
Exploratory Web Searching with Dynamic

Taxonomies and Results Clustering

Panagiotis Papadakos, Stella Kopidaki,
Nikos Armenatzoglou, and Yannis Tzitzikas

1 Institute of Computer Science, FORTH-ICS, GREECE,
2 Computer Science Department, University of Crete, GREECE

{papadako, skopidak, armenan, tzitzik}@ics.forth.gr

Abstract. This paper proposes exploiting both explicit and mined meta-
data for enriching Web searching with exploration services. On-line re-
sults clustering is useful for providing users with overviews of the results
and thus allowing them to restrict their focus to the desired parts. On
the other hand, the various metadata that are available to a WSE (Web
Search Engine), e.g. domain/language/date/filetype, are commonly ex-
ploited only through the advanced (form-based) search facilities that
some WSEs offer (and users rarely use). We propose an approach that
combines both kinds of metadata by adopting the interaction paradigm
of dynamic taxonomies and faceted exploration. This combination results
to an effective, flexible and efficient exploration experience.

1 Introduction

Web Search Engines (WSEs) typically return a ranked list of documents that
are relevant to the query submitted by the user. For each document, its title,
URL and snippet (fragment of the text that contains keywords of the query) are
usually presented. It is observed that most users are impatient and look only at
the first results [1]. Consequently, when either the documents with the intended
(by the user) meaning of the query words are not in the first pages, or there are a
few dotted in various ranks (and probably different result pages), it is difficult for
the user to find the information he really wants. The problem becomes harder if
the user cannot guess additional words for restricting his query, or the additional
words the user chooses are not the right ones for restricting the result set.

One solution to these problems is results clustering [25] which provides a
quick overview of the search results. It aims at grouping the results into topics,
called clusters, with predictive names (labels), aiding the user to locate quickly
documents that otherwise he wouldn’t practically find especially if these docu-
ments are low ranked (and thus not in first result pages). Another solution is
to exploit the various metadata that are available to WSEs (like domain, dates,
language, filetype, etc). Such metadata are usually exploited through the ad-
vanced search facilities that some WSEs offer, but users very rarely use these
services. A more flexible and promising approach is to exploit such metadata in

the context of the interaction paradigm of faceted and dynamic taxonomies [18,
21], a paradigm that is used more and more nowadays. Its main benefit is that
it shows only those terms of the taxonomy that lead to non-empty answer sets,
and the user can gradually restrict his focus using several criteria by clicking.
In addition this paradigm allows users to switch easily between searching and
browsing.

There are works [1, 14] in the literature that compare automatic results clus-
tering with guided exploration (through dynamic faceted taxonomies). In this
work we propose combining these two approaches. In a nutshell, the contribution
of our work lies in: (a) proposing and motivating the need for exploiting both
explicit and mined metadata during Web searching, (b) showing how automatic
results clustering can be combined with the interaction paradigm of dynamic
taxonomies, by clustering on-demand the top elements of the user focus, (c)
providing incremental evaluation algorithms, and (d) reporting experimental re-
sults that prove the feasibility and the effectiveness of the approach.

To the best of our knowledge, there are no other WSEs that offer the same
kind of information/interaction. A somehow related interaction paradigm that
involves clustering is Scatter/Gather [4, 8]. This paradigm allows the users to
select clusters, subsequently the documents of the selected clusters are clustered
again, the new clusters are presented, and so on. This process can be repeated
until individual documents are reached. However, for very big answer sets, the
initial clusters apart from being very expensive to compute on-line, will also be
quite ambiguous and thus not very helpful for the user. Our approach alleviates
this problem, since the user can restrict his focus through the available metadata,
to a size that allows deriving more specific and informative cluster labels.

The rest of this paper is organized as follows. Section 2 discusses require-
ments, related work and background information. Section 3 describes our ap-
proach for dynamic coupling clustering with dynamic taxonomies. Section 4
describes implementation and reports experimental results. Finally, Section 5
concludes and identifies issues for further research.

