penalty bound performs very poorly, as expected:

an investor with perfect foresight can achieve high returns, even with transaction costs. The bounds with

penalties are much better and are also substantially better than the simple no-transaction-cost bound given

by using the value function for the frictionless model. There is no consistent winner among the dual bounds:

the modified one-step, modified gradient, and rolling buy-and-hold bounds all perform best in some cases.

The modified gradient bounds win more often with higher levels of risk aversion (higher values of γ); this

may be because the quality of the first-order Taylor series approximation underlying the modified-one-step

and rolling buy-and-hold bounds degrades with higher levels of risk aversion. The frictionless gradient-based

bound consistently outperforms the no-transaction cost bound (as it must, based on Proposition 4.2(c)), but

is never the best of the dual bounds. Examining the mean standard errors, we see that the dual bounds

with penalties are quite precisely estimated; the mean standard errors are typically much smaller than the

mean standard errors associated with the modified one-step and rolling buy-and-hold heuristic strategies.

The duality gaps – the difference between certainty equivalent returns for the best bound and best

strategy – are often quite small. In these case, there is relatively little room for improvement on the heuristic

strategies. In Table 2, the gaps range from 0.10% to 0.42% and average 0.24%. The results are somewhat

better for shorter time horizons and somewhat worse for the longer time horizons. With T = 48 months, the

gaps for the three-asset case average 0.39%. The duality gaps also appear to increase with higher transaction
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costs and with lower risk aversion. The worst gap for all of the three-asset cases is 0.79% for the low risk

aversion, large transaction cost case (γ = 1.5; δ = 0.02) with the long time horizon (T = 48). The mean

standard errors for the duality gaps are close to the mean standard errors for the heuristic strategies, as the

mean standard errors for the heuristic strategies dominate those of the dual bound.

Table 3 shows the simulation results for the ten-asset model without predictability, for a time horizon

(T ) of 12 months; results for the other time horizons are shown in Table A4 in appendix. These results

are summarized in Figure 2. Here we find that the cost-blind strategy performs much better, because, with

no predictability, the cost-blind strategies trade much less: there is some rebalancing of the portfolio in

response to idiosyncratic gains or losses on particular assets but no large scale changes in the asset positions

in response to changes in the market state variable. For example, in the low risk aversion cases (γ = 1.5),

the cost-blind strategy calls for placing all wealth in two assets, rebalancing these positions over time in

response to idiosyncratic gains or losses. The modified one-step and rolling buy-and-hold heuristics place all

of their wealth in these same two assets, but do not rebalance in subsequent periods. In many cases, the

duality gap is very close to zero, suggesting the heuristic strategies are nearly optimal.2

5.4. Tuning the Heuristics

In general, we find the results of §5.3 encouraging, particularly given how little effort has been made to fine

tune the heuristics and penalties used. In many cases, the duality gaps are quite small and the heuristic

strategies are probably good enough for most practical applications. Where the duality gaps are larger,

we may be able to improve performance by varying the heuristics and/or tighten the bounds by varying

the penalties. For example, in the modified one-step strategy we reduced the transaction costs in the

optimization problem (15) by dividing the costs by the smaller of 6 and the number of periods remaining.

This rule apparently performs reasonably well in most cases considered here, but we could perhaps do better

with different scaling rules. Similarly, we took the horizon h in the rolling buy-and-hold objective (16) to be

6; again, we could perhaps do better with a different horizon.

In Table 4, we report results with varying divisors and horizons for two cases where the duality gaps were

largest. In the case with the largest duality gap for the three-asset model (γ = 1.5; δ = 0.02, T = 48), we can

cut the gap of 0.79% to 0.53% by considering a longer horizon or larger divisor. Similarly, for the case with

the largest gap in Table 3 (γ = 8.0; δ = 0.02, T = 12) with a gap of 0.52%, we can improve the performance

of the heuristics and reduce the gap to 0.03%. In this case, it appears that a rolling buy-and-hold strategy

with a longer time horizon is nearly optimal.

2There are a few cases were the estimated duality gap is slightly negative. In these cases, the estimated gaps are small
compared to their mean standard errors. In these cases, we believe the true gap is very close to zero and the negative estimate
is a result of sampling error.

26



H
or
iz
on

 
(T
)

Ri
sk
 

A
ve
rs
io
n 

Co
ef
f. 
(γ
)

Tr
an
s.
 

Co
st
 R
at
e 

(δ
)

Co
st
 B
lin
d

O
ne

‐S
te
p

M
od

ifi
ed

 
O
ne

‐S
te
p

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

Ze
ro
 

Pe
na
lty

M
od

ifi
ed

 
O
ne

‐S
te
p

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

Fr
ic
tio

nl
es
s 

G
ra
di
en

t 
Ba

se
d

M
od

ifi
ed

 
G
ra
di
en

t

N
o 
Tr
an
s.
 

