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Abstract

In this paper, an invisible hybrid color image hiding scheme based on spread vector quantization (VQ) neural network with penalized
fuzzy c-means (PFCM) clustering technology (named SPFNN) is proposed. The goal is to offer safe exchange of a color stego-image
in the internet. In the proposed scheme, the secret color image is first compressed by a spread-unsupervised neural network with PFCM
based on interpolative VQ (IVQ), then the block cipher Data Encryption Standard (DES) and the Rivest, Shamir and Adleman (RSA)
algorithms are hired to provide the mechanism of a hybrid cryptosystem for secure communication and convenient environment in the
internet. In the SPFNN, the penalized fuzzy clustering technology is embedded in a two-dimensional Hopfield neural network in order to
generate optimal solutions for IVQ. Then we encrypted color IVQ indices and sorted the codebooks of secret color image information
and embedded them into the frequency domain of the cover color image by the Hadamard transform (HT). Our proposed method has
two benefits comparing with other data hiding techniques. One is the high security and convenience offered by the hybrid DES and RSA
cryptosystems to exchange color image data in the internet. The other benefit is that excellent results can be obtained using our proposed
color image compression scheme SPFNN method.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A cryptosystem is a useful tool for information security
[1]. However, most traditional cryptosystems were only de-
signed to protect text data. They are not suitable to encrypt
image directly. Recently, there have been several cryptosys-
tems proposed for gray image security [2–5]. Color images
are widely used in our daily lives. A major issue for color im-
age compression and security has been an explosive growth
in the computers, networks, communications and multi-
media applications.

In this paper, we focus on the subject of joint color im-
age compression, color image encryption and hiding. In our
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presented color image hiding scheme, we employ a cover
color image H to camouflage our secret color image S to a
color stego-image F . The color stego-image F is one that
can be made public. While illegal users steal it, most of them
will think that this color stego-image F is an original.

Vector quatization (VQ) is a well-know image compres-
sion scheme [6–10]. VQ can provide a high compression
ratio and better performance may be obtained than using any
other block coding technique by increasing vector length
and codebook size. The purpose of VQ is to create a code-
book such that the average distortion between training vec-
tors and their corresponding codevectors in the codebook is
minimized.

Neural networks with gray relational and fuzzy clustering
techniques have been demonstrated by the authors capable of
performing VQ [11–13]. In this paper, we presented a spread
neural network with penalized fuzzy c-means (PFCM) clus-
tering technology (named SPFNN) based on interpolative
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VQ (IVQ) for color image compression. In the SPFNN,
the PFCM is embedded into a two-dimensional competitive
Hopfield neural network in order to generate an optimal so-
lution for IVQ.

Furthermore, based on the presented scheme, we devel-
oped Data Encryption Standard (DES) software to encrypt
compressed IVQ indices and sorted codebooks of secret
color image information. Then the compressed and en-
crypted secret color image information was embedded into
the frequency domain of the cover color image H by the
Hadamard transform (HT).

DES is a famous and most widely used cryptosystem for
commercial application today. Because DES is secure, no
one can easily crush our cipher color image while they de-
tect that this color stego-image F is a camouflage. Besides,
the Rivest, Shamir, and Adleman (RSA) public-key system
is hired to encrypt the symmetric key Sk of the DES cryp-
tosystem so that our presented method is more secure, con-
venient and particularly suitable for the internet application.

The rest of this paper is organized as follows: Section 2
reviews the PFCM algorithm. In Section 3, we present our
proposed scheme, which includes color image compression
using a SPFNN based on IVQ, hybrid DES and RSA cryp-
tosystem, HT and data embedding process. The data ex-
tracting process from the color stego-image is illustrated in
Section 4. Empirical tests and security analysis are discussed
in Section 5. Finally, conclusions are drawn in Section 6.

2. PFCM algorithm

Clustering is a process for classifying training samples in
such a way that samples within a cluster are more similar to
one another than samples belonging to different clusters. In
many fields, such as segmentation, pattern recognition and
vector quatization, clustering is an indispensable step.