2 Requirements & Background

Results Clustering Results clustering algorithms should satisfy several re-
quirements. First of all, the generated clusters should be characterized from
high intra-cluster similarity. Moreover, results clustering algorithms should be
efficient and scalable since clustering is an online task and the size of the re-
trieved document set can vary. Usually only the top−C documents are clustered
in order to increase performance. In addition, the presentation of each cluster
should be concise and accurate to allow users to detect what they need quickly.
Cluster labeling is the task of deriving readable and meaningful (single-word or
multiple-word) names for clusters, in order to help the user to recognize the clus-
ters/topics he is interested in. Such labels must be predictive descriptive, concise
and syntactically correct. Finally, it should be possible to provide high quality
clusters based on small document snippets rather than the whole documents.

2

In general, clustering can be applied either to the original documents (like in
[4, 8]), or to their (query-dependent) snippets (as in [25, 20, 6, 26, 7, 22]). Cluster-
ing meta-search engines (e.g. clusty.com) use the results of one or more WSEs, in
order to increase coverage/relevance. Therefore, meta-search engines have direct
access only to the snippets returned by the queried WSEs. Clustering the snip-
pets rather than the whole documents makes clustering algorithms faster. Some
clustering algorithms [6, 5, 23] use internal or external sources of knowledge like
Web directories (e.g. DMoz3), Web dictionaries (e.g. WordNet) and thesauri,
online encyclopedias and other online knowledge bases. These external sources
are exploited to identify significant words/phrases, that represent the contents of
the retrieved documents or can be enriched, in order to optimize the clustering
and improve the quality of cluster labels.

One very efficient and effective approach is the Suffix Tree Clustering (STC)
[25] where search results (mainly snippets) can be clustered fast (in linear time),
incrementally, and each cluster is labeled with a phrase. Overall and for the
problem at hand, we consider important the requirements of relevance, browsable
summaries, overlap, snippet-tolerance, speed and incrementality as described in
[25]. Several variations of STC have emerged recently (e.g. [3, 11, 22]).

Exploratory Search and Information Thinning Most WSEs are appropri-
ate for focalized search, i.e. they make the assumption that users can accurately
describe their information need using a small sequence of terms. However, as
several user studies have shown, this is not the case. A high percentage of search
tasks are exploratory [1], the user does not know accurately his information
need, the user provides 2-5 words, and focalized search very commonly leads to
inadequate interactions and poor results. Unfortunately, available UIs do not aid
the user in query formulation, and do not provide any exploration services. The
returned answers are simple ranked lists of results, with no organization.

We believe that modern WSEs should guide users in exploring the informa-
tion space. Dynamic taxonomies [18] (faceted or not) is a general knowledge
management model based on a multidimensional classification of heterogeneous
data objects and is used to explore and browse complex information bases in
a guided, yet unconstrained way through a visual interface. Features of faceted
metadata search include (a) display of current results in multiple categorization
schemes (facets) (e.g. based on metadata terms, such as size or date), (b) dis-
play categories leading to non-empty results, and (c) display of the count of the
indexed objects of each category (i.e. the number of results the user will get
by selecting this category). An example of the idea assuming only one facet, is
shown in Figure 1. Figure 1(a) shows a taxonomy and 8 indexed objects (1-8).
Figure 1(b) shows the dynamic taxonomy if we restrict our focus to the objects
{4,5,6}. Figure 1(c) shows the browsing structure that could be provided at the
GUI layer and Figure 1(d) sketches user interaction.

The user explores or navigates the information space by setting and changing
his focus. The notion of focus can be intensional or extensional. Specifically, any

3 www.dmoz.org

3

A

1 43

(a)

C

E

D G

B

F

2 5 876

A

4

E

D

B

F

5 6

(b)

A(3)

B(1)

D(1)

E(3)

F(2)

(c) (d)

A(3)

B(1)

E(3)

A(2)

B(1)

E(2)

F(2)

expand E Zoom-in on F

shrink E

Zoom-out on E

Zoom-side point

A(3)

B(1)

E(3)

F(2)

A(3)

B(1)

E(3)

A(2)

B(1)

E(2)