Co
st
 

Bo
un

d
Be

st
 

St
ra
te
gy

Be
st
 U
pp

er
 

Bo
un

d
G
ap

Ta
bl
e 
3:
   
Re

su
lts
 fo

r 
th
e 
Te
n‐
A
ss
et
 M

od
el
 w
ith

ou
t P

re
di
ct
ab
ili
ty

Be
st
 P
er
fo
rm

an
ce

Pa
ra
m
et
er
s

H
eu

ri
st
ic
 S
tr
at
eg
ie
s

D
ua
l B
ou

nd
s

12
1
5

0
5%

CE
Re

tu
rn

(%
)

11
13

11
76

13
06

13
06

53
76

13
06

13
06

13
37

13
08

13
62

13
06

13
06

0
00

12
1.
5

0.
5%

CE
 R
et
ur
n 
(%

)
11
.1
3

11
.7
6

13
.0
6

13
.0
6

53
.7
6

13
.0
6

13
.0
6

13
.3
7

13
.0
8

13
.6
2

13
.0
6

13
.0
6

0.
00

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
15

0.
04

0.
00

0.
00

0.
31

0.
00

0.
00

0.
00

0.
00

0.
00

Tu
rn
ov
er
 (%

)
26
.5

6.
5

8.
3

8.
3

12
1.
0

8.
3

8.
3

3.
8

7.
6

8.
9

12
1.
5

1.
0%

CE
 R
et
ur
n 
(%
)

9.
45

5.
91

12
.5
0

12
.5
0

46
.0
7

12
.5
0

12
.5
0

13
.1
6

12
.5
5

13
.6
2

12
.5
0

12
.5
0

0.
00

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
15

0.
00

0.
00

0.
00

0.
27

0.
00

0.
00

0.
01

0.
00

0.
00

Tu
rn
ov
er
 (%

)
26
.3

0.
0

8.
3

8.
3

90
.0

8.
3

8.
3

3.
2

7.
6

8.
9

12
1.
5

2.
0%

CE
 R
et
ur
n 
(%
)

7.
23

5.
91

11
.3
9

11
.3
9

36
.4
0

11
.3
9

11
.3
9

12
.8
3

11
.4
8

13
.6
2

11
.3
9

11
.3
9

0.
00

M
St
d
E

(%
)

0
13

0
00

0
00

0
00

0
24

0
00

0
00

0
02

0
00

0
00

R
lli

B
R

lli
B

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
13

0.
00

0.
00

0.
00

0.
24

0.
00

0.
00

0.
02

0.
00

0.
00

Tu
rn
ov
er
 (%

)
22
.3

0.
0

8.
2

8.
2

49
.6

8.
2

8.
2

2.
5

7.
5

8.
9

12
3

0.
5%

CE
 R
et
ur
n 
(%
)

11
.2
6

8.
81

11
.3
4

11
.3
4

52
.3
2

11
.3
7

11
.3
6

11
.7
1

11
.3
8

11
.9
1

11
.3
4

11
.3
6

0.
02

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
00

0.
06

0.
01

0.
01

0.
28

0.
00

0.
00

0.
00

0.
00

0.
01

Tu
rn
ov
er
 (%

)
9.
8

3.
3

8.
3

8.
3

12
1.
0

8.
3

8.
3

3.
2

7.
6

9.
8

12
3

1.
0%

CE
 R
et
ur
n 
(%
)

10
.6
2

5.
92

10
.7
9

10
.7
9

44
.8
4

10
.8
2

10
.8
1

11
.5
4

10
.8
5

11
.9
1

10
.7
9

10
.8
1

0.
02

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
00

0.
00

0.
01

0.
01

0.
25

0.
00

0.
00

0.
01

0.
00

0.
01

M
od

ifi
ed

 
Ro

lli
ng

 B
uy

‐

M
od

ifi
ed

 
O
ne

‐S
te
p

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

Tu
rn
ov
er
 (%

)
9.
7

0.
0

8.
3

8.
3

90
.0

8.
3

8.
3

2.
9

7.
6

9.
8

12
3

2.
0%

CE
 R
et
ur
n 
(%
)

9.
35

5.
91

9.
24

9.
23

35
.3
6

9.
81

9.
81

11
.2
3

9.
80

11
.9
1

9.
35

9.
80

0.
45

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
00

0.
00

0.
04

0.
04

0.
22

0.
00

0.
00

0.
02

0.
00

0.
00

Tu
rn
ov
er
 (%

)
9.
7

0.
0

6.
0

5.
9

49
.6

8.
2

8.
2

2.
5

7.
5

9.
8

12
8

0.
5%

CE
 R
et
ur
n 
(%
)

