
Differential Modulation Diversity
R. Schober1 and L.H.-J. Lampe2

1Department of Electr. & Comp. Engineering, University of Toronto
2Chair of Information Transmission, University of Erlangen-Nuremberg

rschober@comm.utoronto.ca, LLampe@LNT.de

Abstract— In this paper, differential modulation diversity (DMD) is in-
troduced. This diversity scheme is based on diagonal signal constellations
which have been previously proposed for differential space–time modula-
tion (DSTM). DMD can exploit both space and time diversity and DSTM,
which is a pure space diversity scheme, results as a special case. A low–
complexity noncoherent receiver originally designed for DSTM is adapted
to DMD and the power efficiency of DMD for spatially correlated Rayleigh
fading and imperfect interleaving is investigated.
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I. INTRODUCTION

RECENTLY , several coherent modulation schemes which
can efficiently exploit the diversity of flat fading chan-

nels have been proposed. In [1], [2] fading resistant multi–
dimensional signal constellations (space–time block codes) are
introduced to make use of the diversity offered by multiple trans-
mit antennas. Similarly, rotated one–dimensional [3] and multi–
dimensional [4] signal constellations can be used for time diver-
sity. In fact the space diversity schemes in [1], [2] and the time
diversity scheme in [4] are closely related since in both cases
a number of symbols is jointly modulated to obtain a multi–
dimensional hypersymbol. Therefore, we refer to both tech-
niques as modulation diversity [4]. Although for these coherent
modulation schemes no channel state information (CSI) is re-
quired at the transmitter, perfect knowledge of the fading coef-
ficients is necessary at the receiver. However, especially for fast
fading channels it may be difficult or even impossible to obtain
reliable channel estimates. Thus, differential space–time mod-
ulation (DSTM) schemes for multiple transmit antennas have
been proposed by different authors [5], [6], [7]. DSTM allows
noncoherent detection using e.g. conventional differential de-
tection (DD), multiple–symbol detection (MSD), or decision–
feedback differential detection (DF–DD) [8], i.e., explicit chan-
nel estimation is avoided.

DSTM exploits space diversity only. In [9] time diversity for
M–ary differential phase shift keying (MDPSK) has been intro-
duced by a repetition code which implies bandwidth expansion.
MDPSK combined with a nonlinear block code has been pro-
posed in [10]. Since in this scheme the diversity encoder and
the differential encoder are separated by a symbol interleaver,
only conventional DD can be applied while the application of
more sophisticated techniques such as MSD or DF–DD is not
possible.

Motivated by the above mentioned coherent modulation di-
versity schemes, we propose a differential modulation diversity
(DMD) technique which is based on diagonal signals originally
proposed for DSTM [5]. DMD can exploit both space and time
diversity, and diagonal signals have the special advantage that

noncoherent receivers [8] designed for DSTM can be employed
after appropriate modifications.

It will be shown that for diagonal signals and fast fading a
higher performance can be achieved if time diversity is exploited
instead of space diversity. On the other hand, for slow fading
and small delays (i.e., small interleaver lengths) space diversity
is preferable. It will be also demonstrated that a combined ap-
proach, where both space and time diversity are exploited, en-
ables a robust transmission scheme for a wide range of fading
velocities.

II. PRELIMINARIES

A. Notation

Bold upper case X and lower case x denote matrices and
vectors, respectively. det(·), (·)T , (·)H , and (·)∗ refer to the
determinant of a matrix, transposition, Hermitian transposition,
and complex conjugation, respectively. diag{x1, x2, . . . , xL}
is a diagonal matrix with main diagonal elements x1, x2, . . .,
xL, whereas IM and 0M are the M ×M identity matrix and the

M×M all–zero matrix, respectively. Pr{·}, E{·}, ⊗, j
4
=

√
−1,

and <{·} denote the probability of the event in brackets, expec-
tation, the Kronecker product, the imaginary unit, and the real
part of a complex number, respectively. Throughout this paper,
all signals are represented by their complex–baseband equiva-
lents.