F(2)

expand E Zoom-in on F

shrink E

Zoom-out on E

Zoom-side point

A(3)

B(1)

E(3)

F(2)

Fig. 1. Dynamic Taxonomies

set of terms, i.e. any conjunction of terms (or any boolean expression of terms) is
a possible focus. For example, the initial focus can be the empty, or the top term
of a facet. However, the user can also start from an arbitrary set of objects, and
this is the common case in the context of a WSE and our primary scenario. In
that case we can say that the focus is defined extensionally. Specifically, if A is
the result of a free text query q, then the interaction is based on the restriction
of the faceted taxonomy on A (Figure 1(b) shows the restriction of a taxonomy
on the objects {4,5,6}). At any point during the interaction, we compute and
provide to the user the immediate zoom-in/out/side points along with count
information (as shown in Figure 1(d)). When the user selects one of these points
then the selected term is added to the focus, and so on. Note that the user can
exploit the faceted structure and at each step may decide to select a zoom point
from different facet (e.g. filetype, modification date, language, web domain, etc).

Examples of applications of faceted metadata-search include: e-commerce
(e.g. ebay), library and bibliographic portals (e.g. DBLP), museum portals (e.g.
[10] and Europeana4), mobile phone browsers (e.g. [12]), specialized search en-
gines and portals (e.g. [16]), Semantic Web (e.g. [9, 15]), general purpose WSEs
(e.g. Google Base), and other frameworks (e.g. mSpace[19]).

Related Work Systems like [24, 9, 13, 15, 2] support multiple facets, each associ-
ated with a taxonomy which can be predefined. Moreover, the systems described
in [24, 9, 15] support ways to configure the taxonomies that are available during
browsing based on the contents of the results. Specifically, [24] enriches the val-
ues of the object descriptions with more broad terms by exploiting WordNet, [9]
supports rules for deciding which facets should be used according to the type
of data objects based on RDF, and [15] supports reclassification of the objects
to predefined types. However, none of these systems apply content-based results
clustering, re-constructing the cluster tree taxonomy while the user explores the
answer set. Instead they construct it once per each submitted query.

3 On-Demand Integration

Dynamic taxonomies can load and handle thousands of objects very fast (as it
will be described in Section 4.1). However, the application of results clustering on

4 http://www.europeana.eu

4

thousands of snippets would have the following shortcomings: (a) Inefficiency,
since real-time results clustering is feasible only for hundreds of snippets, and
(b) Low cluster label quality, since the resulting labels would be too general. To
this end we propose a dynamic (on-demand) integration approach. The idea is
to apply the result clustering algorithm only on the top-C (usually C = 100)
snippets of the current focus. This approach not only can be performed fast,
but it is expected to return more informative cluster labels. Let q be the user
query and let Ans(q) be the answer of this query. We shall use Af to denote
top-K (usually K < 10000) objects of Ans(q) and Ac to denote top-C objects of
Ans(q). Clearly, Ac ⊆ Af ⊆ Ans(q). The steps of the process are the following:

(1) The snippets of the elements of Ac are generated.
(2) Clustering is applied on the elements of Ac, generating a cluster label tree

clt.
(3) The set of Af (with their metadata), as well as clt, are loaded to FleXplorer,

a module for creating and managing the faceted dynamic taxonomy. As the
facet that corresponds to automatic clustering includes only the elements of
Ac, we create an additional artificial cluster label, named ”REST” where we
place all objects in Af \ Ac (i.e. it will contain K − C objects).

(4) FleXplorer computes and delivers to the GUI the (immediate) zoom points.

The user can start browsing by selecting the desired zoom point(s). When he
selects a zoom point or submits a new query, steps (1)-(4) are performed again.