9.
09

7.
00

9.
16

9.
16

48
.0
5

9.
25

9.
22

9.
60

9.
21

9.
74

9.
16

9.
21

0.
05

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
00

0.
05

0.
01

0.
01

0.
33

0.
00

0.
00

0.
00

0.
00

0.
01

Tu
rn
ov
er

(%
)

9.
9

1.
3

8.
3

8.
3

12
1.
0

8.
3

8.
3

2.
4

7.
8

9.
9

Co
st
 B
lin
d

M
od

ifi
ed

 
G
ra
di
en

t

O
ne

‐S
te
p

g
y

an
d‐
H
ol
d

Ro
lli
ng

 B
uy

‐
an
d‐
H
ol
d

M
od

ifi
ed

 
G
ra
di
en

t
Tu
rn
ov
er
 (%

)
9.
9

1.
3

8.
3

8.
3

12
1.
0

8.
3

8.
3

2.
4

7.
8

9.
9

12
8

1.
0%

CE
 R
et
ur
n 
(%
)

8.
45

5.
91

8.
49

8.
49

41
.2
6

8.
75

8.
74

9.
47

8.
68

9.
74

8.
49

8.
68

0.
19

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
00

0.
00

0.
03

0.
03

0.
29

0.
00

0.
00

0.
01

0.
00

0.
03

Tu
rn
ov
er
 (%

)
9.
9

0.
0

6.
8

6.
8

90
.0

8.
3

8.
3

2.
3

7.
8

9.
9

12
8

2.
0%

CE
 R
et
ur
n 
(%
)

7.
19

5.
91

7.
15

7.
14

32
.4
5

8.
64

8.
60

9.
24

7.
71

9.
74

7.
19

7.
71

0.
52

M
ea
n 
St
d.
 E
rr
or
 (%

)
0.
00

0.
00

0.
08

0.
08

0.
25

0.
01

0.
01

0.
01

0.
00

0.
00

Tu
rn
ov
er
 (%

)
9.
8

0.
0

2.
3

2.
3

49
.6

8.
1

8.
2

2.
1

7.
7

9.
9

Co
st
 B
lin
d

M
od

ifi
ed

 
G
ra
di
en

t

an
d‐
H
ol
d

G
ra
di
en

t

M
od

ifi
ed

 
O
ne

‐S
te
p

M
od

ifi
ed

 
G
ra
di
en

t

A
ve
ra
ge

0.
14

M
in
im

um
0.
00

M
ax
im

um
0.
52

27



15.015.0

Risk aversion coefficient (γ) = 1 5Transaction cost rate:            
14.0

15.0

Risk aversion coefficient (γ) = 1.5Transaction cost rate:            
δ = 0.0%

13.0

14.0

15.0

%
)

Risk aversion coefficient (γ) = 1.5Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1 0%

12.0

13.0

14.0

15.0

tu
rn
 (%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

11 0

12.0

13.0

14.0

15.0

en
t R

et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

11.0

12.0

13.0

14.0

15.0

iv
al
en

t R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

10.0

11.0

12.0

13.0

14.0

15.0

nt
y 
Eq

ui
va
le
nt
 R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

10.0

11.0

12.0

13.0

14.0

15.0

ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

9.0

10.0

11.0

12.0

13.0

14.0

15.0

ed
 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

nn
ua

liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

6 0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)
Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

0 5 10 15 20 25 30 35 40 45 50

A
nn

ua
liz
ed

 C
er
ta
in
ty
 E
qu

iv
al
en

t R
et
ur
n 
(%

)

Horizon (T)

Risk aversion coefficient (γ) = 1.5

Risk aversion coefficient (γ) = 3.0

Risk aversion coefficient (γ) = 8.0

Transaction cost rate:            
δ = 0.0%

δ = 0.5%
δ = 1.0%

δ = 2.0%

Figure 2: Bounds on optimal returns in the ten-asset example.

Horizon (h) or Divisor 3 6 9 12 15 18 21 24

Heuristic
Modified One‐Step 5.62 6.01 6.05 6.02 5.98 5.94 5.90 5.87
Rolling Buy‐and‐hold 5.53 6.00 6.13 6.18 6.20 6.19 6.19 6.18

Bounds
Modified One‐Step 7.07 6.87 6.80 6.73 6.73 6.73 6.75 6.75
Rolling Buy‐and‐hold 7.01 6.79 6.90 7.12 7.33 7.48 7.57 7.64

Gaps
Mean 1.38 0.79 0.67 0.55 0.53 0.54 0.56 0.57
Std. Error 0.14 0.10 0.10 0.10 0.10 0.10 0.11 0.11

Heuristic
Modified One‐Step 6.26 7.15 7.54 7.61
Rolling Buy‐and‐hold 6.27 7.14 7.54 7.61

Bounds
Modified One‐Step 11.63 8.64 7.93 7.83
Rolling Buy‐and‐hold 11.71 8.60 7.86 7.64

