
A Case Study on Controller Synthesis for Data-Intensive Embedded Systems

Abdoulaye Gamatié, Huafeng Yu

LIFL/CNRS - INRIA Lille Nord Europe

Lille, France

Email: {Abdoulaye.Gamatie, Huafeng.Yu}@inria.fr

Gwenaël Delaval, Éric Rutten

INRIA Rhône-Alpes

Grenoble, France

Email: {Gwenael.Delaval, Eric.Rutten}@inria.fr

Abstract

This paper presents an approach for the safe design of

data-intensive embedded systems. A multimedia application

module of last generation cellular phones is considered as

a case study. The OMG standard profile MARTE is used

to adequately model the application. The resulting model is

then transformed into a synchronous program from which

a controller is synthesized by using a formal technique, in

order to enforce the safe behavior of the modeled application

while meeting quality of service requirements. The whole

study is carried out in a design framework, GASPARD,

dedicated to high-performance embedded systems.

1. Motivation

1.1. Data intensive computation and control.

Modern embedded systems increasingly adopt high-

performance execution platforms. Concerned applications

are, e.g., state-of-the-art multimedia systems such as high-

definition digital television (HDTV), biometric data process-

ing, sonar and radar signal processing. In all these domains,

a common feature is that the systems perform data-intensive

algorithms. E.g., in a HDTV, such algorithms include down-

scaling or upscaling, which enable to make the displayed

images smaller or bigger respectively. These operations are

applied to millions of pixels, representing a large amount

of data. In order to conveniently achieve their function,

such high-performance systems have resource constraints:

memory capacity, processor load, energy, etc. For an efficient

resource management, some adaptivity and reconfigurability

mechanisms are needed so as to enable a flexible system exe-

cution w.r.t. environment and platform resource constraints.

These control mechanisms can be applied to, e.g., power-

aware management, fault-tolerance and recovery. The above

issues lead to a challenging question about the definition of

reliable design approaches for embedded systems, mixing

data-intensive computations and control.

1.2. A safe design approach.

We propose an approach based on a model-driven en-

gineering (MDE) framework, called GASPARD [1], [2], in

which systems are specified with the OMG standard UML

profile dedicated to Modeling and Analysis of Real-time and

Embedded systems (MARTE) [3]. Model-based approaches

carry out the system design at a high level of abstraction,

and the back-end model transformations enable to automati-

cally generate implementation code. The modeling concepts

provided in GASPARD offer an efficient way to specify the

parallelism that is inherent to both functional (data-intensive

algorithms) and non functional (execution platform) parts of

high-performance embedded systems.

In this paper, we address safe design particularly for the

control part, thereby separating concerns from others, more

data-related transformation and validation, which are also

necessary and treated elsewhere [4], [1], [2]. We perform

MDE transformations towards synchronous models, which

are very close to the source level, and just constitute a ver-

ifiable representation. We particularly address the synthesis

of a safe application controller enforcing correct behaviors

w.r.t. functional and non functional requirements. The usage

of formal methods with a user-friendly modeling language

support such as GASPARD, is very helpful in order to

accelerate the validation process while reducing the system

design cost.

The logical relationship between these different aspects

is summarized by the following roadmap: the source level

specification in GASPARD (Section 2) contains control-

related parts; these are extracted and transformed to an in-

termediate synchronous verifiable automaton model (Section

3), which is used to automatically synthesize a complete

controller for given properties (Section 4); the controller

is integrated into the automaton model; from then on,

GASPARD features further transformations and compilation

techniques to proceed towards machine code.

1.3. Case study: a multimedia application.

Following the recent technical advances, multimedia mo-

bile devices are spreading rapidly. Typical examples are

modern cellular phones, which have complex functionalities:

camera, games, mp3 music, video. Let us focus on the video

part. The played clips are obtained either on-line or from

the local memory. There are different display modes such as

Black & White; Negative, a tonal inversion style of a positive

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.12

73

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.12

73

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.12

73

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.12

73

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.12

75

2009 International Conference on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.12

75

image; Sepia, a dark brown-grey color style; or Normal,

meaning no effect. In addition, the resolution of the video

can be set to High, Medium and Low. Finally, the color can

be in either Color or Monochrome options. Besides user

commands, the video display modes are controlled by the

system according to quality of service (QoS) requirements,

including the status of computing resources, the energy level,

the communication quality.

