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Abstract
Multiscale simulation is an emerging scientific field that spans many
disciplines, including physics, chemistry, mathematics, statistics, chemical
engineering, mechanical engineering, and materials science. This review
paper first defines this new scientific field and outlines its objectives. An
overview of deterministic, continuum models and discrete, particle models
is then given. Among discrete, particle models, emphasis is placed on
Monte Carlo stochastic simulation methods in well-mixed and spatially
distributed systems. Next, a classification of multiscale methods is carried
out based on separation of length and time scales and the computational
and mathematical approach taken. Broadly speaking, hybrid simulation
and coarse graining or mesoscopic modeling are identified as two general
and complementary approaches of multiscale modeling. The former is
further classified into onion- and multigrid-type simulation depending on
length scales and the presence or not of gradients. Several approaches,
such as the net event, the probability weighted, the Poisson and binomial
t-leap, and the hybrid, are discussed for acceleration of stochastic sim-
ulation. In order to demonstrate the unifying principles of multiscale
simulation, examples from different areas are discussed, including systems
biology, materials growth and other reacting systems, fluids, and statistical
mechanics. While the classification is general and examples from other
scales and tools are touched upon, in this review emphasis is placed on
stochastic models, their coarse graining, and their integration with con-
tinuum deterministic models, i.e., on the coupling of mesoscopic and
macroscopic scales. The concept of hierarchical multiscale modeling is
discussed in some length. Finally, the importance of systems-level tools
such as sensitivity analysis, parameter estimation, optimization, control,
model reduction, and bifurcation in multiscale analysis is underscored.
I. Introduction
A decadal report recently issued by the National Research Council (NRC),
entitled Beyond the Molecular Frontier: Challenges for Chemistry and Chemical
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Engineering (NRC, 2003a), advances 13 ‘‘Grand Challenges’’ for the field.
‘‘Advancing Chemical Theory and Modeling’’ is viewed as one of the critical,
enabling technologies. Quoting from the report: ‘‘Chemistry covers an enor-
mous span of time and space from atoms and molecules to industrial-scale
processing. Advances in computing and modeling could help us connect phe-
nomena at the electronic and molecular scale to the commercial processing.’’ In
the information and communications NRC report and in recent roadmaps,
multiscale analysis is repeatedly identified as the emerging computational and
mathematical science that could enable design and control of complex engi-
neering systems (Thompson, 1999; NRC, 2003b).

The foundations of transport phenomena, reaction engineering, thermody-
namics, and nonlinear analysis, along with significant advances in numerical
analysis of differential equations at the continuum level and the increase in
computational power, have shaped for the most part the first engineering process
modeling paradigm of chemical sciences of the 20th century (the BSL paradigm
of continuum conservation equations and continuum constitutive relations
(Bird et al., 1960)). An outcome of this long-time effort has been the widespread
use of computational fluid dynamics (CFD) simulation that nowadays routinely
assists the design of many industrial processes.

The rapid growth in computational speed over the past decades has enabled a
molecular-based approach to product and process engineering. Molecular sim-
ulations such as molecular dynamics (MD) and Monte Carlo (MC) algorithms
have emerged as preeminent computational tools for science and engineering
research. Additional discrete particle simulations, such as Brownian dynamics
(BD), lattice Boltzmann (LB), direct simulation Monte Carlo (DSMC), and
dissipative particle dynamics (DPD), have attempted to bridge information
from the molecular to the mesoscopic scale, but often in a phenomenological
manner, as the rules of coarse graining are not fully established. At the other
end of the modeling spectrum, quantum mechanical (QM) calculations, such as
ab initio and density functional theory (DFT), in conjunction with transition
state theory (TST), have extended the realm of simulation to smaller scales by
providing electronic structure information such as potential energy surfaces
(PESs) and activation energies that are used in molecular simulations. The
advances in molecular and quantum mechanics theory and simulation have
established the second modeling paradigm (the molecular and quantum modeling
paradigm).

