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Abstract— We consider multiple–symbol differential detection
(MSDD) for multiple–input multiple–output (MIMO) Rayleigh–
fading channels. MSDD, which jointly processes blocks ofN
received symbols to detectN � 1 data symbols, allows for
power–efficient transmission over rapid–fading channels. How-
ever, the complexity of the straightforward approach to find
the maximum–likelihood (ML) MSDD solution is exponential in
N , the number of transmit antennas NT and the rate R. In
this paper, we introduce an MSDD algorithm based on sphere
decoding whose average complexity is not exponential inN for
interesting ranges of signal–to–noise ratio (SNR) and aribtrary
unitary signal constellations. For the interesting special cases
of diagonal and orthogonal constellations we achieve a similar
complexity reduction in NT and R. Based on an error–rate
analysis for MSDD we also propose a variant of MSDD that
considerably improves power efficiency in relatively fast fading
at a very moderate increase in complexity.

I. I NTRODUCTION

Transmission over multiple–input multiple–output (MIMO)
fading channels allows for much higher data rates and/or
power efficiency than traditional single–input single–output
(SISO) communication. Most often, coherent detection based
on the assumption of perfect channel state information (CSI) at
the receiver is considered for both SISO and MIMO channels.
However, the acquisition of CSI for time–varying MIMO chan-
nels is difficult and usually requires a considerable overhead
of pilot symbols to be transmitted. Thus, the approach of
differential space–time modulation (DSTM) in conjunction
with noncoherent detection, which does not require CSI,
appears attractive, cf. e.g. [1], [2], [3].

Detection of DSTM is usually based on two consecu-
tively received symbols, which is referred to as conventional
differential detection (CDD) in the following. DSTM with
CDD achieves a power efficiency within3 dB of coherent
detection in relatively slow–fading environments, cf. e.g. [1],
[2], [3]. However, CDD causes an error floor in fast–fading
channels, where more sophisticated detection techniques are
required for reliable communication. Such detectors perform
multiple–symbol differential detection (MSDD) of(N � 1)
data symbols based onN consecutively received symbols,
cf. e.g. [4], [5]. Optimum maximum–likelihood MSDD (ML
MSDD) approaches the performance of coherent detection
when increasing the so–called observation window sizeN ,
but its complexity grows exponentially withN . To bene-
fit from larger N without exponential complexity increase,

suboptimum detectors based on decision–feedback differential
detection (DFDD) (e.g. [5], [6]) and noncoherent sequence
detection (NSD) (e.g. [7]) have been proposed for DSTM.

Recently, the authors have devised a new optimum ML
MSDD algorithm for single–antenna differential phase–shift
keying (DPSK) in [8]. This algorithm, which is based on
sphere decoding (cf. e.g. [9]) and hence referred to as
multiple–symbol differential sphere decoding (MSDSD)1, ac-
complishes true ML MSDD while its complexity is compara-
ble to that of DFDD in most cases. In this paper, we exploit the
close relationship between DPSK modulation and DSTM with
unitary constellations and extend MSDSD to unitary DSTM.
In this context, we develop different variants of MSDSD,
which are tailored to specific DSTM constellations in order to
avoid detection complexity being exponential in the number
of transmit antennas and data rate. Based on an error–rate
analysis for MSDD we also propose “subset MSDSD”, which
further improves the performance of MSDSD while incurring
only a marginal increase in complexity. Simulation results for
DSTM transmission show that (subset) MSDSD significantly
outperforms DFDD in power efficiency for comparable decod-
ing complexity.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces the system model. In Section III,
MSDSD is derived and optimized for different DSTM constel-
lations. The error–rate analysis of MSDSD and the formulation
of subset MSDSD are given in Section IV. Performance and
complexity results are presented and discussed in Section V.
Section VI concludes this paper.

Notation: Vectors and matrices are printed in bold lower–
and uppercase letters, respectively.(�)H, (�)T, tr f�g, jj�jj and
detf�g denote Hermitian transpose, transpose, trace, Frobenius
norm and determinant of a matrix (or vector, where applica-
ble), respectively.
 denotes the Kronecker product of two
matrices or vectors.j,

p�1 andEf�g denote the imaginary
unit and the expectation operator.