Gaps
Mean 5.36 1.45 0.32 0.03
Std. Error 0.08 0.08 0.05 0.03

Table 4:  Certainty Equivalent Returns (%) with Varying Parameters for Heuristics

Three assets without predictability, T =48, γ=1.5,  δ=0.02

Ten assets without predictability, T =12, γ=8,  δ=0.02
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Leverage 
Limit ( l ) Cost Blind One‐Step

Modified 
One‐Step

Rolling Buy‐
and‐Hold

Zero 
Penalty

Modified 
One‐Step

Rolling Buy‐
and‐Hold

Frictionless 

Gradient 
Based

Modified 
Gradient

No Trans. 
Cost 
Bound

Best 
Strategy

Best Upper 
Bound Gap

1.0 Best Divisor/Horion 6 6 6 6
CE Return (%) 10.62 5.91 10.79 10.79 74.46 10.82 10.81 11.54 10.85 11.91 10.79 10.81 0.02

Table 5:  Results for the Ten‐Asset Example with Varying Leverage Limit

Heuristic Strategies Dual Bounds Best Performance

CE Return (%) 10.62 5.91 10.79 10.79 74.46 10.82 10.81 11.54 10.85 11.91 10.79 10.81 0.02
Mean Std. Error (%) 0.00 0.00 0.01 0.01 0.46 0.00 0.00 0.01 0.00 0.00

Turnover (%) 9.8 0.0 8.3 8.3 166.5 8.3 8.3 2.9 7.6 9.8

2.0 Best Divisor/Horion 6 6 6 6
CE Return (%) 12.14 5.91 12.38 12.37 174.12 12.68 12.73 14.45 12.84 15.03 12.38 12.68 0.31

Mean Std. Error (%) 0.00 0.00 0.01 0.01 1.42 0.00 0.00 0.01 0.00 0.01
Turnover (%) 21.3 0.0 18.7 18.7 417.4 16.4 16.7 4.8 14.7 21.8

3 0 Best Divisor/Horion 9 9 9 9

Modified 
One‐Step

Modified 
One‐Step

Modified 
One‐Step

Rolling Buy‐
and‐Hold

3.0 Best Divisor/Horion 9 9 9 9
CE Return (%) 12.09 5.92 13.14 13.18 314.06 13.60 13.53 16.10 13.54 16.89 13.18 13.53 0.35

Mean Std. Error (%) 0.01 0.00 0.04 0.04 3.21 0.01 0.01 0.02 0.00 0.05
Turnover (%) 35.4 0.0 24.2 23.8 788.7 22.5 24.2 6.9 21.8 36.6

4.0 Best Divisor/Horion 12 12 12 12
CE Return (%) 10.96 5.92 13.23 13.24 504.62 14.07 13.62 16.83 13.63 17.73 13.24 13.62 0.38

Mean Std. Error (%) 0.01 0.00 0.11 0.10 6.27 0.03 0.01 0.03 0.00 0.10
Turnover (%) 50.0 0.0 25.7 24.8 1325.6 23.3 15.8 8.0 28.6 52.4

Rolling Buy‐
and‐Hold

Rolling Buy‐
and‐Hold

Rolling Buy‐
and‐Hold

Rolling Buy‐
and‐Hold

5.0 Best Divisor/Horion 12 12 12 12
CE Return (%) 9.72 5.92 13.12 13.15 757.54 14.21 13.61 17.39 13.72 18.33 13.15 13.61 0.47

Mean Std. Error (%) 0.02 0.00 0.15 0.13 11.24 0.07 0.01 0.03 0.01 0.13
Turnover (%) 63.5 0.0 25.7 24.8 2081.9 26.3 16.8 8.5 35.3 67.3

Rolling Buy‐
and‐Hold

Rolling Buy‐
and‐Hold

5.5. Results with Short Sales and Borrowing

In the numerical experiments presented thus far, we have focused exclusively on the case where short positions

and borrowing are not allowed. Alternatively, we can consider cases where borrowing and short positions are

allowed and the investor faces a constraint on the total leverage allowed, i.e., a constraint of the form of (6)

for a given leverage limit `. The set of feasible trades is larger in this case (and grows larger as ` increases)

and one might wonder how the heuristics and dual bounds perform with leverage.

To investigate this, we conducted a series of numerical experiments where we consider leverage constraints

with varying limits. We focus on the ten-asset model without predictability and the case with T = 12,

γ = 3, and δ = 1.0% and consider leverage limits ` varying from 1 to 5. In this study, we varied the divisors

and horizons for the modified-one step and rolling buy and hold heuristics and dual bounds (as in §5.4),

considering values of 6, 9, and 12. The results are presented in Table 5.