B. Rayleigh Fading Channel Model

We consider a transmission scheme using NT transmit anten-
nas and NR receive antennas. We assume a flat Rayleigh fading
channel, i.e., at time k the effect of fading between transmit an-
tenna µ and receive antenna ν can be accounted for by the fading
gain hµν [k] which is a zero–mean complex Gaussian random
process. We presume that the fading gains of different antenna
pairs may be mutually correlated but have the same statistical
properties in the time direction. The space–time autocorrelation
function (ACF) is denoted as

ϕhh[λ, µ1, µ2, ν1, ν2]
4
= E{hµ1ν1

[k + λ]h∗

µ2ν2
[k]}, (1)

0 ≤ µ1, µ2 ≤ NT − 1, 0 ≤ ν1, ν2 ≤ NR − 1. Although for the
performance analysis in Section V the general model according
to (1) is adopted, for the numerical results presented in Section
VI we assume that the space–time ACF is separable into a spatial
ACF ϕs

hh[µ1, µ2, ν1, ν2] and a temporal ACF ϕt
hh[λ]

ϕhh[λ, µ1, µ2, ν1, ν2] = ϕs
hh[µ1, µ2, ν1, ν2] · ϕt

hh[λ]. (2)

This useful simplification is frequently adopted in literature
(cf. e.g. [11], [12]) and allows to investigate the influence of



temporal and spatial correlations on performance separately. Of
course, due to the general form of (1) our analytical results also
allow to evaluate receiver performance for physically more real-
istic models (cf. e.g. [13]).

Here, for the temporal ACF Clarke’s model [14] is adopted

ϕt
hh[λ] = σ2

h · J0(2πBfTλ), (3)

where J0(·) is the zeroth order Bessel function of the first kind
and σ2

h, Bf , and T denote the variance of the fading process,
the single–sided bandwidth of the underlying continuous–time
fading process, and the symbol duration, respectively.

For the spatial ACF function the same simple model as in [11]
is used

ϕs
hh[µ1, µ2, ν1, ν2] =

{

1 if µ1 = µ2, ν1 = ν2

ρ otherwise
(4)

where ρ, 0 ≤ ρ ≤ 1, refers to the space–correlation coefficient.
Note that for our numerical results we restrict the application of
this model with ρ > 0 to the case NT ≤ 3 and NR = 1 since
otherwise it would be rather unrealistic.

Furthermore, the discrete–time received signal at antenna ν is
impaired by a complex additive white Gaussian noise (AWGN)
process nν [k].The AWGN processes at different receive anten-
nas are assumed to be mutually independent and have equal vari-
ance σ2

n = E{|nν [k]|2}, 0 ≤ ν ≤ NR − 1.

C. Diagonal Signals

For the proposed DMD scheme, diagonal signals [5], [6]
are used which may be considered as a multi–dimensional
generalization of MDPSK modulation. The diagonal matrix
S[k] = diag{s0[k], s1[k], . . . , sNS−1[k]} of NS jointly mod-
ulated transmitted symbols sη[k], 0 ≤ η ≤ NS − 1, is obtained
by differential encoding from S[k − 1] and the matrix V [k] of
(differential) information symbols

S[k] = V [k]S[k − 1]. (5)

V [k] = V l[k] = (V 1)
l[k] is taken from the set A = {V l =

diag{exp(j2πu0l/L), exp(j2πu1l/L), . . . , exp(j2πuNS−1l/
L)}|l ∈ {0, 1 . . . , L − 1}}. We observe that matrix V [k] is
uniquely associated with symbol l[k]. The alphabet size L is
given by L = 2NSR where R denotes the data rate in bits per
channel use. For optimum power efficiency, the coefficients uη,
0 ≤ η ≤ NS − 1, have to be optimized to maximize the di-
versity product [5]. For the numerical results presented in Sec-
tion VI, the parameters given in [5, Table I] are adopted. In
order to minimize BER for a given symbol error rate, NSR
bits should be assigned via Gray labeling to the symbols l. As
outlined in [8], a Gray labeling can be found for all constella-
tions given in [5, Table I], but for the constellation NS = 4,
R = 1 bit/(channel use) where a natural labeling may be used.