II. SYSTEM MODEL

We consider a transmission scheme usingNT transmit and
NR receive antennas. At the transmitterNTR bits are mapped

1In the context of this paper, the terms “decoding” and “detection” refer to
the same procedure and are used interchangeably.



to NT � NT dimensional unitary matricesV [k] which are
taken from a setV , fV (l) j l 2 f1; : : : ; Lg; L,2NTRg. In
order to facilitate noncoherent detection the data symbolsV [k]
are differentially encoded yielding transmit symbols

S[k] = V [k]S[k � 1]; S[0] = INT : (1)

At time � = kNT + i the transmitter radiates from antennaj
the elementsi;j [k] in the ith row andjth column ofS[k].
The transmit power is independent ofNT at all times, i.e.,PNT

j=1 jsi;j [k]j2= 1; 1 � i � NT holds.
We assume a frequency–nonselective MIMO Rayleigh fad-

ing channel. Consequently, in the equivalent complex baseband
domain the signalri;j [k] received by antennaj at time � =
kNT + i is given by

ri;j [k] =

NTX
�=1

si;� [k]h�;j [�] + nj [�]: (2)

h�;j [�] and nj [�] denote the complex fading gain between
transmit antenna� and receive antennaj and the zero–mean
complex additive spatially and temporally white Gaussian
noise (AWGN) with variance�2n effective at thejth receive
antenna at time�, respectively. The fading channels are as-
sumed spatially uncorrelated with identical temporal statistical
properties, according to the widely–used model by Clarke,
i.e.,  hh[�],E

�
hi;j [k + �]h�i;j [k]

	
= J0(2�BfT�), where

J0(�) and BfT denote the zeroth–order Bessel function of
the first kind and the maximum normalized fading bandwidth,
respectively.

When deriving the MSDSD receiver structure, we make the
additional assumption that the fading is quasistatic (QS) over
NT consecutive modulation intervals. Under this assumption
the received signal corresponding to the transmission of a
symbolS[k] can be expressed as anNT � NR dimensional
matrix

R[k] = S[k]H [k] +N [k]; (3)

whereR[k], H[k] andN [k] each containri;j [k], hi;j [kNT]
andnj [kNT + i] in the ith row andjth column.

III. M ULTIPLE–SYMBOL DIFFERENTIAL SPHERE

DECODING

To derive the MSDSD algorithm, we first provide a suitable
representation of the ML MSDD decision rule in Section III-A.
The general MSDSD algorithm is presented in Section III-B
and optimized for different DSTM constellations in Section
III-C.

A. ML Multiple–Symbol Differential Detection

ML MSDD processes blocks�R[k], [RT[k �N + 1]; : : : ;
R
T[k]]T of N consecutively received matrix symbols to find

ML estimatesŜ[k] for corresponding blocks�S[k], [ST[k �
N + 1]; : : : ;ST[k]]T of N transmit symbols or equivalently
estimatesV̂ [k] for theN � 1 data symbols�V [k], [V T[k �
N + 2]; : : : ;V T[k]]T. In analogy to the single–antenna case
(cf. e.g. [4]) consecutive blocks�R[k] have to overlap by
(at least) one matrix symbol, i.e., the observation window

of length N moves forward by (at most)N � 1 symbols
at a time. With anNNT � NNT block–diagonal matrix
�SD[k],diagfS[k �N + 1]; : : : ;S[k]g andNNT �NR ma-
trices �H [k] and �N [k] defined in the same way as�R[k] we
can write

�R[k] = �SD[k] �H[k] + �N [k]: (4)

For sake of readability we will in the sequel omit the reference
[k] to time and address submatrices of the above blockmatrices
via subscripts withX i being theith submatrix of �X and
1 � i � (N or N � 1).