Figure 1. Multimedia functionality module.

Our case study is a multimedia processing module (see

Fig. 1) composed of the following parts:

• EnergyStatus: indicates the energy level according to

events received from an energy monitor component;

• CommQuality: provides the communication quality

level, according to the energy level and the on-line

transmission bandwidth of received data;

• Controller: validates mode change requests from other

components according to current mode configuration

and the available computational resources. This specific

component will be automatically obtained by discrete

controller synthesis;

• VideoSource: chooses an appropriate video source ac-

cording to user requests and Controller’s permission;

• Resolution: computes an appropriate resolution accord-

ing to user requests and Controller’s acceptance. It

includes a data-intensive processing part;

• ImageStyle and ColorEffect: similar to Resolution, but

compute the appropriate image style and video color

effect respectively.

The above module has different configuration modes fol-

lowing which its components achieve algorithms for a suit-

able image display. Depending on the resource status, e.g.,

energy level, communication bandwidth, the display quality

of an on-line video varies. Hence, each mode is associated

with non-functional properties, which must be satisfied in

order to display images at a good quality level. This paper

proposes an approach that deals with these aspects so as to

safely guarantee that the designed multimedia functionality

module actually meets its specification requirements.

2. The GASPARD design framework

In the GASPARD framework, a system-on-chip (SoC)

under design is described with the MARTE profile (Fig. 2).

This profile extends UML with concepts that can be used

to model the software and hardware parts as well as their

association and platform deployment. Such models contain

the useful information that enable to address different design

issues: parallelism, scheduling, performance evaluation, etc.

More precisely, the SoC design in GASPARD relies on the

repetitive model of computation (MoC) [4] (called repetitive

structure modeling - RSM in MARTE). This MoC is inspired

by the industrial domain-specific language Array-OL [5]

from Thomson Marconi Sonar. It manipulates multidimen-

sional structures, e.g., arrays, and offers a factorized way

to describe both task parallelism and data parallelism. It is

efficiently compiled towards high-performance architectures

such as single instruction multiple data (SIMD).

Figure 2. The GASPARD design framework.

GASPARD adopts a component-based approach. An appli-

cation is specified as a component dependency graph (see a

concrete example in Fig. 7). The components are connected

via ports stereotyped as FlowPort. Each port has a shape (or

dimension). The elementary components are implemented

by Intellectual Properties (IP) enriched with useful infor-

mation for performance analysis. This corresponds to the

Deployment phase shown in Fig. 2.

The high-level models are refined towards specific tech-

nologies via automatic model transformations: synchronous

languages (Lustre, Signal) [6] for formal validation, Sys-

temC for simulation, OpenMP Fortran and C for execution

747474747676

and VHDL for hardware synthesis. According to MDE

principles, at each step of the refinement, the concepts

are characterized by a dedicated metamodel. The backbone

environment that implements this methodology is Eclipse.

2.1. Repetitive structure modeling

An example specified with RSM is shown in Fig. 3. It

expresses data-parallelism in a monochrome filter, MonoFil-

ter, used for the processing of a [320, 240]-image. Because

it only works on small [8, 8]-pixel subsets, it should be

repeated 40×30 times to cover a whole image. In RSM

[40, 30] is referred to as the shape of repetition space

associated with MonoFilter.

Figure 3. A monochrome effect filter.

The repeated MonoFilter component runs in a repetition

context, defined by the MonochromeMode component. All

repetition instances run in parallel. A Connector used in a

repetition context is called LinkTopology. It adds a set of

topological information to a UML Connector. MonoFilter is

connected to MonochromeMode via Tiler links. The repeti-

tions of MonoFilter consume and produce identically shaped

sub-arrays of pixels, which are respectively extracted from

the input port i and stored in the output port o. These sub-

arrays, referred to as patterns (shaped [8, 8] in the example),

are tiled according to the Tilers by using the following

information [4]: i) an origin of the reference pattern, ii)
a paving matrix specifying how patterns cover arrays, and

iii) a fitting matrix specifying how array elements fill each

pattern.