The fuzzy c-means (FCM) clustering algorithm was first
introduced by Dunn [14], the related formulations and algo-
rithms were extended by Bezdek [15]. The FCM approach,
like the conventional clustering techniques, minimizes an
objective function in the least squared error sense. For class
number c, sample number n and fuzzification parameter
m (1�m < ∞), the algorithm chooses ui,j : X → [0, 1] so
that

∑c
j=1ui,j = 1 and �j ∈ R for j = 1, 2, . . . , c to mini-

mize the objective function

JFCM = 1

2

c∑
j=1

n∑
i=1

(ui,j )
m‖xi − �j‖2, (1)

where ui,j is the value of j th membership grade on ith sam-
ple xi . The cluster centroids �1, . . . ,�j , . . . ,�c can be re-
garded as prototypes for the clusters represented by the mem-
bership grades. For the purpose of minimizing the objective
function, the cluster centroids and membership grades are
chosen so that a high degree of membership occurs for sam-
ples close to the corresponding cluster centroids.

Another strategy for fuzzy clustering, called the PFCM
algorithm, with the addition of a penalty term was proposed
by Yang [16,17]. It is a generalized FCM algorithm and was
shown byYang that the PFCM algorithm is more meaningful
and effective than the FCM. The PFCM objective function
is given by

JPFCM = 1

2

c∑
j=1

n∑
i=1

um
i,j‖xi − �j‖2 − 1

2
v

c∑
j=1

n∑
i=1

um
i,j ln �j

= JFCM − 1

2
v

c∑
j=1

n∑
i=1

um
i,j ln �j , (2)

where �j is a proportional constant of class j and v(�0) is
a constant. The penalty term − 1

2v
∑c

j=1
∑n

i=1u
m
i,j ln �j is

added to the objective function, when v = 0, JPFCM equals
to JFCM . �j , �j , and ui,j are defined as

�j =
∑n

i=1u
m
i,j∑c

j=1
∑n

i=1u
m
i,j

, j = 1, 2, . . . , c, (3)

�j = 1∑n
i=1(ui,j )

m

n∑
i=1

(ui,j )
mxi (4)

and

ui,j =
(

c∑
�=1

(‖xi − �j‖2 − v ln �j )
1/(m−1)

(‖xi − ��‖2 − v ln ��)
1/(m−1)

)−1

. (5)

The steps of the PFCM algorithm are given in the Appendix.

3. Invisible hybrid color image hiding system

In this paper, the proposed scheme is a combination be-
tween color image compression using our presented SPFNN
method and a hybrid color image cryptosystem using the
DES and RSA cryptosystems.

An image hiding scheme must be extremely secure to the
insecure communication channel, and at the same time not
reduce the visual quality of the color stego-image F when
the secret color image S is concealed, so we presented a
new SPFNN based on IVQ for color image compression
scheme. To enhance the color image security problem, we
implement DES and RSA algorithms so that the design of
a high security color image hybrid cryptosystem becomes
feasible. The relevant illustrations are described as follows.

3.1. Color image compression using SPFNN based on IVQ

Suppose an image is divided into n blocks (vectors of
pixels) and each block occupies �×� pixels. A vector quan-
tizer maps the Euclidean �×�-dimensional space R�×� into a
set {�j , j=1, 2, . . . , c} of points in R�×�, called a codebook.
A vector quantizer approximates a training vector with least
distortion by one of the codevectors in the codebook. The
average distortion E[d(xi , �j )] between an input sequence
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of training vectors {xi , j = 1, 2, . . . , n} and its correspond-
ing output sequence of codevectors {�j , j = 1, 2, . . . , c} is
defined as

D = E[d(xi , �j )] = 1

n

n∑
i=1

d(xi , �j ). (6)

The distortion measure d(xi , �j ) is defined as the squared
Euclidean distance between vectors xi and �j . A vector
quantizer is optimal if the average distortion is at the mini-
mum value.