With �H and �N being matrices of zero–mean complex
Gaussian random variables and�SD being an unitary matrix the
ML MSDD decision rule can be derived in complete analogy
to the case of single–antenna DPSK transmission (e.g. [10]).
After straightforward manipulations we obtain [11]

�̂S = argmin
�S

8><
>:

NX
i=1

������

������
NX
j=i

Sj
~R
H

i;j

������

������
2
9>=
>; ; (5)

where ~Ri;j ,
p
(N�i)
j�i

�
(N�i)
e

Rj . p
(i)
j and (�

(i)
e )2 denote thejth co-

efficient of the ith order linear backward minimum mean–
squared error (MMSE) predictor for the discrete time random
processh�;� [kNT] + n� [kNT] and the corresponding error
variance, respectively. Solving (5) and reversing (1) we obtain
an estimate�̂V for the vector �V . The brute–force approach
would be to evaluate (5) for all2(N�1)NTR �S corresponding to
all possible�V . However, this approach would quickly become
computationally infeasible.

B. Sphere Decoding Algorithm

It can be observed that the ML metric in (5) is a sum ofN
nonnegative scalar terms

Æ2n
�
=
���
���Sn

~R
H

n;n+Xn

���
���2 ; 1 � n � N; (6)

which throughXn,
PN

j=n+1 Sj
~R
H

n;j depend on symbols
Sj ; n � j � N . Thus, the ML detection problem (5) lends
itself to a SD approach. In particular, a SD algorithm very
similar to SD for single–antenna MSDSD devised in [8] can
be employed for unitary DSTM considered here.

To formulate the SD algorithm, let us define

d2n
�
=

NX
i=n

���
���Si

~R
H

i;i +Xi

���
���2= d2n+1+ Æ2n; 1 � n � N; (7)

whered2N+1 � 0 andd21 equals the ML metric in (5). Starting
atn = N�1,2 the SD algorithm selects candidates for symbols
Sn based on (tentative) decisions forS j ; n+1 � j � N and
continues to decrementn as long as the current metricd2n does
not exceed a given maximum metric�2, i.e.,

d2n � �2: (8)

2Without loss of generality and due to the differential encodingSN � INT
can be chosen.



If the decoder reachesn = 1, the metric of the currently best
candidate�̂S is used to further reduce the size of the search
space by updating� = d1. If dn exceeds� for any value ofn,
n is incremented and a new candidate forSn is examined. If
the decoder returns ton = N it means that there are no further
candidates inside the current sphere and that the ML solution
�̂S has been found. For the ordering of candidates for aS n we
employ the Schnorr–Euchner (SE) enumeration strategy [12],
i.e., we check candidates in order of increasingÆ 2n, as this
allows for an initialization with�!1 and an (usually) fast
convergence to the ML solution.

C. Application to Different Signal Constellations

While the above is valid for arbitrary unitary DSTM,
MSDSD can be tailored to specific constellations in order to
simplify the enumeration of candidates for symbolsS n. In
the following, we consider two important classes of unitary
ST constellations.

1) Orthogonal Designs: First, we consider DSTM based
on Alamouti’s code [13], where data symbolsV [k] are taken
from the set

VOD
�
=

�
1p
2

�
a �b�
b a�

����� a; b 2
p
L�PSK

�
: (9)

For this particular constellationÆ2n can be expressed as

Æ2n = 
2n +Re fan�ng+Re fbn�ng ; 1 � n � N; (10)

with variables�n; �n and 
n being functions of~Rn;n and
Xn. This has two immediate consequences: (i) The(N � 1)–
dimensional ML decoding problem with respect toL–ary ST
symbols is transformed into a(2N�2)–dimensional one with
respect to

p
L–PSK symbols and (ii) the SE strategy can be

implemented without explicit sorting of candidate symbols in
the same efficient way as for single–antenna MSDSD (cf. sub-
functions “findBest(�)” and “findNext(�)” in the pseudo–code
description in [8]).