2.2. Specification of controlled computations

GASPARD adopts the state-based control, which is in-

spired from the reactive mode automata [7], [8]. A task

under control may have several exclusive running modes.

The mode activation at run-time is determined by automata.

Two kinds of components are distinguished: mode switch

component (MSC) and state machine components (SMC).

An MSC achieves a switch function between different

modes as shown in Fig. 4 where the ColorStyleSwitch

component has two modes ColorMode and MonochromeM-

ode. It has mode color and i as inputs and o as outputs.

mode color is a UML behavior port, which conveys mode

Figure 4. Switch of color effects.

values. According to these values, modes are activated at

each instant. The activation behavior is specified by UML

collaborations. For instance, the ColorMode component is

executed only in the mode ModeColor, which is indicated

by the name of the collaboration.

Figure 5. A color effect controller.

An SMC determines the mode values used by MSCs to

execute different computation modes. This component is

associated with UML state machines. Each state is associated

with a mode. As shown in Fig. 5, the ColorControl SMC has

an interface that includes the input Boolean ports ctr color,

aut color, event color up and event color down and output

mode port mode out. The values from input ports are

dispatched to trigger transitions. The transition conditions

are prefixed by when. A mode value specified in a state, is

conveyed through the mode out port. An important required

property of the state machines is determinism.

Mode automata [7] can be constructed from the composi-

tion of an SMC and an MSC as illustrated by the ColorEffect

component in Fig. 6. This typical composition should be

placed in a repetition context with inter-repetition depen-

dencies (IRD) [9]. The reasons are twofold: ColorEffect sug-

gests the processing of one frame of a video clip, so it should

be repeated; an IRD specifies the sequential processing of

these frames. Parallel mode automata and hierarchical mode

automata are specified in a similar manner: automata defined

757575757777

Figure 6. A composition of SMC and MSC.

in the same repetition context can be composed in parallel,

because they have the same reaction pace; the automata

specified in a mode are considered as sub-automata of the

automaton that controls this mode.

2.3. Global model of the multimedia module

A global model view of the multimedia module is

shown in Fig. 7. The component CellPhoneExample

processes only one video frame. So, it must be repeated

to process a video clip. The ports on the left-hand side

of the component represent its inputs, mainly events and

image sources. The only output is the processed image.

The CellPhoneExample model contains instances of the

components introduced in Section 1. In addition to data-

intensive computations, the components VideoSource,

ColorEffect, ImageStyle and Resolution contain

state machines, illustrated in Fig. 9. These state machines

define the different modes that form a global configuration of

the multimedia functionality module. The controllability of

these state machines is modeled by the presence of two types

of controllable labels: those prefixed by “aut_” represent

the authorizations given by the controller to fire a transition;

and those prefixed by “ctr_” represent transitions that

can be triggered by the controller, without any request

from the environment. We transform the global model in a

synchronous model amenable to validation tools [10]. This

transformation is enhanced by taking into account the state-

based control in GASPARD.

3. Reactive systems and DCS

3.1. The synchronous approach

Embedded systems, which continuously interact with their

environment, and which have strict safety-criticality con-

straints, are considered as reactive systems. The synchronous

approach to reactive systems [6] provides programmers with

concrete tools for design: programming languages, compil-

ers, code generators, model-checkers and discrete controller

synthesis (DCS) tools [11]. The model-based approach to

reactive systems relies on the basic formalism of labeled

transition systems. The finite state machines are composed

of discrete states, that abstract significant value domains,

and characterize significant dynamical sequences of events.

Transitions between states are labeled with conditions and

actions. Such modeling formalisms have been applied to

describe the control behavior of multi-task systems, where

multiple modes correspond to different resource manage-

ment as well as QoS policies. The switches are labeled with

conditions that control the adaptation.

The synchronous languages [6] provide high-level lan-

guage support for the structured construction of such models,

enabling the consideration of large and complex systems,

the resulting composition being computed by the compilers.

Such transition systems can also be viewed under an equa-

tional form, as a sequential transition function, as classical

Boolean circuits, illustrated in the inner box of Fig. 8.