III. DIFFERENTIAL MODULATION DIVERSITY

In this section, different forms of DMD are discussed. First,
space diversity is briefly reviewed. Then it is shown how time
diversity can be introduced and finally a generalization of both
approaches is given.

A. Space Diversity

In [5] it is proposed that all non–zero elements of matrix S[k]
are transmitted over different antennas, i.e., NS = NT is valid
and at time NT k+µ, 0 ≤ µ ≤ NT −1, sµ[k] is transmitted over
antenna µ whereas no symbol is transmitted over the remaining
antennas. Hence, the received signal at time NT k + µ at receive
antenna ν is

rν [NT k + µ] = hµν [NT k + µ]sµ[k] + nν [NT k + µ]. (6)

For this diversity scheme (referred to as DSTM in [5]) NT > 1
transmit antennas are required to obtain a diversity gain if only
one receive antenna is available. On the other hand, the de-
lay of this scheme is very low (NT modulation intervals) since
no interleaver is necessary to achieve diversity. Furthermore,
the scheme can also provide a diversity gain for time–invariant
channels. However, each transmit antenna is active only every
NT ths symbol interval, i.e., the effective fading bandwidth rel-
evant for the receiver is NT BfT instead of BfT . This has a
negative influence on receiver performance (e.g. the error floor
for conventional DD increases with increasing fading bandwidth
[8]).

B. Time Diversity

Here, NB symbols are jointly modulated as described in Sec-
tion II-C and transmitted over one antenna, i.e., NB = NS ,
NT = 1. More specifically, to achieve diversity a block of
NBNI symbols sκ[k], 0 ≤ κ ≤ NB − 1, 0 ≤ k ≤ NI − 1,
is built, and interleaved by an NI × NB rectangular interleaver
(cf. Fig. 1) and the resulting stream of symbols is transmitted. At
the output of a corresponding de–interleaver the received signal
at time NBk + κ, at receive antenna ν is

rν [NBk + κ] = h0ν [NIκ + k]sκ[k] + nν [NIκ + k], (7)

0 ≤ κ ≤ NB − 1, 0 ≤ k ≤ NI − 1. Since the transmit
antenna is active in each symbol interval, the effective fading
bandwidth is BfT independent of NB . On the other hand, no
diversity gain can be realized if the channel is time–invariant,
and a transmission delay of NBNI is introduced. In particular,
for given k and ν the fading gains h0ν [NIκ+k], 0 ≤ κ ≤ NB−
1, should be approximately uncorrelated to ensure full diversity
for the jointly modulated symbols sκ[k], 0 ≤ κ ≤ NB − 1.

Fig. 1. NI × NB rectangular interleaver.

C. Space and Time Diversity

In order to exploit both space and time diversity, NS =
NBNT symbols are jointly modulated (cf. Section II-C). Then a
block s=[s0[0] s1[0] . . . sNT NB−1[0] s0[1] . . . sNT NB−1[NI−



1]] of NT NBNI symbols is built (cf. Fig. 2a)) and partitioned
into NT subblocks sµ=[sµ[0] sNT +µ[0] . . . sNT (NB−1)+µ[0]
sµ[1] . . . sNT (NB−1)+µ[NI − 1]], 0 ≤ µ ≤ NT − 1, of
length NBNI by serial/parallel (S/P) conversion. Each of these
subblocks is associated with one transmit antenna and inter-
leaved by an NI × NB rectangular interleaver Π. At time
NT NIκ + NT k + µ, 0 ≤ µ ≤ NT − 1, 0 ≤ κ ≤ NB − 1,
0 ≤ k ≤ NI − 1, antenna µ transmits the symbol sNT κ+µ[k],
while the remaining NT − 1 antennas are not active.