In Table 5, we see that the certainty equivalent returns for the dual bounds and no-transaction cost

bounds are all increasing with the leverage limit, reflecting the larger set of feasible trades.3 The zero

penalty bound in particular increases greatly with higher leverage limits as the larger feasible sets allow

the investor with advance knowledge of asset returns to more effectively exploit the arbitrage opportunities

provided by such information. The performance of the modified one-step and rolling buy-and-hold heuristic

strategies need not improve with larger feasible sets; the larger feasible sets lead to higher values for the

3Note that with power utility and a return model with log-normal returns, it is never optimal to borrow or take short positions
as these positions lead to a positive probability of an infinite negative utility. However, with our discrete approximations of the
return distribution, it is optimal to borrow and take short positions in this numerical example.
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heuristics’ objective function (in (15) and (16)), but this may not actually lead to better performance.

Overall, the duality gaps widen with higher leverage limits; the worst case is with a leverage limit ` = 5.0

which has a gap of 0.47%. Though we could perhaps do better with more sophisticated heuristics and

bounds, we note that in this worst case, the modified one-step and rolling buy-and-hold heuristics (with

certainty equivalent returns of approximately 13.15%) greatly outperform the cost-blind strategy (return of

9.72%) and the dual bounds with penalties (13.61%) are much tighter than the no-transaction cost bound

(18.33%). Thus these heuristics and dual bounds greatly outperform strategies and bounds that simply

ignore transactions costs.

6. Conclusion

In this paper, we have studied some easy-to-compute heuristics for managing portfolios with transaction

costs and developed a dual approach for examining the quality of these heuristics. The approach is general

in that we can consider a variety of utility functions, a variety of forms for transaction costs (provided they

are convex functions), a variety of constraint sets (provided they are convex) as well as a variety of different

models for returns. Our numerical experiments are promising: the run times, even without using customized

optimization software, are reasonable and, in many cases, the performance of the heuristic strategy is very

close to the upper bound, indicating that the heuristic strategies are very nearly optimal.

Frankly, we were surprised that these heuristics performed so well. At a high level, the key issue is to

manage the tradeoff between improving asset positions and minimizing transaction costs. These heuristics

capture this tradeoff in a relatively crude but apparently effective manner. In studying these heuristics,

we find the dual upper bounds particularly helpful: when the bounds tell us that the performance of these

heuristics is nearly optimal, we know that there is little to be gained by considering more complicated

heuristics. Given the complexity of the full dynamic programming model with transaction costs, we find this

quite reassuring.
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A. Appendix

A.1. Proofs and Detailed Derivations

Proof of Proposition 2.1. The proof is by induction. For the terminal case, VT (xT , cT , zT ) = U(1′xT +
cT ) is nondecreasing in cT and concave in (xT , cT ) because the utility function is assumed to be nondecreasing
and concave in wealth. We now assume the result of the proposition holds for period t+1 and show that it
must also hold for period t.

For monotonicity in ct: Assume c1t ≤ c2t . Then by the induction hypothesis, for any xt and at,

Wt(at,xt, c
1
t , zt) = E

[
Vt+1

(
r̃t+1 · (xt + at), rf (c1t − 1′at − κ(at)), z̃t+1

)
| zt
]

≤ E
[
Vt+1

(
r̃t+1 · (xt + at), rf (c2t − 1′at − κ(at)), z̃t+1

)
| zt
]

= Wt(at,xt, c
2
t , zt).

This implies

Vt(xt, c
1
t , zt) = max

at∈At(xt,c1t )
Wt(at,xt, c

1
t , zt)

≤ max
at∈At(xt,c1t )

Wt(at,xt, c
2
t , zt)

≤ max
at∈At(xt,c2t )

Wt(at,xt, c
2
t , zt)

= Vt(xt, c
2
t , zt).

The second inequality here follows from our assumption that the set of allowed final asset positions Ht is
nondecreasing in ct: this implies that At(xt, c1t ) ⊆ At(xt, c2t ).

For concavity: For any positions (x1
t , c

1
t ) and (x2

t , c
2
t ) and trading strategies a1

t and a2
t , let (xαt , c

α
t ) =

α(x1
t , c

1
t ) + (1− α)(x2

t , c
2
t ) and let aαt = αa1

t + (1− α)a2
t . Then we have

Wt(a
α
t ,x

α
t , c

α
t , zt) = E [Vt+1(r̃t+1 · (xαt + aαt ), rf (cαt − 1′aαt − κ(aαt )), z̃t+1) | zt]

≥ E
[
Vt+1

(
r̃t+1 · (xαt + aαt ), rf (cαt − 1′aαt − ακ(a1

t )− (1− α)κ(a2
t )), z̃t+1

)
| zt
]

≥ αE
[
Vt+1

(
r̃t+1 · (x1

t + a1
t ), rf (c1t − 1′a1

t − κ(a1
t )), z̃t+1

)
| zt
]

+(1− α)E
[
Vt+1

(
r̃t+1 · (x2

t + a2
t ), rf (c2t − 1′a2

t − κ(a2
t )), z̃t+1

)
| zt
]

= αWt(a
1
t ,x

1
t , c

1
t , zt) + (1− α)Wt(a

2
t ,x

2
t , c

2
t , zt).