Logical properties of these automata concern typically reach-

ability of states, or invariance of subsets of the state space,

required or forbidden sequences of transitions.

The resulting transition system formal model is the con-

crete representation of designs upon which operations are

defined, in the form of algorithms for their analysis (e.g.,

for verification or test-case generation) or transformation

(e.g., automated partitioning into distributed communicating

processes). They constitute executable formal models in

the sense that code can be generated for efficient simu-

lation purposes, or for execution, in a platform-dependent

way. The underlying models, and their related algorithmic

tools, are subject to complexity and combinatorial explosion

problems. However, the size of manageable models is such

that meaningful systems can take advantage of the offered

services of analysis. This is especially true when the models

are adequately structured, enabling the reactive kernel to

be abstracted from the more computational parts of the

system [12]. Expressivity of the models can be augmented

with quantitative information (concerning time , but also

values of variables that can be handled by static analysis, or

even hybrid systems). However, this involves a considerable

cost w.r.t. the related algorithms, and the size of manageable

systems is therefore limited.

3.2. Discrete controller synthesis (DCS)

DCS is one of the automated techniques that can exploit

transition system models. It consists in considering on the

one hand, the set of possible behaviors of a discrete event

system, where inputs are partitioned into uncontrollables

(Iu) and controllables ones (Ic), as illustrated in Fig. 8.The

uncontrollable inputs typically come from the system’s en-

vironment, while the values of the controllable inputs are

given by the synthesized controller. On the other hand, it

requires a specification of a control objective: a property

typically concerning reachability or invariance of a state

space subset. For instance, behaviors should remain within

767676767878

Figure 7. A global model view of the multimedia functionality module.

the subset of states declared safe, or the termination state

of the application should always be reachable (i.e., avoid

entering subspaces of states from where there is no way

to termination). DCS consists of the computation of the

necessary constraints on controllable events, w.r.t. the current

state and all possible uncontrollable inputs, so that the

objective properties are satisfied by the resulting controlled

system. These computed constraints yield a controller which

defines, together with the initial system, a controlled system,

satisfying the synthesis objectives. When DCS is maximally

permissive, the constraint on controllables is minimal: the

most possible behaviors are kept. This can be formulated:

whatever the uncontrollable inputs sequences, the controlled

behavior satisfies the objectives.

In Fig. 8, the controller synthesized is the function h. It is

automatically computed from the reactive system (X, g, f),
X being the state of the system, g the transition function,

and f the output function. This controller h is such that,

in a given state X , and given any uncontrollable input Iu,

give values to controllables Ic, so that the resulting behavior

satisfies the control objectives.

DCS was originally defined in the framework of language

theory, often called supervisory control of discrete event

systems, and is related to game theory. It has been formu-

lated in terms of labeled transition systems, and involves

algorithms that explore symbolically the state space in a way

like model-checking verification, with complexity issues

and capacities of the same order. Within the synchronous

approach, DCS has been defined and implemented as a tool

integrated with the synchronous languages: SIGALI [11]. It

h Ic

Iu

I

Iu

Xg
f O

Figure 8. An equational view of a reactive system

controlled by h obtained by DCS.

properties

weights

system model

components

Mode

Automata

z3z

encoding

Sigali

controller

SigalSimu
interactive

simulation

Figure 10. A synchronous tool suite for DCS.

handles transition systems with the multi-event labels typical

of the synchronous approach, and features weight functions

mechanisms to introduce some quantitative information and

perform optimal DCS. It has been applied to thegenration

of correct task handlers, and integrated in a domain-specific

language [13], making the technique more user-friendly.

In our case study, we use the toolset illustrated in Fig. 10:

models of behaviors are synchronous programs in the mode

automata language; its compiler produces a format (called

z3z) taken by SIGALI, which also takes the objectives,

and produces a controller. This latter is combined with an

expanded form of the mode automaton, for co-simulation.

777777777979

Figure 9. State machines associated with VideoSource, ColorEffect, ImageStyle and Resolution component.

4. Application of DCS to our case study

4.1. From GASPARD to synchronous languages

4.1.1. Transformation in synchronous automata.. UML

state machines and collaborations are easily translated into

synchronous automata or synchronous dataflow equations.