2) Diagonal Constellations: Second, we consider diagonal
constellations, where data symbols are taken from the set [3]

VD
�
=

�
diag

n
ej

2�
L
c1; : : : ; ej

2�
L
cNT

ol���� l 2 f0; : : : ; L� 1g
�
:

(11)
a) Special Case [c1; : : : ; cNT ] = [1; : : : ; 1]: In this par-

ticular case, which is optimal forNT = 2 andR = 1 [3], Æ2n
can be written in the form of

Æ2n = 
2n +Re fan�ng ; (12)

where again�n and
n are functions of~Rn;n andXn andan
denotes theL–PSK symbol inSn = anINT . This means, that
the decoding problem is reduced to an(N � 1)–dimensional
one with respect toL–PSK symbols and that the SE strategy
can again be implemented as in the single antenna–case.

b) MSDSD and Lattice Decoding: For arbitrary coef-
ficients [c1; : : : ; cNT ], a simple sorting is not feasible, but
we have to computeÆ2n for all elements ofVD and sort
them according to increasingÆ2n in order to accomplish ML
decoding. In this case, MSDSD benefits from the efficiency
of the SE–SD approach, but its complexity is still exponential
in R andNT.

A closer examination of expression (6) forÆ 2n reveals
that minimizing Æ2n is equivalent to the problem of finding
the ML solution for CDD with N = 2. It is shown in
[14] that using the cosine approximation for small arguments
this problem can be turned into anNT–dimensional lattice–
decoding problem and can thus be solved by means of e.g. SD.
Applying this approximation to the MSDD problem at hand,
we build a MSDSD decoder consisting of two hierarchical
SDs, where the inner SD (for finding the minimizer ofÆ 2n)
is initiated by the outer SD (for solving (5)) with matrices
~Rn;n andXn whenever a new candidate forSn is required.
In addition the outer SD provides the inner SD with a start
radius computed from� and dn+1 and a list of candidates
that have been examined previously given the same tentative
decisionsŜj ; n + 1 � j � N and thus are to be excluded
from the search. We note that due to the cosine–approximation
this decoder, which we will refer to as lattice–decoding (LD)
MSDSD, is suboptimum in principle. In Section V, however,
we will see that the corresponding performance degradation is
very small.

IV. SYMBOL –ERROR RATE ANALYSIS AND SUBSET

MSDSD

We next derive an approximation for the symbol–error rate
(SER) for ML MSDD and thus for MSDSD in Section IV-A.
Thereby, we consider the individual SERs associated with the
(N � 1) data symbols contained in one observation window.
The results of this analysis suggest a subset MSDSD algorithm
presented in Section IV-B.

A. SER Analysis

Due to different correlations between the received samples
in �R, symbol decisions on the(N � 1) data symbols in�V
are not equally reliable. Especially in relatively fast fading
environments it can be expected that symbols located in
the center of the observation window can be detected more
reliably than those at the edges. In order to substantiate this
intuitive reasoning, we will derive analytical expressions for
the individual symbol–error ratesSERn for Vn at positionn
in the observation window,1 � n � N � 1.

To this end, let us briefly introduce a different description
of our system. We define vectors�r, �h and �n each filled in
the same way with elements from the respective variables
of (4) as �ri = r�;� [k � �]; 1 � i � NNTNR; with
� = mod (i; NT) + 1; � = b i

NTN
c+ 1; � = mod(b i

NT
c; N).

This way the transmission ofN symbols is described by
�r =

�
INR 
 �SD

�
�h + �n and the corresponding ML metric

can be written as

~d21(�r;
�S)

�
= �rH

�
INR 


�
�SD

�
C
�1 
 INT

�
�SHD

��
�r; (13)



where C is defined as theN �N correlation matrix of
h�;� [kNT] + n� [kNT]. If we further define

�
�
= ~d21(�r; �̂S)� ~d21(�r; �S); (14)

the pairwise error probabilityPEP( �S ! �̂S) that a ML MSDD
detects�̂S while �S 6= �̂S was transmitted is given by [15]

PEP(�S ! �̂S) = Pr (� � 0) = �
X

RHpoles

Res

�
��(s)

s

�
; (15)

where

��(s),E
�
e�s�

	
= detfINTN + sF g�NR (16)

with

F , �SD (C 
 INT)
�SHD

�̂SD

�
C
�1 
 INT

�
�̂S
H

D � INNT (17)

denotes the characteristic function of the random variable�,
and the summation is taken over all residues corresponding to
poles located in the right–hand (RH) side of the complexs–
plane. From (13) we see that� is a Hermitian quadratic form
of complex Gaussian distributed random variables and hence,
we have a closed–form solution for��(s) and can solve (15)
as discussed in e.g. [16], [15].