The first inequality follows by using the assumption that the transaction cost function κ(at) is convex in at
and then using the nondecreasing in ct part of the induction hypothesis. The next inequality follows from
the concavity part of the induction hypothesis.

Suppose a1∗
t and a2∗

t are optimal trades given positions (x1
t , c

1
t ) and (x2

t , c
2
t ) and let aα∗t = αa1∗

t + (1−
α)a2∗

t . The concavity result above then implies

Vt(x
α
t , c

α
t , zt) = max

at∈At(xαt ,cαt )
Wt(at,x

α
t , c

α
t , zt)

≥ Wt(a
α∗
t ,xαt , c

α
t , zt)

≥ αWt(a
1∗
t ,x

1
t , c

1
t , zt) + (1− α)Wt(a

2∗
t ,x

2
t , c

2
t , zt)

= αVt(x
1
t , c

1
t , zt) + (1− α)Vt(x

2
t , c

2
t , zt)

The first inequality above follows from our assumption that the set of allowed final asset positions Ht
is convex: this implies that aα∗t is in At(xαt , cαt ) and is thus feasible but not necessarily optimal for the
optimization problem in the first line above.

Proof of Proposition 2.2. Proofs for the first two parts of this proposition can be constructed in much
the same way as the proof of Proposition 2.1 given above.
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Part 3: Given asset position (xt, ct) and market state zt consider a trading strategy starting in this state that
is optimal with transaction costs and achieves the value Vt(xt, ct, zt). This trading strategy is feasible for the
model without transaction costs (because the sets of possible asset positions is assumed to be nondecreasing in
cash) and, without transaction costs, would yield an expected utility µ that is at least as large as Vt(xt, ct, zt).
Since this strategy is feasible but not necessarily optimal in the model without transaction costs, we know
V ft (1′xt + ct, zt) ≥ µ ≥ Vt(xt, ct, zt).

Proof of Proposition 4.1. A proof of a more general version of this result may be found in Brown, Smith,
and Sun (2009); a proof for this version of the result is given in the discussion following the Proposition.

Derivation of Rolling-Buy-and-Hold Penalty. Assuming proportional transaction costs given by equa-
tion (1), the Taylor series expansion of (23) about a∗ yields a generating function of the form

gt(a, r, z) = E
[
V ft+h

(
(r̃t+h · . . . · r̃t+2)′xt+1(a∗, r) + rh−1f ct+1(a∗), z̃t+h

)
| zt+1

]
(35)

+

t∑
τ=1

n∑
i=1

E
[
V f ′t+h(−)(r̃t+h,i . . . r̃t+2,i) | zt+1

](∂xt+1,i

∂a+τ,i

(
a+τ,i − a

∗+
τ,i

)
+
∂xt+1,i

∂a−τ,i

(
a−τ,i − a

∗−
τ,i

))

+

t∑
τ=1

n∑
i=1

E
[
V f ′t+h(−) | zt+1

]
rh−1f

(
∂ct+1,i

∂a+τ,i

(
a+τ,i − a

∗+
τ,i

)
+
∂ct+1,i

∂a−τ,i

(
a−τ,i − a

∗−
τ,i

))

where

V f ′t+h(−) = V f ′t+h

(
(r̃t+h · . . . · r̃t+2)′xt+1(a∗, r) + rh−1f ct+1(a∗), z̃t+h

)
∂xt+1,i

∂a+τ,i
=

t+1∏
τ ′=τ+1

rτ ′,i

∂xt+1,i

∂a−τ,i
=

t+1∏
τ ′=τ+1

rτ ′,i

∂ct+1,i

∂a+τ,i
= − rt+1−τ

f

(
1 + δ+i

)
∂ct+1,i

∂a−τ,i
= − rt+1−τ

f

(
1− δ−i

)
As with the modified-one-step penalty, using a generating function of the form of (35) with the formula
for a “good” penalty (21), we obtain a dual feasible penalty π that is linear in the positive and negative
components of a for any sequence of returns r and market states z. To calculate the “good” penalty, we need
to evaluate the expectations (over returns rt+1 and the market state zt+1). The equations for the generating
function (35) are more complicated than the generating functions for the modified one-step penalty (22)
because (35) involves expectations of the frictionless value function and its derivatives over period t to t+h;
these will be calculated using a quadrature scheme. This additional complication leads to these bounds being
somewhat more time-consuming to compute than the modified one-step bounds; see Table 1 in §5.2.