3.1 Results Clustering: HSTC

We adopt an extension of STC [25] that we have devised called HSTC. As in STC,
this algorithm begins by constructing the suffix tree of the titles and snippets and
then it scores each node of that tree. HSTC uses a scoring formula that favors the
occurrences in titles, does not merge base clusters and returns an hierarchically
organized set of cluster labels. In brief, the advantages of HSTC are: (a) the user
never gets unexpected results, as opposed to the existing STC-based algorithms
which adopt overlap-based cluster merging, (b) it is more configurable w.r.t. de-
sired cluster label sizes (STC favors specific lengths), (c) it derives hierarchically
organized labels, and (d) it favors occurrences in titles. The experimental eval-
uation showed that this algorithm is more preferred by users5 and it is around
two times faster that the plain STC (see Section 4.1). We do not report here the
details, because any result clustering algorithm could be adopted. However, it is
worth noticing that the hierarchy of cluster labels by HSTC, can be considered
as a subsumption relation since it satisfies c < c′ =⇒ Ext(c) ⊆ Ext(c′), where
Ext(ci) denotes the documents that belong to cluster ci. This property allows
exploiting the interaction paradigm of dynamic taxonomies. HSTC, like STC,
results in overlapping clusters.

3.2 Dynamic Taxonomies: FleXplorer

FleXplorer is a main memory API (Application Programmatic Interface) that
allows managing (creating, deleting, modifying) terms, taxonomies, facets and

5 http://groogle.csd.uoc.gr:8080/mitos/files/clusteringEvaluation/userStudy.html

5

object descriptions. It supports both finite and infinite terminologies (e.g. nu-
merically valued attributes) as well as explicitly and intensionally defined tax-
onomies. The former can be classification schemes and thesauri, the latter can
be hierarchically organized intervals (based on the inclusion relation), etc. Re-
garding user interaction, the framework provides methods for setting the focus
and getting the applicable zoom points.

3.3 Incremental Evaluation Algorithm

Here we present an incremental approach for exploiting past computations and
results. Let Af be the objects of the current focus. If the user selects a zoom
point he moves to a different focus. Let A′

f denote the top-K elements of the
new focus, and A′

c the top-C of the new focus. The steps of the algorithm follow.

(1) We set Ac,new = A′
c \ Ac and Ac,old = Ac \ A′

c, i.e. Ac,new is the set of the
new objects that have to be clustered, and Ac,old is the set of objects that
should no longer affect clustering.

(2) The snippets of the objects in Ac,new are generated (those of Ac,old are
available from the previous step). Recall that snippet generation is expensive.

(3) HSTC is applied incrementally to Ac,new.
(4) The new cluster label tree clt′ is loaded to FleXplorer.
(5) FleXplorer computes and delivers to the GUI the (immediate) zoom points

for the focus with contents A′
f .

Let’s now focus on Step (3), i.e. on the incremental application of HSTC.
Incremental means that the previous suffix tree sf is preserved. Specifically,
we extend sf with the suffixes of the elements in the titles/snippets of the
elements in Ac,new, exploiting the incremental nature of STC. Let sf ′ denote
the extended suffix tree. To derive the top scored labels, we have to score again
all nodes of the suffix tree. However we should not take into account objects
that belong to Ac,old. Specifically, scoring should be based on the extension of
the labels that contain elements of A′

c only. The preserved suffix tree can be
either the initial suffix tree or the pruned suffix tree. Each node of the initial
tree corresponds to a single word, while the pruned tree is more compact in
the sense that if a node contains only one child node and both nodes contain
the same objects, they are collapsed to one single node that has as label the
concatenation of the labels of the constituent nodes. Scoring is done over the
pruned suffix tree. However to add and delete objects to/from a pruned suffix
tree sometimes requires ”splitting” nodes (due to the additions) and pruning
extra nodes (due to the deletions). On the other hand, if the unpruned suffix
tree is preserved, then additions and deletions are performed right away and
pruning takes place at the end. Independently of the kind of the preserved suffix
tree, below we discuss two possible approaches for updating the suffix tree:

– Scan-approach
We scan the nodes of the suffix tree sf ′ and delete from their extensions all
elements that belong to Ac,old. Figure 2 illustrates an example for the case
where Ac = {1, 2} and A′

c = {1, 3}.