The Hopfield neural network with simple architecture and
parallel potential has been applied in many fields [18–21]. In
this paper, the authors applied the Hopfield neural network
with the penalized fuzzy c-means strategy (named PFNN)
to VQ.

For n training vectors and c classes, the PFNN consists of
n×c neurons, which can be conceived as a two-dimensional
array. Each vector is iteratively trained to update the neurons’
weights by using the nearest neighbor rule.

The proposed method assigns each training vector to a
class in such a manner that the average distortion between the
training vectors to their associated class centers (or codevec-
tors) is minimized. Iteratively updating the synaptic weights
of the neural interconnections will gradually force the net-
work to converge into a stable state at which the energy func-
tion of the system is minimized. By the within-class scatter
matrix criteria, the optimization problem can be mapped into
a two-dimensional Hopfield neural network with the PFCM
strategy. Instead of using the competitive learning strategy,
the PFNN use the PFCM algorithm to eliminate the need
for finding weighting factors in the energy function.

Let ui,j be the fuzzy state of the (i, j)th neuron and
Wi,j ;k,j represents the interconnected weight between neu-
ron (i, j) and neuron (k, j). A neuron (i, j) in the network
receives weighted inputs Wi,j ;k,j from each neuron (k, j)

and a bias Ii,j from outside. The total input to neuron (i, j)

is computed as

Neti,j =
∥∥∥∥∥xi −

n∑
k=1

Wi,j ;k,j (uk,j )
m

∥∥∥∥∥
2

+ Ii,j . (7)

The modified Lyapunov energy function of the two-
dimensional Hopfield neural network using PFCM strategy
is given by

E = 1

2

n∑
i=1

c∑
j=1

(ui,j )
m

∥∥∥∥∥xi −
n∑

k=1

Wi,j ;k,j (uk,j )
m

∥∥∥∥∥
2

+
n∑

i=1

c∑
j=1

Ii,j (ui,j )
m, (8)

where
∑n

k=1Wi,j ;k,j is the total weighted input received
from neuron (k, j) in row j , ui,j is the output state at neuron
(i, j), and m is the fuzzification parameter. Each column
of this modified Hopfield network represents a codevector

(class) and each row represents a training vector. The net-
work reaches a stable state when the modified Lyapunov en-
ergy function is minimal. For example, a neuron (i, j) in a
maximum membership state indicates that the training vec-
tor xi belongs to class j .

In order to generate an adequate classification with con-
straints, the objective function is given by

E = A

2

n∑
i=1

c∑
j=1

(ui,j )
m

∥∥∥∥∥xi −
n∑

k=1

1∑n
h=1(uh,j )

m xk(uk,j )
m

∥∥∥∥∥
2

+ B

2

∣∣∣∣∣∣
⎛
⎝ n∑

i=1

c∑
j=1

ui,j

⎞
⎠− n

∣∣∣∣∣∣
2

− v

n∑
i=1

c∑
j=1

(ui,j )
m�n(�j ). (9)

The first term in Eq. (9) is the within-class scatter energy
that is the average distance between training vectors to the
cluster centroid over c clusters. The second term guaran-
tees that the n training vectors in X can only be distributed
among these c classes. More specifically, the second term
imposes constraints on the objective function and the first
term minimizes the intra-class Euclidean distance from the
training vectors to the cluster centroid in any given cluster.
The last term is the penalized term as given in Eq. (2) of the
PFCM algorithm.

As mentioned in Ref. [18], the quality of the classifica-
tion result is very sensitive to the weighting factors A and B.
Searching for optimal values for these weighting factors is
time-consuming and laborious. To alleviate this problem, a
two-dimensional Hopfield neural network with PFCM clus-
tering strategy is proposed so that the constrain terms can
be handled more efficiently. In PFNN, all the neurons in the
same row compete one another to determine which neuron
has the maximum membership value belonging to class j .
The summation of the membership grade of states in the
same row equals 1, and the total membership states in all
n rows equal n. It is also ensured that all training vectors
will be classified into these c classes. The modified Hopfield
neural network PFNN enables the scatter energy function to
converge rapidly to a minimum value. By using the PFCM
strategy, the scatter energy of the PFNN can be simplified as