Having found an expression for the PEP, the SER can
be upper bounded using the union bound over all possible
error events. However, since there areLN�1 � 1 relevant
error events, we need to restrict ourselves to the dominating
error events to render an SER analysis for large values of
N feasible. Following a similar argumentation as in [16] for
single–antenna DPSK and utilizing the results of [17] for the
design of unitary space–time constellations, these dominant
error events are found to correspond to matrix pairs( �S; �̂S)
with highest correlation

�
�
=
���
��� �̂SH �S

���
��� : (18)

A brief examination of (18) reveals that error events with only
a single non–identical transmit matrix̂Sn 6= Sn such that

�n
�
= Re

n
tr
n
Ŝ
H

nSn

oo
; 1 � n � N (19)

is maximized also maximize correlation�. We collect all
symbols Ŝn that maximize�n in sets Ŝn and denote the
corresponding set of matriceŝ�S maximizing � by �̂Sn, 1 �
n � N .

If we further assume that the error probability is indepen-
dent of the transmitted matrix, which is the case for DSTM
group constellations including diagonal constellations [3] and
also for orthogonal designs, we can approximateSERn with
respect to data symbols via

SERn�
X
�̂S2 �̂Sn

PEP(�S ! �̂S) +
X

�̂S2 �̂Sn+1

PEP(�S ! �̂S); 1�n<N:

(20)
We have evaluated (20) and results for the example of

diagonal DSTM with parametersNT = 4; R = 1; BfT =
0:03 and NR = 1 are presented in Fig. 1. It shows the
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Fig. 1. Required SNR to achieve SER = 10�5 for position n in observation
window of MSDSD. Parameters: Diagonal DSTM, NT = 4; NR = 1; R =
1; BfT = 0:03.

SNR 10 log10(Eb=N0)
3 required for MSDSD with different

values of N to achieve individual SERn = 10�5 (blue)
and average SER = 10�5 (red) as function of the position
n; 1 � n � N � 1. Also included are simulated SERs for
N = 10, and the SER for coherent detection assuming perfect
CSI.

First, we note a good agreement between the SER from
(20) and simulated SER, which verifies the precision of our
SER approximation. Second, it can be seen, that the individual
SERn are almost identical for positions 2 � n � N � 2, but
deteriorate significantly for positions n = 1 and n = N � 1.
In fact, there are gaps of 6� 8 dB in power efficiency when
comparing non–edge and edge positions. These observations
strongly suggest a variant of MSDSD, which is introduced in
the next section.

B. Subset MSDSD

As an immediate consequence of the results from the SER
analysis presented in the previous section, we propose subset
MSDSD. In subset MSDSD, only N 0 � 1 � N � 1 decisions
per decoder use corresponding to Vn with (N � N 0)=2 <
n < (N + N 0)=2; N � N 0 even, located in the middle of
the observation window are passed to the sink, whereas the
remainingN�N 0 are discarded. Consequently, the observation
window must slide forward by N 0 � 1 received samples at a
time and the decoding complexity is increased by a factor of
(N � 1)=(N 0 � 1).

For the example considered above, the results from the SER
analysis depicted in Fig. 1 suggest that only the decisions
corresponding to the edge symbols at positions n = 1 and n =
N � 1 should be discarded, i.e., N 0 = N � 2 should be used.

3Eb and N0 denote the average received energy per information bit and
the two–sided equivalent baseband noise power density, respectively.
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3; NR = 1; R = 1; BfT = 0:03.

When comparing the resulting average SER of subset MSDSD
with that of MSDSD, we observe gains in power efficiency of
7:5 dB, 4 dB, and 1:5 dB for N = 4, N = 10, and N = 20,
while complexity is increased by a factor of 3, 1.29, and
1.12, respectively. For a reasonable value of N = 10, subset
MSDSD with N 0 = 8 approaches coherent detection with
perfect CSI within 2 dB, which is quite remarkable considering
the large normalized fading bandwidth B fT = 0:03.