Multiscale simulation is emerging and will unquestionably become the third

modeling paradigm. The idea of multiscale modeling is straightforward: one
computes information at a smaller (finer) scale and passes it to a model at a
larger (coarser) scale (see Fig. 1) by leaving out degrees of freedom as one moves
from finer to coarser scales. Within this context, the most common goal of
multiscale modeling is to predict the macroscopic behavior of an engineering
process from first principles (upscaling or bottom-up approach). This approach
has its roots in the work of Newton, Hooke, Bernoulli, Einstein, Bodenstein,
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and others (Phillips, 2002; Raimondeau and Vlachos, 2002a) who left out many
degrees of freedom to propose continuum-based constitutive equations and
simple models for obtaining answers of interest. In recent times, this goal has
been served well, for example, by equilibrium statistical mechanics with QM-
based potentials and associated molecular (MD and MC) models. I envision an
equally important second goal of multiscale analysis, stemming from the
emerging areas of biotechnology, nanotechnology, and device miniaturization.
This goal is the ability to predict and control phenomena and devices with
resolution approaching nanoscopic scale while manipulating macroscopic (en-
gineering) scale variables such as flow rates, pressures, and temperature (down-
scaling or top-down approach). This manipulation may not happen with active
model-based control but instead by properly designing a system, using multi-
scale model-based information, to function desirably at the molecular level. This
issue is further discussed in the section on systems tasks. Reverse engineering is
yet a third potential goal of top-down information flow: given a desirable
property, it is desirable to predict suitable candidate materials (e.g., multicom-
ponent, multifunctional catalysts) and develop rational ways to synthesize them.
This last goal addresses product-driven engineering that is believed by many to
be the future of chemical sciences (Cussler and Wei, 2003). For the most part,
the last two goals have so far remained elusive but are the ones on which
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multiscale modeling and simulation would have the most impact in the next
decade.

Advances in analytical methods, such as scanning probe and high-resolution
transmission electron microscopy, now enable experiments with molecular-level
resolution. Furthermore, data from small ensembles of molecules or single en-
tities (e.g., a living cell) become more common. Effectively utilizing these and
related emerging tools and data to develop new products and processes will be
greatly facilitated by a complementary development in multiscale modeling that
can not only model experimentally observed phenomena, but also aid in the
prediction of new, as of yet, unproven products and processes.

Multiscale simulation is growing so rapidly that it emerges as a new mul-
tidisciplinary scientific field. Figure 2 summarizes the number of publications
over the past decade using the term ‘‘multiscale’’ and ‘‘multi-scale’’ in their title
only or in all title, abstract, and keywords. While the term multiscale means
different things in various fields, the explosion is clear. Two new journals,
Multiscale Modeling and Simulation, A SIAM Interdisciplinary Journal, and
the International Journal on Multiscale Computational Engineering (Begell
House Publishers, NY) started in 2003, point to the rapid evolution of this new
field. There have been many activities that speak to the same fact. Examples
include the recent issues 8 and 9 of the 59th volume of Chemical Engineering
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Science in 2004 that have been dedicated to Complex Systems and Multi-scale
Methodology, the forth issue of the 29th volume in Computers in Chemical
Engineering on Multiscale Simulation published in 2005, the Springer-Verlag
IMA edited book on Dispersive Transport Equations and Multiscale Models
resulting from a related workshop, numerous workshops, and a topical con-
ference on Multiscale Analysis in the 2005 AIChE meeting, just to mention a
few.

Multiscale simulation builds on the foundations developed in the 20th cen-
tury of continuum, deterministic and discrete, particle-type models. It attempts
to seamlessly integrate models at various scales, extend existing tools to larger
length and time scales, and develop theoretical connections between tools over
multiple scales. It seems then appropriate to first provide a classification and
an overview of models at various scales before multiscale simulation is more
formally introduced and recent progress is reviewed. Since we have recently
given a review on multiscale simulation in catalysis and reaction engineering
(Raimondeau and Vlachos, 2002a), here a broader overview of multiscale sim-
ulation is given. The multidisciplinary nature of this emerging field makes this a
daunting task. For this reason, I have chosen to mainly focus on the areas of
systems biology and materials growth because these two fields are enticing an
increasing number of chemical engineers. Furthermore, by choosing two areas
one can clearly see unifying multiscale concepts that emerge across chemical
engineering. Some rather introductory examples from statistical mechanics and
reaction systems are also employed to illustrate key points and methods. Fi-
nally, I have tried to include references to some key mathematical pieces of work
and multiscale references from the physics, materials, and hydrodynamics com-
munities I am aware of with the hope of cross-fertilizing various disciplines
without necessarily being exhaustive in coverage (these areas deserve their own
review). For example, a recent, very good review from the mathematics com-
munity has just appeared after the submission of this manuscript that presents
some of the mathematical underpinnings of the algorithms and methods
touched upon below (Givon et al., 2004). While the discussed multiscale ap-
proach and issues are generic and apply to various models and scales, I have
judiciously chosen to mainly focus on the MC method, among other atomistic
or mesoscopic models, and the integration of MC with deterministic, continuum
models as an example of stochastic/continuum hybrid multiscale models. This
naturally provides more coherence to the chapter. Some key references from
other types of multiscale models are also given.
II. Deterministic, Continuum Models
Traditionally, modeling in chemical engineering has invoked continuum de-
scriptions of momentum, mass, and energy conservation (Bird et al., 1960)
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where substantial mathematical and computational contributions have been
made over the past decades. Here, the discussion is limited to a brief classi-
fication that introduces the necessary terminology used in the remainder of the
chapter.
A. HIERARCHY OF MODELS