E = 1

2

n∑
i=1

c∑
j=1

(ui,j )
m

∥∥∥∥∥xi −
n∑

k=1

1∑n
h=1(uh,j )

m xk(uk,j )
m

∥∥∥∥∥
2

− v

n∑
i=1

c∑
j=1

(ui,j )
m�n(�j ). (10)

The minimization of energy E in Eq. (10) is greatly sim-
plified since it contains only two terms and hence the need
to determine the weighting factors A and B vanishes. By
comparing Eq. (10) with the modified Lyapunov function
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Eq. (8), the synaptic interconnection weights and the bias
input can be obtained as

Wi,j ;k,j = 1∑n
h=1(uh,j )

m xk , (11)

and input bias

Ii,j = −v�n(�j ). (12)

By introducing Eqs. (11) and (12) into Eq. (7), the input to
neuron (i, j) can be expressed as

Neti,j =
∥∥∥∥∥xi −

n∑
k=1

1∑n
h=1(uh,j )

m xk(uk,j )
m

∥∥∥∥∥
2

− v�n(�j ).

(13)

From Eqs. (4), (5) and (13), the state (i.e., membership func-
tion) of the neuron at the (i, j)th row is given as

ui,j =
[

c∑
�=1

(
Neti,j
Neti,�

)1/(m−1)
]−1

for all j . (14)

By using Eqs. (13) and (14), the PFNN can classify the
training vectors into c classes in a parallel manner. We then
map the R, G, and B plane training vectors of a color im-
age to the spread PFNN (named SPFNN) neuron array that
compress them separately by treating each color plane as a
single gray-level image. Therefore, the SPFNN based vector
quatizer in the pth plane can be modified as follows:

SPFNN Algorithm
Step 1: Input a set training vector Xp = {x1;p, x2;p, . . . ,

xn;p}, constant v(v > 0), fuzzification parameter m(1�m

< ∞), the number of class c, and initialize the states for all
neurons U = [ui,j ;p] (membership matrix).

Step 2: Compute �j ;p and the weighted matrix using
Eqs. (3) and (11), respectively.

Step 3: Calculate the input to each neuron (i, j) by
Eq. (13)

Neti,j ;p =
∥∥∥∥∥xi;p −

n∑
k=1

1∑n
h=1(uh,j ;p)m

xk;p(uk,j ;p)m

∥∥∥∥∥
2

− v�n(�j ;p).

Step 4: Apply Eq. (14) to update the neurons’ membership
values in a synchronous manner:

ui,j ;p =
[

c∑
�=1

(
Neti,j ;p
Neti,�;p

)1/(m−1)
]−1

for all j .

Step 5: Compute � = max(|U(t+1) − U(t)|), If � > � go
to Step 2, otherwise go to Step 6.

Step 6: Find the codebook for the final membership matrix
in the pth plane (p = 1, 2, 3).

Furthermore, IVQ has been devised to alleviate the visible
block structure of coded images and lessen the sensitive
codebook problems produced by a simple vector quantizer

[22]. In a VQ system, the complexity of the encoders is often
depending on the size of the codebook used. In this paper,
for the purpose of enhancing the imperceptibility of the color
stego-image F , the N × N secret color image S was down-
sampled into (N × N)/2 size image. Therefore, just only
(N × N)/2 pixels of each plane in the secret color image S

was processed using the proposed SPFNN approach. Then
the interpolative method was used to rebuild the empty pixels
using the average of their neighbor pixels in each plane.
That is to say, the interpolative method must do extra work
to interpolate the pixels. Consequently, the rebuilt quality
maybe reduced somewhat, but it can reduce partly hiding
data for the purpose of enhancing the imperceptibility of the
color stego-image F .