V. PERFORMANCE EVALUATION

In this section, we present further SER results for and
discuss the complexity of the proposed MSDSD and subset
MSDSD. In particular, we compare MSDSD with DFDD
as proposed in [5] and CDD with N = 2 as benchmark
algorithms. For results on diagonal constellations we also
implemented computationally efficient algorithms for both
DFDD and CDD based on lattice decoding (cf. [14], [18]),
which we refer to as LD DFDD and DLD, respectively.

A. SER Results

Fig. 2 compares the power efficiency of the various detectors
with that of coherent detection with perfect CSI. We assumed
diagonal DSTM with NT = 3 and R = 1, NR = 1 and
BfT = 0:03. We observe a high error floor for DLD in
this rapid–fading regime, and also a large gap of 9:5 dB
and 8:5 dB in power efficiency at SER = 10�5 between
DFDD with N = 6 and N = 10 and coherent detection,
respectively. Using MSDSD power efficiency is improved by
approximately 3 dB forN = 6 and 4 dB forN = 10 compared
to DFDD. Further improvements are accomplished with subset
MSDSD and N 0 = N � 2, whose performance is within
1:6 dB (N = 10) to 2:6 dB (N = 6) of that for coherent
detection with perfect CSI, which means a total improvement
of about 7 dB over DFDD. It can also be seen from Fig. 2
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Fig. 3. SER of MSDSD, DFDD and CDD for continuous and QS fading.
Parameters: Orthogonal DSTM, NT = 2; NR = 1; R = 1; N =
10; BfT = 0:01.

that the cosine–approximation required for LD–based symbol
search incurrs only a very small degradation compared to the
optimum, more complex search.

In Fig. 3 we consider orthogonal DSTM with NT = 2; R =
1; BfT = 0:01. Again, we compare MSDSD (N = 10)
with DFDD (N = 10) and CDD, this time for the two cases
where the fading of the channel is either continuous (solid) or
quasistatic (dash–dotted). Whereas channel variations during
the transmission of one transmit symbol S[k] are irrelevant for
diagonal constellations, they do affect performance for nondi-
agonal constellations. In particular, we observe a performance
degradation for all detectors in continuous fading for error
rates below SER � 10�3, as all are based on the assumption
of QS fading. Nevertheless, MSDSD consistently outperforms
DFDD, e.g. by approximately 2 dB in power efficiency for
SER . 10�4.

B. Computational Complexity

Next, we compare the computational complexity of the pro-
posed MSDSD with those of the DFDD and CDD benchmark
decoders. In order to present meaningful results, we consider
the average number of real–valued flops per decoded symbol.

Fig. 4 compares the average complexity of MSDSD and
DFDD, both w/o lattice–decoder–based symbol search, and
DLD for diagonal DSTM assuming the same system and chan-
nel parameters as for Fig. 2. As can be seen, the complexity of
(LD) MSDSD decreases rapidly with increasing SNR, since
the search quickly terminates for small enough noise. For
10 log10(Eb=N0) & 16 dB (N = 6) and 10 log10(Eb=N0) &
20 dB (N = 10) the complexity is well in the order of that
of (LD) DFDD, which is (almost) independent of the SNR.
When considering Fig. 2 we note that MSDSD with larger N
is particularly advantageous for moderate to high SNR, where
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the average complexity per symbol is in the same order of
magnitude as that of DLD, which assumes N = 2.

It is also worth pointing out that the complexity of MSDSD
strongly depends on the fading rate B fT (not shown in the
figure) with lower complexities for slower fading.

VI. CONCLUSIONS

In this paper, we have extended the concept of MSDSD re-
cently developed for single–antenna DPSK to unitary DSTM.
For the interesting special cases of orthogonal and diagonal
signal constellations, we have devised optimum and LD–based
suboptimum MSDSD algorithms, whose average complexity
is not exponential in the number of antennas and the data
rate for relevant target error rates. Especially for moderate to
high SNRs these decoders achieve significant improvements
in power efficiency over DFDD while having comparable
complexity. Through an error–rate analysis and simulations
we have shown that the performance can be further improved
by the proposed subset MSDSD with only a marginal increase
in decoder complexity.
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