At receive antenna ν the sampled received signal is collected
in a block r̃ν=[r̃ν [0] r̃ν [1] . . . r̃ν [NT NBNI − 1]] of length
NT NBNI (cf. Fig. 2b)). This block is serial/parallel con-
verted into NT subblocks r̃µ

ν =[r̃ν [µ] r̃ν [NT + µ] . . . r̃ν [NT

(NBNI − 1) + µ], 0 ≤ µ ≤ NT − 1, of length NBNI .
Each of these subblocks is de–interleaved with the inverse of Π
and the resulting subblocks are parallel/serial converted to ob-
tain the block rν=[rν [0] rν [1] . . . rν [NT NBNI − 1]] of length
NT NBNI . Here, NT de–interleavers Π−1 per receive antenna
are required. Nevertheless, a modified de–interleaver Π̃−1 can
be employed which directly maps r̃ν to rν , of course.

The received signal at time NT NBk + NT κ + µ at receive
antenna ν is given by

rν [NT NBk + NT κ + µ] = hµν [NT NIκ + NT k + µ]

·sNT κ+µ[k] + nν [NT NIκ + NT k + µ], (8)

0 ≤ µ ≤ NT − 1, 0 ≤ κ ≤ NB − 1, 0 ≤ k ≤ NI − 1. This
approach is a generalization of the schemes of Sections III-A
and III-B which result as special cases for NB = 1 (NI = 0)
and NT = 1, respectively. Here, the delay is NT NBNI modu-
lation intervals. The effective fading bandwidth relevant for the
receiver is NT BfT .

Fig. 2. Simplified block diagram for DMD: a) transmitter and b) receiver.

IV. DECISION–FEEDBACK DIFFERENTIAL DETECTION

The general DMD scheme of Section III-C will be adopted in
the following and specialized if necessary. For receiver design
perfect interleaving and zero spatial correlation are presumed.
The effect of imperfect interleaving and non–zero spatial cor-
relation on the performance of the proposed receiver is investi-
gated in Section VI. Since DSTM may be viewed as a special
case of this general approach, it is possible to adapt receivers
for DSTM [5], [8] to the problem at hand. In particular, we em-
ploy DF–DD since this schemes offers a similar performance as
MSD while its complexity is comparable to that of conventional
DD. Modifying the DF–DD scheme proposed in [8], we obtain
the decision rule [15]

l̂[k] = argmax
l

{

<
{

NT−1
∑

µ=0

NB−1
∑

κ=0

NR−1
∑

ν=0

exp

(

j
2πuNT κ+µl

L

)

r∗ν [NT NBk + NT κ + µ]

·r̂ref,ν [NT NB(k − 1) + NT κ + µ]

}}

, (9)

where l̂[k] denotes the estimated symbol and the reference sym-
bol is given by

r̂ref,ν [NT NB(k − 1) + NT κ + µ]

=

N−1
∑

ξ=1

pξ

ξ−1
∏

m=1

exp

(

j
2πuNT κ+µ l̂[k − m]

L

)

·rν [NT NB(k − ξ) + NT κ + µ]. (10)

Here, pξ, 1 ≤ ξ ≤ N − 1, are the coefficients of an (N − 1)st
order linear predictor for the process

cµν [NT k]
4
= hµν [NT k] + nν [NT k], (11)

0 ≤ µ ≤ NT − 1, 0 ≤ ν ≤ NR − 1. The predictor coeffi-
cients can be calculated from the Wiener–Hopf equation [16] or
adaptively by application of the recursive least–squares (RLS)
algorithm [17], [18], [8]. Note that DF–DD with N = 2 is
equivalent to conventional DD. For the DF–DD decision rule
according to (9) 2NT NBR/(NT NBR) metrics per bit decision
have to be calculated, i.e., the same number as for conventional
DD [5].

V. PERFORMANCE ANALYSIS

In this section, the performance of DMD with DF–DD is an-
alyzed for spatially correlated Rayleigh fading and imperfect
interleaving. Also the special cases of independent diversity
branches and infinite observation window (N → ∞) will be
briefly discussed. Since it is difficult to take into account the
effect of error propagation, for our analysis we assume perfect
feedback for calculation of the reference signal as it is custom-
ary in literature [19], [18], i.e., l[k − m] is used in (10) instead
of l̂[k − m], 1 ≤ m ≤ N − 1.