3.2. Hybrid cryptosystem based on DES and RSA

In our invisible hybrid color image hiding system, the
sender uses the symmetric key Sk to the DES color im-
age information encryption process and the password psw
to generate the PN sequence used in the embedding process.
On the other hand, the receiver uses rndkey by the RSA
public-key cryptosystem to recover the symmetric key Sk to
DES color decryption process and rndsed by RSA public-
key cryptosystem to recover the password psw used to gen-
erate the same PN sequence in the retrieving process. The
relevant illustrations are described as follows.

3.2.1. DES private-key cryptosystem
The DES is the well known and the first standardized

algorithm, which was first introduced in 1977 by the US
National Bureau of Standards [23]. DES can encrypt and
decrypt 64-bit data blocks with a 56-bit symmetric key Sk .

Fig. 1 sketches the DES algorithm [24]. Each of the 16
iterations is identical in logic but uses a different key. The
operations are formulated as follow:

• First, a block of the 64 bit permuted data is divided into a
left sub-block Lr−1 and a right sub-block Rr−1 of 32 bits
each.

• The leftmost 32 bit of the input block is simply a duplicate
of the rightmost 32 bit.

• The rightmost 32 bit of the input block Rr−1 is expanded
to a 48 bit block using the bit expansion table.

• The 56 bit Sk is used to generate a 48 bit round keys Kr

by key scheduling, where 1�r �16.
• The 48 bits round key and the 48 bits data block are

XORed together. The result is divided into eight groups
of 6 bits each, each of which is passed through a different
‘S-box’ to produce eight 4 bits groups. They are concate-
nated together to form 32 bit output.

• The resulting 32 bits are then passed through a fixed per-
mutation. The new 32 bits block and the leftmost 32 bit
of Lr−1 are XORed together to form the rightmost 32 bit
of Rr .
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64 

Fig. 1. The flowchart of the DES algorithm.

Summarized, the encryption process is as follows:

Lr = Rr−1, (15)

Rr = Lr−1 ⊕ f (Rr−1, Kr). (16)

Then the decryption process is the same encryption process
but using round keys for the decryption in the reverse order.

3.2.2. RSA public-key cryptosystem
In 1976, Diffie and Hellman proposed the concept of

public key cryptography [25]. In 1978 Rivest, Shamir and
Adleman proposed the RSA public-key cryptosystem [26].
Unlike symmetric cryptosystems, public-key cryptosystems
use two distinct keys. It is possible to communicate securely
without any prior relationship or secret key exchange be-
tween parties. The RSA scheme is a block cipher where each
block is an integer between 0 and no-1 for some no. In en-
cryption, a plaintext message Sk and psw are encrypted to
its ciphertext rndkey and rndsed by

rndkey = Se
k mod no, (17)

rndsed = pswe mod no. (18)

In decryption, the plaintext Sk and psw are restored using

Sk = rndkeyd mod no, (19)

psw = rndsedd mod no. (20)

In Eqs. (17)–(20), where (e, no) is the encryption key (pub-
lic key), and (d, no) is the decryption key (private key),
respectively. The RSA key pair (e, d) can be found as
follows. First, we randomly chose two large prime numbers
p, q, and no = p × q (which should be discard after the
key generation process is complete). Then find e such that
GCD((p − 1)(q − 1), e) = 1 where 1 < e < (p − 1)(q − 1)

and de = 1 mod(p − 1)(q − 1). However, to find the key
pair is infeasible.

3.3. Hadamard transform and data embedding process

Among various popular image transforms, HT [27,28]
takes the least computation overhead since its basis vectors
contain only +1 and −1. No multiplication is necessary and
only fixed point arithmetic is required for computing the
transformation. The forward and inverse two-dimensional
HT for an N × N image can be defined as

Forward:

F(u, v)

= 1

N

N−1∑
j=0

N−1∑
k=0

f (j, k)(−1)
∑�−1

i=0 [bi (u)bi (j)+bi (v)bi (k)].