Proof of Proposition 4.2. Part (a): To streamline our notation, we define f(α, r, z) = U(ŵT (α(r, z), r))
and F (α) = E [f(α, r̃, z̃)] = E [U(ŵT (α(r̃, z̃), r̃))]. Note that since ŵT is a concave function and U is concave
and nondecreasing, f(α, r, z) is concave in α for each (r, z); this implies that F (α) is also concave in α. The
(one-sided) directional derivatives of f and F at α in direction δ are defined as

f ′(α, δ, r, z) = lim
ε→0+

f(α+ εδ, r, z)− f(α, r, z)

ε

F ′(α, δ) = lim
ε→0+

F (α+ εδ)− F (α)

ε
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The concavity of f(α, r, z) and F (α) in α implies these directional derivatives exist (in the extended real
numbers). If U(w) is differentiable in w at ŵT (α(r, z), r) and ŵT (a, r) is differentiable in a at (α(r, z), r),
then the gradient of U ◦ ŵT exists at this point and f ′(α, δ, r, z) = ∇aU(ŵT (α(r, z), r))

′
δ.

Let A denote the set of feasible trading strategies for the real model and Â denote the set of feasible
trading strategies for the modified model. Since At ⊆ Ât, the set of trading strategies in the modified model
is no smaller than that of the true model, i.e., A ⊆ Â. Moreover, the sets Ât are convex, so the set of feasible
trading strategies Â is also convex.

Given the concavity of F and convexity of Â, a necessary and sufficient condition for α̂∗ to maximize
F (α) over Â is that the directional derivatives of F at α̂∗ are nonpositive for all feasible directions:

F ′(α̂∗, α− α̂∗) ≤ 0 (36)

for all α in Â; see, e.g., Friedlen and Nashed (1968).4 A result of Bertsekas (1973; Prop 2.1)5 says that

F ′(α, δ) = E [f ′(α, δ, r̃, z̃)] . (37)

Bertsekas’s result relies on the fact that f(α, r, z) is convex in α for each (r, z) and assumes f(α, r, z) is
integrable for each α (i.e., E [|f(α, r̃, z̃)|] <∞), but does not require any other differentiability or integrability
assumptions. (Bertsekas assumes that α lies in Rn but his proof also goes through when α lies in an infinite-
dimensional convex set.) Combining (36) and (37) and using the fact that A ⊆ Â, we have

E [f ′(α̂∗, α− α̂∗, r̃, z̃)] ≤ 0 (38)

for all α in A.
If U ◦ ŵT is differentiable, then (38) is equivalent to

E [π̂(α(r̃, z̃), r̃, z̃)] = E [∇aU(ŵT (α̂∗(r̃, z̃), r̃))′ (α(r̃, z̃)− α̂∗(r̃, z̃))] ≤ 0 (39)

for all α in A. Thus, the gradient-based penalty π̂ given by equation (29) is dual feasible.
If U ◦ ŵT is not differentiable, we can define the penalty π̂ directly in terms of the directional derivative,

π̂(a, r, z) = lim
ε→0+

U(ŵT (α̂∗(r, z) + ε(a− α̂∗(r, z)), r))− U(ŵT (α̂∗(r, z), r))

ε
. (40)

The existence of these directional derivatives follows from concavity alone and, in this case, we have

E [π̂(α(r̃, z̃), r̃, z̃)] = E [f ′(α̂∗, α− α̂∗, r̃, z̃)] , (41)

which is less than or equal to 0 by (38). Thus this π̂ is also dual feasible.

Part (b): The proof for the case where U(w) and ŵT (a, r) are differentiable is given in the text before
the proposition, near equations (26) and (27). Here we show the result without assuming U and ŵT are
differentiable,

We first focus on a (r, z) particular scenario and for ease of notation, we will suppress the dependence
on (r, z): we let α∗ = α∗(r, z) and define the function u : RnT → R1 as u(a) = U(wT (a, r)) and denote its
directional derivative (in direction d) by u′(a,d). The penalty π in this case is π(a) = u′(α∗,a − α∗), and
the inner problem is

max
a∈A(r)

{u(a)− u′(α∗,a− α∗)} .

Following standard results in convex analysis (e.g., Rockafellar 1970; Thm. 23.4),6 we can express the

4Friedlen, D.M. and M.Z. Nashed, 1968. A note on one-sided directional derivatives, Mathematics Magazine 41(3), 147-150.
5Bertsekas, D.P., 1973. Stochastic optimization Problems with nondifferentiable cost functionals, Journal of Optimization

Theory and Applications 12(2), 218-231.
6Rockafellar, R.T., 1970. Convex Analysis, Princeton University Press, Princeton, NJ.
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directional derivative for the concave function u as

u′(a,d) = inf
h∈∂u(a)

d′h,

where ∂u(a) is the superdifferential of u at a, defined as the set of all supergradients at this point:

∂u(a) =
{
h ∈ RnT : u(a) + h′(b− a) ≥ u(b) for all b ∈ RnT

}
.