6

a b c

b ae

1 1,2 1 1,21,2

b e

e

21 22

a b c

b ae

1,3 1,2,3 1,3 1,2,31,2

b e

e

21 22

g

g

33

a b c

b a

1,3 1,3 1,3 1,31

b

1

g

g

33

a b b c

a b

1,3 1,3 1,31

g

g

33

(A1) (A2)

(A4)(A3)

prunedAc,old
elimination

Ac,new
insertion

Ac

1: “a b. c a b.” 2: “a e. c a e.” 3: “a b. c g.”Snippets:

Ac={1,2}, A’ c={1,3}

Fig. 2. Incremental Evaluation

– Object-to-ClusterLabel Index-approach
An alternative approach is to have an additional data structure that for
each object o in Ac it keeps pointers to the nodes of the suffix tree to whose
extension o belongs. In that case we do not have to scan the entire suffix
tree since we can directly go to the nodes whose extension has to be reduced.
The extra memory space for this policy is roughly equal to the size of the
suffix tree. However the suffix tree construction process will be slower as we
have to maintain the additional data structure too.

We have to note that sf can be considered as a cache of snippets and recall
that snippet generation is more expensive than clustering. The gained speedup
is beneficial both for a standalone WSE as well for a Meta WSE, since fetching
and parsing of snippets are reused. The suffix tree sf has to be constructed from
scratch whenever the user submits a new query and is incrementally updated
while the user browses the information space by selecting zoom points.

4 Implementation and Experimental Evaluation

The implementation was done in the context of Mitos6 [17], which is a prototype
WSE7. FleXplorer is used by Mitos for offering general purpose browsing and
exploration services. Currently, and on the basis of the top-K answer of each
submitted query, the following five facets are created and offered to users:

– the hierarchy or clusters derived by HSTC

6 http://groogle.csd.uoc.gr:8080/mitos/
7 Under development by the Department of Computer Science of the University of

Crete and FORTH-ICS

7

– web domain, a hierarchy is defined (e.g. csd.uoc.gr < uoc.gr < gr),

– format type (e.g. pdf, html, doc, etc), no hierarchy is created in this case

– language of a document based on the encoding of a web page and

– (modification) date hierarchy.

When the user interacts with the clustering facet we do not apply the re-
clustering process (i.e. steps (1) and (2) of the on-demand algorithm). This
behavior is more intuitive, since it preserves the clustering hierarchy while the
user interacts with the clustering facet (and does not frustrate the user with
unexpected results). In case the user is not satisfied by the available cluster la-
bels for the top-C objects of the answer, he can enforce the execution of the
clustering algorithm for the next top-C by pressing the REST zoom-in point as
it has already been mentioned (which keeps pointers to K − C objects).

4.1 Experimental Results

Clustering Performance It is worth noting that the most time consuming
subtask is not the clustering itself but the extraction of the snippets from the
cached copies of textual contents of the pages8. To measure the performance
of the clustering algorithm and the snippet generation, we selected 16 queries
and we counted the average times to generate and cluster the top-{100, 200,
300, 400, 500} snippets. All measurements were performed using a Pentium IV
4 GHz, with 2 GB RAM, running Linux Debian.

Table 1. Top-C Snippet Generation and Clustering Times (in seconds)
Measured Task 100 200 300 400 500

Time to generate snippets 0.793 1.375 1.849 2.268 2.852
Time to apply STC 0.138 0.375 0.833 1.494 2.303
Time to apply HSTC 0.117 0.189 0.311 0.449 0.648

Table 1 shows snippet generation times and the clustering algorithms perfor-
mance (measured in seconds). Notice that snippet generation is a slow operation
and is the bottleneck in order to provide fast on-demand clustering, for a big
top-C number (C > 500). We should mention though, that our testbed includes
a rather big number of large sized files (i.e. pdf, ppt), which hurt snippet gener-
ation times. Moreover, notice that HSTC is at least two times faster than STC.
This is because HSTC does not have to intersect and merge base clusters.