(21)

Inverse:

f (j, k)

= 1

N

N−1∑
u=0

N−1∑
v=0

F(u, v)(−1)
∑�−1

i=0 [bi (u)bi (j)+bi (v)bi (k)],

(22)

where F(u, v) are the HT coefficients, f (j, k) are the pixel
value at (j, k), N = 2� for some �, and bi(u) is the ith bit
of u in the binary form.
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Fig. 2. The flowchart of the embedding process.

The overall concealing process of our proposed scheme
is shown in Fig. 2. The secret color image S was encoded
by our proposed SPFNN based on IVQ into indices bit
stream {m}. A DES private-key cryptosystem was used to en-
crypt {m} into {mc} to enhance security. On the other hand,
the cover color image H is divided into non-overlapped
blocks, which are forward HT (FHT) transformed to Ĥ .
In the embedding process, the bit 3 of eight coefficients
of one randomly selected block by the PN sequence is
used for embedding the same number of bit stream {mc}
until all bit stream {mc} is run out. The resultant image
Ĥ ′ after the embedding process is then inversely trans-
formed to obtain the color stego-image F by the inverse
HT (IHT).

4. Data recovering process

A process which inverses the concealing process is used
to recover the secret color image S. The flow chart of the
recovering process is shown in Fig. 3. The color stego-image
F is transformed to F̂ by FHT. The PN sequence used in
the concealing process is used to select the embedded block
from F̂ . All the retrieved bit sequence {m′

c} is then decrypted
by DES into {m′}. By rebuilding process through inverse
SPFNN (ISPFNN) based on IVQ, the secret color image S′
is recovered.

5. Empirical tests and security analysis

According to the proposed scheme, and the human vi-
sual system, some amount of distortion is allowed. In this
paper, we developed a new SPFNN algorithm based on
IVQ to compress secret color image S and combined the
DES private-key cryptosystem and the RSA public-key cryp-
tosystem to offer safe exchange of a color stego-image F

in the internet. The relative compression efficiency, con-
cealing empirical test, and security analysis are shown as
follows.

PN  

F   F̂

m'c

S'   m' 

RSA 

PNG 

DES

RBSR FHT 

ISPFNN 
(IVQ) 

private key d 

rndkey 

rndsed 

Sk 

psw 

Color 
stego-image 

Recovered 
color image 

RSA: RSA decryption system 

PNG: Pseudorandom Number 

Generator 

RBSR: Random Block Selection 

Retrieving 

FHT: Forward Hadamard Transform 

DES: DES decryption system 

ISPFNN (IVQ): Inverse Spread 

Hopfield Neural 

Network with PFCM 

based on Interpolative 

Vector Qunatization 

Fig. 3. The flow chart of the recovering process.

5.1. Compression efficiency

Codebook design is the primary problem in image com-
pression based on VQ. In this paper, the qualities of the im-
ages reconstructed from the PFNN method were compared
with the conventional VQ method LBG. The size of the
training image is 256 × 256 with 8-bit gray level, which is
divided into 4 × 4 blocks to generate 4096 non-overlapping
16-dimensional training vectors. Three codebooks of size
64, 128, and 256 were built using this training data. The
compression rates were 6

16 =0.375, 7
16 =0.438, and 8

16 =0.5
bits per pixel, respectively. The resulting images were eval-
uated by the peak signal to noise ratio (PSNR) defined as

PSNR = 10 log10
255 × 255

e2 , (23)

where e2 is the mean squared of the reconstructed image
error and 255 is the peak gray level, respectively. Table 1
summarizes the quality of the codebook design for various
parameter m, and v by PFNN in 20 iterations. Table 1 indi-
cates that the quality is best when parameter m=1.2. Table 2
shows the performances for the typical VQ (LBG) and the
proposed PFNN with parameter m = 1.2 and v = 1.1 for
various images with the codebook size c = 128. According
to Table 2, the average PSNR from PFNN are about 2.25 dB
higher than those from the conventional LBG method.