UML state machines are very similar to synchronous au-

tomata in structure, hence the transformation is direct. UML

trigger events on transitions are transformed into mode

transition conditions in terms of expressions. A state ma-

chine without hierarchy is transformed into one synchronous

automaton. A hierarchical state machine is transformed

into a parallel and hierarchical composition specification

of corresponding automata. Parallel composition is the syn-

chronous one. According to collaborations, different modes

modeled as sets of equations, are set directly in the states of

mode automata. Apart from the transformation into explicit

automata, UML state machines and collaborations can be

also transformed in pure equational synchronous programs,

where state machines and collaborations are transformed re-

spectively by using if/then/else statements and mode

invocations according to mode values.

4.1.2. Consumption and Quality of Service.. In our

example, the modes defined in the components are char-

acterized by quantitative attributes representing the fol-

lowing non-functional properties: energy consumption (E),

communication quality required (CQ), computing resource

consumption (CR) and memory consumption (M). This is

illustrated in Fig. 9 by the tuple annotations (E, CQ, CR,

M) associated with each state denoting a mode. These non-

functional requirements are to be understood as instanta-

neous consumptions of quantitative resources that may vary

from one system reaction to another. The values associated

locally with the modes are combined additionally when

components are composed in parallel, so as to obtain global

costs for the whole system from the local costs of its

components.

4.2. Adaptation policy and DCS application

Possible behaviors involving the above characteristics

are, e.g., that the consumption of a resource must respect

the bounds defined by its capacity. Therefore, if a new

functionality is executed, then the other tasks that are already

running should switch to lower consumption modes, possibly

reducing their quality as well. Or, if the level of the battery

goes down, then the control should switch task modes so

that the lower energy capacity is respected.

Such control strategies are defined by properties expressed

in terms of the states and inputs of the system. The SIGALI

tool allows one to express Boolean properties on states and

inputs (P : B
n → B), and to build cost functions, associating

numerical values (here, assumed to be integer, without loss

of generality) with Boolean functions of states and inputs

(f : B
n → N). We essentially consider invariance, by

specifying a subset of system states, defined by a Boolean

property P : P is invariant for the system if for all states

in this subset, transitions from these states lead to states in

the same subset. This invariance property of the system is

noted ∀�P : the Boolean property P is true at every instant

of every trace of the system.

An example of state property is the exclusivity of two

modes from two components. For example, in order to avoid

waste of resources, it can be useful to specify that the modes

B&W (ImageStyle component) and Color (ColorEffect com-

ponent) are never active at the same instant. This invariance

property is denoted: ∀�
(

B&W ∧ Color
)

.

Considering invariance properties, the basic DCS opera-

tion which we use is to generate the controller in order to

make invariant the set of states given as objective, w.r.t.

the initial state. The controller will constrain the values

of the controllable Booleans in such a way that they will

inhibit transitions going out of the set, as well as transitions

going to states from which uncontrollable transitions could

lead out of the set. Invariance is a safety property, and is

also preserved by synchronous composition, hence allowing

incremental controller synthesis: the constraints add up into

787878788080

a controller for all objectives.

Another example involves cost functions: for a function

where the global cost is defined by the sum of the local

costs of the components, e.g. for memory footprint, there is

a bound defined by the size of the memory. Thus, if we note

by fM = fIS+fV S+fR+fCE the cost function associating

with each global state of the system, the memory usage in

this state, we can enforce the fact that this usage will always

be bounded by the memory available (here, 90 units), by the

invariance synthesis objective: ∀�
(

fM ≤ 90
)

.

The bound itself can vary in time: it is actually the case

for the available energy. In this case, we add to our model an

automaton which represents the environment, namely here

the energy resource available. This automaton can be seen

in Fig. 11. We associate a cost function fEA with this

automaton, associating with its states the energy quantity

instantaneously available. Then, we can bound the energy

consumption fE by the available energy: ∀�
(

fE ≤ fEA

)

.