We thus have:

max
a∈A(r)

{u(a)− u′(α∗,a− α∗)} = max
a∈A(r)

{
u(a)− inf

h∈∂u(α∗)
(a− α∗)′h

}
= max

a∈A(r)
sup

h∈∂u(α∗)

{
u(a) + h′(α∗ − a)

}
= sup

h∈∂u(α∗)

{
h′α∗ + max

a∈A(r)

{
u(a)− h′a

}}
= sup

h∈∂u(α∗)

{
h′α∗ + u(α∗)− h′α∗

}
= u(α∗) .

The fourth equality follows from the fact that for any h ∈ ∂u(α∗), the definition of a supergradient implies

u(a)− h′a ≤ u(α∗)− h′α∗,

and since α∗ = α∗(r, z) ∈ A(r), a = α∗(r, z) is feasible and attains the maximum value.
Returning to the original notation, we have established that, for any (r, z),

max
a∈A(r̃)

{U(wT (a, r))− π(a, r, z)} = U(wT (α∗(r, z), r)) .

Taking expectations of this, we have:

E
[

max
a∈A(r̃)

{U(wT (a, r̃))− π(a, r̃, z̃)}
]

= E [U(wT (α∗(r̃, z̃), r̃))] .

Part(c): We have

max
a∈A(r)

{U(wT (a, r))− π̂(a, r, z)} ≤ max
a∈Â(r)

{U(ŵT (a, r))− π̂(a, r, z)}

= U(ŵT (α̂∗(r, z), r)).

The inequality follows from A(r) ⊆ Â(r) and the condition wT ≤ ŵT . The next equality follows by arguments
analogous to that part (b) that show the choice a = α̂∗(r, z) must attain the maximum and the observation
that π̂(α̂∗(r, z), r, z) = 0.
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A.2. Detailed Assumptions and Results for Numerical Experiments

Assumptions for model with three risky assets and predictability, from Lynch (2001):

Large‐cap Mid‐cap Small‐cap Term spread
Mean (ar, az) 0.0053 0.0067 0.0072 0.0000
Regression coeff. (br, bz) 0.0038 0.0058 0.0072 0.8700

Covariance (Σev)
Large‐cap Mid‐cap Small‐cap Term spread

Large‐cap 0.002894 0.003532 0.003910 ‐0.000135  
Mid‐cap 0.004886 0.005712 ‐0.000170  
Small‐cap 0.007259 ‐0.000191  

Term spread 0.072900

Table A1: Data for Three‐Asset Model with Predictability

Note Lynch (2001) considers four different models, each with three risky assets and a one-dimensional market
state variable. His three risky assets correspond to portfolios of stocks that are either sorted by firm size
(which we use) or by book-to-market ratio; the market state variable is either the term spread (which we
use) or a dividend yield.

Assumptions for model with ten risky assets and no predictability:

SP500 R1000V RMidC R2000V MSCIW NAREIT LBUSGv LBUSCp LBMortBnd USTreasBnd
Mean (ar) 0.009850 0.010672 0.010868 0.011173 0.009073 0.009432 0.007239 0.008111 0.007828 0.006424

Covariance (Σe)
SP500 R1000V RMidC R2000V MSCIW NAREIT LBUSGv LBUSCp LBMortBnd USTreasBnd

SP500 0.001887 0.001659 0.001897 0.001592 0.001531 0.000742 0.000112 0.000243 0.000194 0.000054
R1000V 0.001650 0.001721 0.001549 0.001339 0.000821 0.000109 0.000233 0.000183 0.000052
RMidC 0.002199 0.001995 0.001549 0.000968 0.000097 0.000242 0.000183 0.000039
R2000V 0.002194 0.001318 0.001166 0.000048 0.000189 0.000121 0.000011
MSCIW 0.001738 0.000634 0.000083 0.000188 0.000147 0.000041
NAREIT 0.001269 0.000110 0.000206 0.000142 0.000060
LBUSGv 0.000224 0.000259 0.000231 0.000128
LBUSCp 0.000346 0.000308 0.000150

LBMortBnd 0.000336 0.000144
USTreasBnd 0.000082

Table A2: Data for the Ten‐Asset Model without Predictability

These parameters were estimated as the means and covariances of historical returns for these indices using
monthly return data from 1981-2006. The indices are, from left to right, 5 stock indices: the S&P 500, the
Russell 1000 Value Index, Russell MidCap Index, Russell 2000 Value, and MSCI World Gross index; Lehman
Brothers’ US government and corporate bond indices; Lehman Brothers’ Fixed Rate Mortgage Backed
Securities Index, a real estate index trust (NAREIT), and a composite index of 1-5 Year US Treasuries.
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Numerical Results for Other Parameter Values:
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