A. Pairwise Error Probability

The pairwise error probability Pe(l1, l2) is the probability of
detecting l̂[k] = l2, when l[k] = l1 (l1, l2 ∈ {0, 1, . . . , L − 1},
l1 6= l2) is transmitted.

A.1 General Case

Using (8), (9), and (10) it is straightforward to show that
Pe(l1, l2) can be expressed as [15]

Pe(l1, l2) = Pr{∆(l1, l2) < 0}, (12)

where ∆(l1, l2) is defined as

∆(l1, l2)
4
=

NT−1
∑

µ=0

NB−1
∑

κ=0

NR−1
∑

ν=0

(Cµκxµν [k, κ]y∗

µν [k − 1, κ]

+C∗

µκx∗

µν [k, κ]yµν [k − 1, κ]) (13)

with

Cµκ
4
= 1 − exp (j2πuNT κ+µ(l1 − l2)/L) (14)

xµν [k, κ]
4
= hµν [NT NIκ + NT k + µ]

+nν [NT NIκ + NT k + µ]s∗NT κ+µ[k] (15)

yµν [k − 1, κ]
4
=

N−1
∑

ξ=1

pξxµν [k − ξ, κ]. (16)

Using vector notation, ∆(l1, l2) can be rewritten as

∆(l1, l2) = gHFg (17)

with

g
4
= [xT yT ]T (18)

F
4
=

[

0NT NBNR
CH

C 0NT NBNR

]

(19)

x
4
= [x00[k, 0] . . . xNT −1 0[k, 0] x00[k, 1]

. . . xNT −1 NR−1[k, NB − 1]]T (20)

y
4
= [y00[k − 1, 0] . . . yNT−1 0[k − 1, 0] y00[k − 1, 1]

. . . yNT−1 NR−1[k − 1, NB − 1]]T (21)

C
4
= INR

⊗ diag {C00, C10, . . . , CNT −1 NB−1} . (22)

The two–sided Laplace transform of the probability density
function (pdf) p∆(l1,l2)(x) of ∆(l1, l2) can be expressed as [20]

Φ∆(l1,l2)(s) =

∞
∫

−∞

p∆(l1,l2)(x)e−sx dx

=
1

det(I2NT NBNR
+ sΦggF )

(23)

where the definition Φgg
4
= E{ggH} is used. Pe(l1, l2) can be

calculated directly from Φ∆(l1,l2)(s) [20]

Pe(l1, l2) =
1

2πj

γ+j∞
∫

γ−j∞

Φ∆(l1,l2)(s)
ds

s
(24)

for 0 < γ < <{s1}, where s1 refers to that pole of
Φ∆(l1,l2)(s) which has minimum positive real part. A closed
form solution for the integral in (24) may be obtained using the
residue method proposed in [21]. However, in practice it may
be quite cumbersome to determine the residues. Therefore, the
numerical results in Section VI are obtained using a technique
reported in [22] which is based on Gauss–Chebyshev quadrature
rules and can be straightforwardly applied to (24) [15].

It is worth mentioning that the pairwise error probability for
coherent reception with perfect CSI can also be obtained from

the above results if y
4
= [h00[NT k] . . . hNT−1 NR−1[NT k +

NT NI(NB −1)+NT −1]]T is adopted (i.e., y is identical with
x for σ2

n = 0).