Figure 11. Energy resource model

It is also interesting to define conditioned objectives, e.g.,

according to the battery status, which will lead to adaptive

strategies. An example of such adaptive strategy is to forbid

costly modes in medium or low battery states, so as to

limit in time the energy consumption. We identify here

two modes, high resolution and color mode, which will be

enforced exclusive when not in high battery state:

∀�

(

(

HighRes ∧ Color
)

⇒ HighEnergy

)

.

Finally, a one-step optimal synthesis operation is available

in order to control the system so as to choose the next

configuration where cost functions are minimized (e.g.,

power) or maximized (QoS). The last synthesis objective

constrains the controller, among several transitions satisfying

the preceding invariance properties, to choose the transition

leading to the state that consumes the minimum energy

quantity: minq→q′(fE(q′)).
With these DCS operations, different policies or strategies

can be obtained automatically by changing the objectives,

hence providing for separation of concerns and making the

models easy to reuse.

4.3. Simulation

The controller computed by SIGALI is extracted, and co-

simulated with the system with the SIGALSIMU tool. Fig. 12

shows a particular simulation step, where the controller

enforces the values of two controllable inputs so as to keep

the properties satisfied. At this step, the system is in high

energy, high resolution, and color state. We then simulate

Figure 12. Simulation of the controlled system

the discharge of the battery by the occurrence of the uncon-

trollable input event_energy_down. On the controllable

inputs panel, the clearer inputs shown with ellipsis are those

whose values have been forced by the controller. It is here

the case of the input ctr_resolution, meaning that the

controller has triggered the transition from high to medium

resolution state.

5. Discussions

There are several studies dealing with the safe design

of systems modeled in UML. In [14], [15], the authors

concentrate on the verification of systems in which the

control is described with UML state machines and col-

laborations, by using model-checking. In [16], the focus

is put on the definition of a UML profile and a toolset

for the modeling, verification and simulation of real-time

and embedded systems. The verification relies on model-

checkers and a theorem prover. Our approach shares several

common features with all these studies: UML-based mod-

eling of systems, connection with formal validation tools,

etc. In our case, the SIGALI tool allows for model-checking

and the compilers of synchronous languages are usable for

verification.

However, our proposition differs from the above studies

in that it specifically considers high-performance embedded

systems in a more general design framework, GASPARD,

adopting the MARTE standard profile for modeling, and

MDE techniques for model refinements towards different

design exploration technologies. In particular, it targets the

synchronous technology, which gives access to a wide range

of formal validation tools and techniques. Here, we chose

DCS instead of verification for its constructiveness.

797979798181

DCS techniques have been studied quite less than verifi-

cation and model-checking, because they seem to involve a

design approach closer to control theory than to computer

programming, with a model of the system and its behav-

iors separately from its control. Applications of DCS have

classically concerned discrete control theory problems in

manufacturing systems. However, variants of controller syn-

thesis have been applied to timed automata for application-

specific scheduling of task systems, and job-shop scheduling

problems [17], [18]. Contrarily to model-checking, DCS is

more constructive, in that instead of diagnosing bugs, it

produces (when possible) a correct solution. It finds this

solution even though it is so intricate that a programmer

would not have thought of it, unless for hours or days

of tedious and boring work, involving cycles of design,

validation, and back while a controller performed by hand

is not correct. In addition, its mechanical nature makes

it integrable in tools where final users do not need any

expertise in formal techniques.

6. Concluding remarks

In this paper, we showed how discrete controller syn-

thesis is used in the model-driven engineering environment

GASPARD, to allow for the safe design of data-intensive

embedded systems. The proposed approach is illustrated on a

multimedia application module, which is first modeled using

the OMG MARTE standard profile. After the translation of

the resulting models in synchronous languages, we focused

on the control part in order to automatically synthesize a

global application controller that satisfies safety properties

w.r.t functional and non functional requirements.

Perspectives to our work include: the applicability to

larger case studies in order to address more the scalability

of the approach; the use of techniques of modular discrete

controller synthesis to favor the scalability; and also the

reusability of correctly controlled components in new system

designs that will take advantage of their correctness.

References

[1] A. Gamatié, S. Le Beux, E. Piel, A. Etien, R. Ben Atitallah,
P. Marquet, and J.-L. Dekeyser, “A model driven design
framework for high performance embedded systems,” INRIA,
France, Research Report 6614, August 2008, http://hal.inria.
fr/inria-00311115/en.