Dynamic Taxonomies Performance Loading times of FleXplorer have been
thoroughly measured in [21]. In brief, the computation of zoom-in points with
count information is more expensive than without. In 1 sec we can compute the
zoom-in points of 240.000 results with count information, while without count
information we can compute the zoom-in points of 540.000 results.
8 The snippets in our experiments contain up to two sentences (11 words maximum

each) where the query terms appear most times.

8

Overall Performance In this experiment we measured the overall cost, i.e.
cluster generation times (snippet generation and clustering algorithm execution)
and the dynamic taxonomies times (to compute the zoom points and and to load
the new clustering labels to the corresponding facet). Moreover, we compare
the non-incremental with the incremental algorithm, which preserves the initial
suffix tree and the elimination of old objects is done using the Scan-approach.
The scenario we used includes: (a) the execution of the query crete which returns
4067 results, (b) the expansion of the gr zoom point of the By domain facet and
the selection of the uoc.gr (1277) zoom-in point from the hierarchy revealed from
the expansion, and (c) the selection of the text/html (807) zoom-in point of the
By filetype facet. Let ca, cb and cc be snippets of the top − C elements in the
steps (a), (b) and (c) respectively. Figure 3 shows the facet terms after steps
(a), (b) and (c), as they are displayed in the left bar of the WSE GUI. We set
K = 10000 (i.e. the whole answer set is loaded) and repeated the above steps for
the following values of C:100, 200 ... 500. We do not measure the cost of the query
evaluation time. In all experiments FleXplorer computes count information.

(a) (b) (c)

text/html is pressed
Expand gr and

uoc.gr is pressed

Fig. 3. Steps (a)-(c) of running scenario

9

Table 2. Top-C Comparison of Incremental/Non-Incremental Algorithms (in seconds)
Step (a) Step (b) Step (c)

top-100 |ca| = 100 |ca ∩ cb| = 43, overlap=43% |cb ∩ cc| = 85, overlap=85%
Non-Incr. 0.914 0.443 0.204
Incr. 0.931 0.431 0.101

top-200 |ca| = 200 |ca ∩ cb| = 71, overlap=35.5% |cb ∩ cc| = 113, overlap=56.5%
Non-Incr. 1.266 1.245 0.789
Incr. 1.245 0.965 0.68

top-300 |ca| = 300 |ca ∩ cb| = 74, overlap=24.6% |cb ∩ cc| = 201, overlap=67.7%
Non-Incr. 1.676 2.534 1.383
Incr. 1.65 2.527 0.761

top-400 |ca| = 400 |ca ∩ cb| = 85, overlap=21.5% |cb ∩ cc| = 252, overlap=63%
Non-Incr. 2.246 3.067 1.944
Incr. 2.118 3.335 0.942

top-500 |ca| = 500 |ca ∩ cb| = 97, overlap=19.4% |cb ∩ cc| = 324, overlap=64.8%
Non-Incr. 2.483 3.495 2.001
Incr. 2.493 3.652 0.751

Table 2 shows the intersection of Ac and A′
c for steps (a), (b) and (c) and the

execution times that correspond to the integration of FleXplorer and results
clustering using the non-incremental and an incremental approach of HSTC,
for the top − C elements. It is evident that for top-100 and top-200 values, the
results are presented to the user almost instantly (around 1 second), making the
proposed on demand clustering method suitable as an online task. Moreover, we
can see that there is a linear correlation between time cost and the top-C value.
Finally, calculating and loading clusters for the top-500 documents, costs around
3 seconds making even big top-C configurations a feasible configuration.

Comparing the incremental and the non-incremental algorithm, we observe
a significant speedup whenever the overlap is more than 50%, for our scenario.
At step (a) the suffix tree construction is the same for both algorithms as the
suffix tree sf has to be constructed from scratch. For step (b) there are small
variations due to the small overlap, so the time saved from the snippets gen-
eration/parsing is compensated by the time needed for eliminating old objects.
Specifically, the incremental algorithm is faster for the top-200 case and slower
for the top-{400, 500} cases which have the lowest overlap. For the other cases
performance is almost the same. Notice that although the top-100 case has the
biggest overlap of all, there are no differences in the execution time of the two
algorithms. This is probably due to the fact that the overlapping documents
have fast snippet generation times, while the rest are big sized. At step (c) the
benefit from the incremental approach is clear, since it is almost twice as fast
as the non incremental one. Specifically, the best speedup is in the case of top-
500, where overlap reaches 65% and the execution time of the non-incremental
is 2.001, while for the incremental is just 0.751.