Continuum modeling has often been based on algebraic equations (AEs),
ordinary differential equations (ODEs), partial differential equations (PDEs),
and differential-algebraic equations (DAEs). PDEs provide the most general
description at the continuum level. ODEs typically describe transient, well-
mixed systems, such as the concentrations and temperature in a batch reactor or
in a continuous stirred tank reactor (CSTR), or 1D steady state balances, such
as a plug flow reactor (PFR) model or an axial dispersion model. A distinction
of ODEs entails initial vs. boundary value problems depending on where the
conditions are imposed, namely, only at the entrance or at the entrance and exit,
respectively. The hierarchy of deterministic, continuum models is summarized in
Fig. 3a. Using concepts of dimensional analysis and symmetry, models toward
the bottom of the graph can be thought of as reductions or limits of higher
dimensionality models (found toward the top of the graph).
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B. SOLVING DETERMINISTIC, CONTINUUM DIFFERENTIAL EQUATION MODELS:
TECHNIQUES AND STATUS

Substantial advances in computational power (Moore’s law) have had a tre-
mendous impact on the numerical solution of engineering problems. Concom-
itant with increases in computational power, significant advances in problem
solving have resulted through mathematical and/or computational develop-
ments. One example is the introduction of stiff ODE solvers by Gear (1969,
1971) that led to the development of adaptive time step, variable-order methods
that nowadays are available through the web. LSODA, VODE, and RADAU5
are some commonly employed packages for solving stiff ODEs and DDASSL
for DAEs (Brenan et al., 1996; Hairer and Wanner, 1991; Petzold, 1982). As
another example, over the last 30 years the solution of systems of linear equa-
tions has evolved from sparse Gauss elimination, to Gauss–Seidel, to successive
over-relaxation, to conjugate gradient, to multigrid, to parallel multigrid. It was
recently reported by Petzold in NRC (2003b) that such algorithm and software
development has led to four orders of magnitude speedup.

Methods for solving continuum models have advanced to such a point that
they are nowadays considered to be relatively mature. Since several packages
are available based on one of these methods, it becomes a matter of choosing an
appropriate package. Typical CFD and transport packages include Fluent, FI-
DAP, CFX, and Femlab (Femlab is a general purpose finite element (FEM)-
based program with specialized modules for chemical engineering applications).
Simple 1D problems can be solved with widely used teaching software, such as
Matlab and Mathematica. While in the 1980s considerable effort was devoted to
the discretization of PDEs and meshing of a complex domain, this is now a
relatively routine exercise that uses Gambit and the internal mesh generator of
Femlab even for complex geometries. CFD, depicted at the top of the pyramid
in Fig. 1, can be used as process simulator in a multiscale simulation of chemical
engineering. Memory limitations, especially for 3D simulations, robustness in
convergence, speed for complex chemistry in reacting flows, and accuracy are
still issues that need further improvements. Finally, interfacing CFD codes with
complex homemade chemistry codes or finer scale codes from the multiscale
ladder shown in Fig. 1 is also important.
III. Overview of Discrete, Particle Models
Discrete models treat individual atoms, molecules, or particles and can be
deterministic or stochastic. Examples of the former include MD simulations.
Examples of the latter are various MC methods, BD, DPD, DSMC, and LB
simulations. There are different ensembles in which these simulations can be
performed, depending on the quantities that one is interested in computing.
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Different techniques are suitable for different tasks. For example, BD focuses
on molecules and particles in solution where the solvent is implicitly lumped
into a friction force. On the other hand, DSMC and LB are typically applied to
various fluid-related problems. MD is the only fundamental, first principles tool
where the equations of motion are solved using as input an interparticle po-
tential. MC methods map the system description into a stochastic Markov-
based framework. MD and MC are often thought of as molecular modeling
tools, whereas the rest are mesoscopic tools (lattice MC is also a mesoscopic
tool).