[2] The DaRT Project, “GASPARD: Graphical Array Specification
for Parallel and Distributed computing,” 2008,
http://www2.lifl.fr/west/gaspard/index.html#g2.

[3] OMG Group, “Modeling and analysis of real-time and em-
bedded systems (MARTE),” 2007, www.omgmarte.org/.

[4] P. Boulet, “Formal semantics of Array-OL, a domain specific
language for intensive multidimensional signal processing,”
INRIA, France, Research Report 6467, March 2008,
http://hal.inria.fr/inria-00261178/en.

[5] A. Demeure and Y. Del Gallo, “An array approach for sig-
nal processing design,” in Sophia-Antipolis Conf. on Micro-
Electronics (SAME’98), France, Oct. 1998.

[6] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L.
Guernic, and R. de Simone, “The synchronous languages
twelve years later,” Proceedings of the IEEE, vol. 91, no. 1,
pp. 64–83, Jan. 2003, special issue on embedded systems.

[7] F. Maraninchi and Y. Rémond, “Mode-automata: a new
domain-specific construct for the development of safe critical
systems,” Sci. Comput. Program., vol. 46, no. 3, 2003.

[8] J.-L. Colaço, G. Hamon, and M. Pouzet, “Mixing signals and
modes in synchronous data-flow systems,” in ACM Interna-
tional Conference on Embedded Software, Oct. 2006.

[9] A. Gamatié, E. Rutten, and H. Yu, “A model for the mixed-
design of data-intensive and control-oriented embedded sys-
tems,” INRIA, Research Report 6589, 2008,
http://hal.inria.fr/inria-00293909/fr.

[10] H. Yu, A. Gamatié, E. Rutten, and J.-L. Dekeyser, “Model
transformations from a data parallel formalism towards syn-
chronous languages,” in Embedded Systems Specification and
Design Languages, Selected Contributions from FDL’07 Se-
ries, ser. Lecture Notes in Electrical Engineering, V. Eugenio,
Ed., vol. 10. Springer Verlag, 2008.

[11] H. Marchand, P. Bournai, M. L. Borgne, and P. L. Guernic,
“Synthesis of discrete-event controllers based on the Signal
environment,” Discrete Event Dynamic System: Theory and
Applications, vol. 10, no. 4, pp. 325–346, Oct. 2000.

[12] K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten, “Using
controller-synthesis techniques to build property-enforcing
layers,” in Proc. of the European Symp. on Programming,
ESOP’03, April 7 - 11, 2003,Warsaw, Poland, 2003, pp. 174–
188, lNCS nr. 2618.

[13] G. Delaval and E. Rutten, “A domain-specific language for
multi-task systems, applying discrete controller synthesis,”
Journal on Embedded Systems, special issue on Synchronous
Paradigm in Embedded Systems, vol. Volume 2007, 2007.

[14] D. Latella, I. Majzik, and M. Massink, “Automatic Verifi-
cation of a Behavioural Subset of UML Statechart Diagrams
Using the SPIN Model-Checker,” Formal Aspects Computing,
vol. 11, pp. 637–664, 1999.

[15] T. Schäfer, A. Knapp, and S. Merz, “Model checking UML
state machines and collaborations,” in CAV Workshop on
Software Model Checking, ser. ENTCS 55(3), Paris, France,
2001.

[16] S. Graf, “Omega – correct development of real time embed-
ded systems,” SoSyM, int. Journal on Software & Systems
Modelling, vol. 7, no. 2, 2008.

[17] C. Kloukinas and S. Yovine, “Synthesis of safe, QoS ex-
tendible, application specific schedulers for heterogeneous
real-time systems,” in 15th Euromicro Conference on Real-
Time Systems (ECRTS’03), Porto, Portugal, Jul. 2003.

[18] K. Altisen, G. Gößler, and J. Sifakis, “Scheduler modeling
based on the controller synthesis paradigm,” Real-Time Syst.,
vol. 23, no. 1-2, pp. 55–84, 2002.

808080808282