5 Conclusion

The contribution of our work lies in: (a) proposing and motivating the need for
exploiting both explicit and mined metadata during Web searching, (b) show-
ing how automatic results clustering can be combined effectively and efficiently
with the interaction paradigm of dynamic taxonomies by applying top-C cluster-
ing on-demand, (c) providing incremental evaluation approaches for reusing the

10

results of the more computationally expensive tasks, and (d) reporting experi-
mental results that prove the feasibility and the effectiveness of this approach.
In the future we plan to conduct a user study for investigating what top-C value
most users prefer. Finally, we plan to continue our work on further speeding up
the incremental algorithms presented.

References

1. Special issue on Supporting Exploratory Search. Communications of the ACM,
49(4), April 2006.

2. O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann, S. Ofek-
Koifman, D. Sheinwald, E. Shekita, B. Sznajder, and S. Yogev. Beyond basic
faceted search. In Procs of the Intern. Conf. on Web Search and Web Data Min-
ing, (WSDM’08), pages 33–44, Palo Alto, California, USA, February 2008.

3. D. Crabtree, X. Gao, and P. Andreae. Improving web clustering by cluster selec-
tion. In Procs of the IEEE/WIC/ACM Intern. Conf. on Web Intelligence (WI’05),
pages 172–178, Compiegne, France, September 2005.

4. D.R. Cutting, D. Karger, J.O. Pedersen, and J.W. Tukey. Scatter/Gather: A
cluster-based approach to browsing large document collections. In Procs of the
15th Annual Intern. ACM Conf. on Research and Development in Information
Retrieval, (SIGIR’92), pages 318–329, Copenhagen, Denmark, June 1992.

5. W. Dakka and P.G. Ipeirotis. Automatic extraction of useful facet hierarchies
from text databases. In Procs of the 24th Intern. Conf. on Data Engineering,
(ICDE’08), pages 466–475, Cancún, México, April 2008.

6. P. Ferragina and A. Gulli. A personalized search engine based on web-snippet
hierarchical clustering. In Procs of the 14th Intern. Conf. on World Wide Web,
(WWW’05), volume 5, pages 801–810, Chiba, Japan, May 2005.

7. F. Gelgi, H. Davulcu, and S. Vadrevu. Term ranking for clustering web search
results. In 10th Intern. Workshop on the Web and Databases, (WebDB’07), Beijing,
China, June 2007.

8. M.A. Hearst and J.O. Pedersen. Reexamining the cluster hypothesis: Scat-
ter/Gather on retrieval results. In Procs of the 19th Annual Intern. ACM Conf.
on Research and Development in Information Retrieval, (SIGIR’96), pages 76–84,
Zurich, Switzerland, August 1996.

9. M. Hildebrand, J. van Ossenbruggen, and L. Hardman. “/facet: A browser for
heterogeneous semantic web repositories”. In Procs of Intern. Semantic Web Conf.,
(ISWC’06), pages 272–285, Athens, GA, USA, November 2006.

10. E. Hyvönen, E. Mäkelä, M. Salminen, A. Valo, K. Viljanen, S. Saarela, M. Jun-
nila, and S. Kettula. “MuseumFinland – Finnish museums on the semantic web”.
Journal of Web Semantics, 3(2):25, 2005.

11. J. Janruang and W. Kreesuradej. A new web search result clustering based on true
common phrase label discovery. In Procs of the Intern. Conf. on Computational
Intelligence for Modelling Control and Automation and Intern. Conf. on Intelligent
Agents Web Technologies and International Commerce, (CIMCA/IAWTIC’06),
page 242, Washington, DC, USA, November 2006.