In the color compression simulation, the original color
image was separated into RGB three-plane. Then each plane
was trained using the proposed SPFNN method to generate
better codebook based on VQ. To show the reconstruction
performance, the resulting images were evaluated by the
average PSNR among the three-color planes by

PSNRA = PSNRR + PSNRG + PSNRB

3
, (24)

where PSNRR, PSNRG, and PSNRB are the PSNR for red,
green, and blue planes, respectively. ThePSNRs of the “F16”,
“Girl”, and “Couple” images calculated during the experi-
ments are shown in Table 3, and the reconstructed images
using the SPFNN with 128 codevectors each plane are shown
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Table 1
PSNR of the Pepper and Baboon images from codebook size c = 128 designed by the various parameter m and v for the proposed PFNN algorithm in
20 iterations

v/Images m

1.1 1.2 1.3 1.5 1.7 1.9

1.1 Pepper 26.683 27.225 26.590 25.539 22.661 22.071
Baboon 23.932 23.479 22.160 21.422 21.308 21.271

1.2 Pepper 26.758 27.202 26.600 25.512 22.654 22.067
Baboon 23.937 23.476 22.151 21.419 21.308 21.271

1.3 Pepper 26.780 27.230 26.590 25.477 22.640 22.062
Baboon 23.938 23.473 22.141 21.417 21.308 21.270

1.5 Pepper 26.770 27.196 26.560 25.355 22.611 22.052
Baboon 23.943 23.468 22.170 21.413 21.307 21.268

1.7 Pepper 26.735 27.213 26.536 25.286 22.606 22.041
Baboon 23.959 23.460 22.099 21.409 21.306 21.265

1.9 Pepper 26.638 27.242 26.506 25.253 22.583 22.030
Baboon 23.941 23.453 22.078 21.405 21.306 21.264

Table 2
Comparison of the various gray test images coded results using the LBG
and PFNN methods

Test images Methods PSNR (dB) Bit rate (bit/pixel)

F16 LBG 25.291 0.438
PFNN 26.889 0.438

Girl LBG 28.512 0.438
PFNN 30.694 0.438

Couple LBG 29.403 0.438
PFNN 31.626 0.438

Pepper LBG 25.293 0.438
PFNN 27.568 0.438

Table 3
PSNRs of the various color test images reconstructed by the SPFNN with
128 codevectors each plane

Test images Plane Average

R G B

F16 28.289 27.247 31.257 28.931
Girl 29.988 30.581 30.257 30.275
Couple 30.793 31.651 31.581 31.342

in Fig. 4. Similarly, from the simulated results, the proposed
SPFNN method can produce good reconstructed color image
quality.

5.2. Concealing empirical test

To show the feasibility of the proposed scheme, we em-
ployed the 256 × 256 “Girl” and “Couple” color images as
our secret color images. To camouflage these secret color
images, we employed the 256 × 256 “Sailboat” and “Tree”
color images as the cover color images. Fig. 5 shows the
compressed IVQ indices and sorted codebooks images and
their DES encrypted images of the “Girl” and “Couple”

secret color images. Fig. 6 shows the concealing and re-
covering empirical test results. Figs. 6(a) and (b) show the
“Sailboat” color stego-image and the recovered “Girl” secret
color image, respectively. Figs. 6(c) and (d) show the “Tree”
color stego-image and the recovered “Couple” secret color
image, respectively. The PSNR of the color stego-image F

and color cover image H , and the PSNR of the secret color
image S and recovered secret color image S′, both cases are
shown in Tables 4 and 5, respectively. According to Table 4
and Figs. 6(a) and (c), the “Sailboat” and “Tree” color stego-
images whose average PSNRs are 38.978 and 38.890 dB,
respectively. Another, according to Table 5 and Figs. 6(b) and
(d), the “Girl” and “Couple” secret color images recovered
whose average PSNRs are 29.066 and 29.802 dB, respec-
tively. Empirical test results show that the color stego-images
are unobtrusiveness and the retrieved and reconstructed se-
cret color images have well-acceptable quality.