A.2 Independent Diversity Branches

In order to get more intuitive insight, we simplify the gen-
eral results of the previous section to the important special case
where all diversity branches are mutually uncorrelated (i.e., no
spatial correlation and perfect interleaving). Using similar meth-
ods as in [23, Appendix B] and [24], [8], it can be shown that
Pe(l1, l2) may be expressed as

Pe(l1, l2) =
1

π

π/2
∫

0

NT −1
∏

µ=0

NB−1
∏

κ=0

(

1

1 +
αµκ(l1,l2)
4 cos2 Θ

)NR

dΘ, (25)

where the definitions

αµκ(l1, l2)
4
= 4

σ2
h + σ2

n − σ2
e

σ2
e

(1 − d2
µκ(l1, l2)) (26)

dµκ(l1, l2))
4
= | cos(πuNT κ+µ(l1 − l2)/L)| (27)

are used and σ2
e = σ2

h + σ2
n −∑N−1

ξ=1 p∗ξϕ
t
hh[NT ξ] is the pre-

diction error variance of the (N − 1)st order linear predictor for
process cµν [NT k] (cf. (11)). Eq. (25) only requires the evalua-
tion of an one–dimensional integral over a finite support which
can be done easily by numerical integration.

From (25) the Chernoff upper bound [23, Appendix B]

Pe(l1, l2) ≤
1

2

NT−1
∏

µ=0

NB−1
∏

κ=0

(

1

1 +
αµκ(l1,l2)

4

)NR

(28)

is easily obtained. Eqs. (26) and (28) clearly show that Pe(l1, l2)
decreases with decreasing prediction error variance σ2

e . Since σ2
e

increases with increasing (effective) fading bandwidth NT BfT
[24], it can be concluded that for sufficient interleaving exploit-
ing time diversity (i.e., increasing NB) is more rewarding than
exploiting space diversity (i.e., increasing NT ).

The limiting performance of DF–DD can be achieved for
N → ∞. Using the results of [18] (the fading ACF given in
(3) is assumed), and taking into account that the effective fading
bandwidth is NT BfT , we are able to shown that the minimum
prediction error variance σ2

e,min can be expressed as

σ2
e,min = σ2

n

(

e σ2
h

2πNT Bf Tσ2
n

)2NT Bf T

exp(2NT BfTC0) (29)



(e is the Euler number) with

C0 =

π/2
∫

0

log

(

1 +
πNT BfTσ2

n

σ2
h

sin ϕ

)

sin ϕdϕ. (30)

Eqs. (25)–(27) and (29), (30) will be used in Section VI to in-
vestigate the limiting performance of DMD with DF–DD for
uncorrelated diversity branches.

For coherent reception with perfect CSI and independent
Rayleigh fading diversity branches the pairwise error probability
is obtained by replacing σ2

e by σ2
n in (26), i.e., for σ2

e = σ2
n (25)

and (28) give the pairwise error probability and a corresponding
Chernoff upper bound.

Note that σ2
e,min = σ2

n also results for DF–DD with N → ∞
if BfT → 0 is true (cf. e.g. (29)), i.e., in this case the perfor-
mance of a coherent receiver can be approached. However, for
BfT > 0, σ2

e,min > σ2
n holds even for N → ∞ and a loss in

performance is inevitable.

B. Approximation for BER

The results of the previous section may be used to obtain an
approximation for BER. If we take into account that the matrices
V l, 0 ≤ l ≤ L − 1, form a group under matrix multiplication
[5], approximate the symbol error rate by the union bound, and
assume that a Gray labeling for the NT NBR bits assigned to
the symbols l (i.e., matrix V l), 0 ≤ l ≤ L − 1, exists, a simple
approximation for the BER for genie–aided DF–DD is given by

P genie
b ≈ 1

NT NBR

L−1
∑

l=1

Pe(l, 0). (31)

In general, for N > 2 erroneous feedback symbols increase
BER approximately by a factor of two (cf. [19], [18], [8]).
Hence, an approximation for the BER of realizable DF–DD is

Pb ≈
{

P genie
b , N = 2

2 · P genie
b , N > 2

. (32)

VI. RESULTS AND DISCUSSION

In this section, we restrict ourselves to the case of one re-
ceive antenna (NR = 1), since the main focus of this work is on
transmit (modulation) diversity. For the following, we define the

signal–to–noise ratio (SNR) as SNR
4
= σ2

h/σ2
n. For the numeri-

cal approximation of BER the results of the previous section are
used.