12. A. K. Karlson, G. G. Robertson, D. C. Robbins, M. P. Czerwinski, and G. R. Smith.
“FaThumb: A facet-based interface for mobile search.”. In Procs of the Conf.
on Human Factors in Computing Systems, (CHI’06), pages 711–720, Montréal,
Québec, Canada, April 2006.

11

13. B. Kules, J. Kustanowitz, and B. Shneiderman. Categorizing web search results
into meaningful and stable categories using fast-feature techniques. In Procs of the
6th ACM/IEEE-CS Joint Conf. on Digital Libraries, (JCDL’06), pages 210–219,
Chapel Hill, NC, USA, June 2006.

14. B. Kules, M. Wilson, M. Schraefel, and B. Shneiderman. From keyword search to
exploration: How result visualization aids discovery on the web. Human-Computer
Interaction Lab Technical Report HCIL-2008-06, University of Maryland, pages
2008–06, 2008.

15. E. Mäkelä, E. Hyvönen, and S. Saarela. Ontogator - a semantic view-based search
engine service for web applications. In Procs of Intern. Semantic Web Conf.,
(ISWC’06), pages 847–860, Athens, GA, USA, November 2006.

16. E. Mäkelä, K. Viljanen, P. Lindgren, M. Laukkanen, and E. Hyvönen. Semantic
yellow page service discovery: The veturi portal. Poster paper at Intern. Semantic
Web Conf., (ISWC’05), Galway, Ireland, November 2005.

17. P. Papadakos, Y. Theoharis, Y. Marketakis, N. Armenatzoglou, and Y. Tzitzikas.
”Mitos: Design and evaluation of a dbms-based web search engine”. In Procs of
the 12th Pan-Hellenic Conf. on Informatics, (PCI’08), Greece, August 2008.

18. G. M. Sacco. “Dynamic taxonomies: A model for large information bases”. IEEE
Transactions on Knowledge and Data Engineering, 12(3):468–479, May 2000.

19. M.C. Schraefel, M. Karam, and S. Zhao. “mSpace: Interaction design for user-
determined, adaptable domain exploration in hypermedia”. In Procs of Workshop
on Adaptive Hypermedia and Adaptive Web Based Systems, pages 217–235, Not-
tingham, UK, August 2003.

20. J. Stefanowski and D. Weiss. Carrot2 and language properties in web search results
clustering. In Procs of the Intern. Atlantic Web Intelligence Conf., (AWIC’03),
Madrid, Spain, May 2003. Springer.

21. Y. Tzitzikas, N. Armenatzoglou, and P. Papadakos. FleXplorer: A framework
for providing faceted and dynamic taxonomy-based information exploration. In
19th Intern. Workshop on Database and Expert Systems Applications, (FIND’08
at DEXA’08), pages 392–396, Torino, Italy, 2008.

22. J. Wang, Y. Mo, B. Huang, J. Wen, and L. He. Web search results clustering based
on a novel suffix tree structure. In Procs of 5th Intern. Conf. on Autonomic and
Trusted Computing, (ATC’08), volume 5060, pages 540–554, Oslo, Norway, 2008.

23. D. Xing, G.R. Xue, Q. Yang, and Y. Yu. Deep classifier: Automatically categorizing
search results into large-scale hierarchies. In Procs of the Intern. Conf. on Web
Search and Web Data Mining, (WSDM’08), pages 139–148, Palo Alto, California,
USA, February 2008.

24. K. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search
and browsing. In Procs of the Conf. on Human Factors in Computing Systems,
(CHI’03), pages 401–408, Ft. Lauderdale, Florida, USA, April 2003.

25. O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration.
In Procs of the 21th Annual Intern. ACM Conf. on Research and Development
in Information Retrieval, (SIGIR’98), pages 46–54, Melbourne, Australia, August
1998.

26. H.J. Zeng, Q.C. He, Z. Chen, W.Y. Ma, and J. Ma. Learning to cluster web search
results. In Procs of the 27th Annual Intern. Conf. on Research and Development
in Information Retrieval, (SIGIR’04), pages 210–217, Sheffield, UK, July 2004.

12