5.3. Security analysis

In our invisible hybrid color image hiding system, a cover
color image H is used to camouflage a secret color image S

to form a color stego-image F . Since the distortion between
H and F is insignificant, an illegal user cannot sense and
hint in the F , even he possesses it. Furthermore, our hid-
ing scheme employed several security techniques to protect
color images from attacks. The security issue of our system
is analyzed as follows:

1. The presented SPFNN based on IVQ coding technique is
employed to compress the S into indices & sorted code-
books and encrypt them by the DES cryptosystem, which
is famous and secure. The effective Sk is 56 bits, and
then it has 256 possible combinations. Any illegal user
wants to break it needs to make 256 tries to break the Sk .

2. In the embedding process, the N × N cover color image
H was divided into ((N ×N)÷ (�×�)) non-overlapping
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Fig. 4. “Girl” and “Couple” color test images, reconstructed images using the spread PFNN with 128 codevectors each plane, and their local enlarged
images for the original and compressed images: original images (left), reconstructed images (right).

a b c d

Fig. 5. The compressed IVQ indices & sorted codebooks and their DES encrypted images of the “Girl” and “Couple” secret color images: (a) IVQ
indices and sorted codebook image of the “Girl” secret color image, (b) DES cipher image of the compressed “Girl” secret color image, (c) IVQ indices
and sorted codebook image of the “Couple” secret color image and (d) DES cipher image of the compressed “Couple” secret color image.



C.-Y. Lin, C.-H. Chen / Pattern Recognition 40 (2007) 1685–1694 1693

  

  

a b

c d

Fig. 6. Empirical tests for the proposed scheme: (a) the “Sailboat” color stego-image, (b) the “Girl” secret color image recovered, (c) the “Tree” color
stego-image and (d) the “Couple” secret color image recovered.

Table 4
The PSNR of the color stego-image F and cover color image H

Cover color Secret color R G B Average
image image

Sailboat Girl 39.099 38.932 38.903 38.978
Tree Couple 38.785 38.966 38.920 38.890

Table 5
The PSNR of the secret color image S and recovered secret color image S′

Test images Plane Average

R G B

Girl 28.808 29.275 29.116 29.066
Couple 29.234 30.155 30.018 29.802

(� × �) HT Blocks. The proper block which is embed-
ded is decided by the PN sequence. However, the PN
sequence is generated by the random number seed of the
secret key, an illegal user will need ((N ×N)÷ (�× �))!
tries to break the key.

3. The RSA public-key cryptosystem is based on the diffi-
culty of the factorizing large integers [26], which is very
hard to solve even now. The RSA cryptosystem used in
our scheme enhances the convenience and security for
the internet.

6. Conclusions and future work

In this paper, we proposed a novel color image hiding
technique that is invisible while a big color image is con-
cealed in a cover color image. Same as other systems, im-
perceptibility and security are essentially compromised in
ours. Nevertheless, there are two benefits of our system
over others. One is the highly secure and convenient of-
fered by hybrid DES and RSA cryptosystems to exchange
color image data in the internet. The other is excellent re-
sults can be obtained through our proposed new spread-
unsupervised scheme based on the competitive Hopfield
neural network with PFCM for color image compression.
Due to the SPFNN’s highly interconnected and parallel abil-
ities, computation time can be largely reduced by way of
parallel processing. The design of a dedicated hardware of
SPFNN is currently under investigation.



1694 C.-Y. Lin, C.-H. Chen / Pattern Recognition 40 (2007) 1685–1694

Appendix

PFCM Algorithm
Step 1: Initialize the cluster centroids �j (2�j �c),

v(v > 0), fuzzification parameter m(1�m < ∞), and the
value � > 0. Give a fuzzy c-partition U(0) and t = 1.

Step 2: Calculate the �(t)
j , �

(t)
j with U(t−1) using Eqs. (3)

and (4).
Step 3: Calculate the membership matrix U(t)=[ui,j ] with

�(t)
j , �

(t)
j using Eq. (5).

Step 4: Compute � = max(|U(t+1) − U(t)|). If � > �, t =
t + 1 and go to Step 2; otherwise go to Step 5.

Step 5: Find the results for the final class centroids.
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