First, we consider DMD with time diversity, i.e., one trans-
mit antenna is used (NT = 1). Figs. 3a), b), and c) show BER
vs. SNR for NB = 1, NB = 2, and NB = 3, respectively.
R = 1 bit/(channel use) and BfT = 0.03 are adopted. In ad-
dition, the interleaver length is NI = 1000, i.e., the diversity
branches can be considered as uncorrelated. It can be observed
that significant performance gains are achieved by increasing
NB . In addition, DF–DD with N > 2 yields a higher power
efficiency than conventional DD (N = 2) and in the SNR range
of interest an error floor can be avoided. For comparison also
asymptotic results for N → ∞ are shown. We note that the

numerical approximation and the simulation results match re-
markably well.

In Fig. 4 (only numerical results are shown) we restrict the
delay to NT NBNI ≤ 400 modulation intervals in order to en-
able a fair comparison between DMD with space and time diver-
sity. Zero spatial correlation is assumed (ρ = 0). NT NB = 4
and R = 2 bits/(channel use) are adopted. For BfT = 0.001
(Fig. 4a)), in general, the pure space diversity scheme (NT = 4,
NB = 1) yields the best performance. The combined approach
(NT = 2, NB = 2) performs similarly well. For N = 2 and
high SNRs it performs even better because the effective fading
bandwidth NT BfT is smaller. The pure time diversity scheme
(NT = 1, NB = 4) suffers from the relatively strong corre-
lations between the different diversity branches due to imper-
fect interleaving. For BfT = 0.01 (Fig. 4b)) the pure time
diversity scheme offers the best performance. The space diver-
sity scheme suffers from the larger effective fading bandwidth,
whereas for N = 5 the loss for the combined approach is rel-
atively small. For coherent reception all approaches yield al-
most the same BER, i.e., the interleaver length is large enough
to guarantee independent diversity branches also for pure time
diversity. From Fig. 4 it can be concluded that the combined ap-
proach (NT = 2, NB = 2) is more robust against variations of
the fading bandwidth than pure space or time diversity schemes.

In Figs. 5a) and b) the influence of antenna correlation is in-
vestigated for NT = 2 and NT = 3, respectively. For compar-
ison in both figures also the numerical results for NT = 1 are
shown. NB = 1, R = 1 bit/(channel use), and BfT = 0.02
are valid. For spatial correlation the model according to (4) is
adopted. Obviously, DMD is quite robust against spatial corre-
lations. For a correlation factor of ρ = 0.5 the loss compared to
uncorrelated diversity branches (ρ = 0) is very small. Even for
strong correlations (ρ = 0.9) DMD with NT = 2 and NT = 3
outperforms the scheme without diversity (NT = 1) if DF–DD
with N = 5 or coherent detection are employed. For ρ = 0.9
and DF–DD with N = 2, NT = 1 yields the best performance
because of the smaller effective fading bandwidth. It is worth
mentioning that simulation and numerical results show a good
agreement.

VII. CONCLUSIONS

In this paper, DMD based on diagonal signals has been in-
troduced. DMD can exploit both space and time diversity, i.e.,
DSTM which exploits space diversity only can be considered
as a special case. The pairwise error probability for DMD with
DF–DD has been derived for Rayleigh fading with spatial cor-
relations and imperfect interleaving. This error analysis clearly
shows that, in contrast to time diversity, space diversity increases
the effective fading bandwidth which has a negative influence on
receiver performance. It has been shown that a robust modula-
tion scheme with high performance for a wide range of fading
velocities results if space and time diversity are combined. Fur-
ther investigations have shown that DMD also yields a signifi-
cant performance gain for Ricean fading with moderately large
line–of–sight component [15].



Fig. 3. BER vs. 10 log10(SNR) for DF–DD with a) NB = 1, b) NB = 2,
and c) NB = 3 and Rayleigh fading. 5, 2, 4, and 3 denote simulation
points.

Fig. 4. BER vs. 10 log10(SNR) for Rayleigh fading with a) Bf T = 0.001
and b) Bf T = 0.01. Numerical results are shown.
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