Many excellent sources on discrete, particle simulations exist (e.g., Allen and
Tildesley, 1989; Binder, 1986; Bird, 1988; Chen and Doolen, 1998; Frenkel and
Smit, 1996; Landau and Binder, 2000; Rastogi and Wagner, 1995; Wolf-Glad-
row, 2000). Volume 28 of Advances in Chemical Engineering, entitled ‘‘Mo-
lecular Modeling and Theory in Chemical Engineering,’’ presents an excellent
collection of molecular-based papers with applications across chemical engi-
neering. A recent overview of the tasks that can be accomplished via molecular
modeling, with special emphasis on MC methods, for irreversible chemical
processes is given in Vlachos (2005).

Obviously, the spectrum of mesoscale, particle-based tools is too vast to be
covered in a single paper. Therefore, in this and the subsequent sections, I
mainly elaborate on MC methods to illustrate various aspects of multiscale
modeling and simulation. Below, the modeling hierarchy for stochastic well-
mixed chemically reacting systems is first outlined, followed by a brief intro-
duction to MC methods.
A. HIERARCHY OF STOCHASTIC MODELS FOR WELL-MIXED, CHEMICALLY REACTING

SYSTEMS

A hierarchy of models can often be derived from a more detailed model under
certain assumptions. This approach was discussed above in the case of deter-
ministic, continuum models (see Fig. 3a). Such hierarchical models can be val-
uable in multiscale modeling. Let us just mention two cases. First, one could use
different models from a hierarchy of models for different situations or length
scales. This approach plays a key role in hybrid multiscale simulation discussed
extensively below. Second, one could easily apply systems tasks to a simpler
model to obtain an approximate solution that is then refined by employing a
more sophisticated, accurate, and expensive model from the hierarchy.

A major difficulty is that such hierarchies of molecular models are not exactly
known. Recent work by Gillespie (2000, 2002) has established such a hierarchy
for stochastic models of chemical reactions in a well-mixed batch reactor. This
hierarchy is depicted in Fig. 3b. In particular, it was shown that the chemical
master equation is deduced to a chemical Langevin equation when the pop-
ulation sizes are relatively large. Finally, the deterministic behavior can be
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recovered in the limit of an infinite-size system ðN ! 1Þ. The concept of hi-
erarchical modeling is revisited in the section on systems tasks.
B. SOLVING MASTER EQUATIONS STOCHASTICALLY: MONTE CARLO METHODS

The introduction of the Metropolis MC algorithm in 1953 (Metropolis et al.,
1953) has established a new paradigm in computational statistical mechanics for
computing equilibrium solutions. Starting from a description of the physical
system in terms of a Hamiltonian, MC solves stochastically an underlying
master equation using pseudo-random numbers by constructing the probability
with which the various states of the system have to be weighted according to a
Markov process. The introduction of simulated annealing (Kirkpatrick et al.,
1983) has substantially expanded the scope of the Metropolis MC method to
problems far beyond equilibrium solutions of statistical mechanics. Specifically,
MC has been established as a powerful tool in global optimization in process
engineering, combinatorial materials library development, and reverse engineer-

ing of solid state structure determination (Deem, 2001; Vlachos, 2005). How-
ever, reverse engineering problems related to structure determination of bulk
liquids, solids, nanoparticles, and interfaces, using forward (based on a poten-
tial) and reverse (based on experimental data) modes, are outside the scope of
this paper.

MC is also successful in far from equilibrium processes encountered in the
areas of diffusion and reaction. It is precisely this class of non-equilibrium
reaction/diffusion problems that is of interest here. Chemical engineering ap-
plications of MC include crystal growth (this is probably one of the first areas
where physicists applied MC), catalysis, reaction networks, biology, etc. MC
simulations provide the stochastic solution to a time-dependent master equation

dpa
dt

¼
X

b

½W abpb �Wbapa� (1)

where paðbÞ is the probability that the system is in configuration aðbÞ and W ab is
the transition probability per unit time of the system going from configuration b
to a. The master equation is deterministic.

Direct solution of the master equation is impractical because of the huge
number of equations needed to describe all possible states (combinations) even
of relatively small-size systems. As one example, for a three-step linear pathway
among 100molecules, 104 such equations are needed. As another example, in
biological simulation for the tumor suppressor p53, 211 states are estimated for
the monomer and 244 for the tetramer (Rao et al., 2002). Instead of following all
individual states, the MC method is used to follow the evolution of the system.
For chemically reacting systems in a well-mixed environment, the foundations
of stochastic simulation were laid down by Gillespie (1976, 1977). More
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recently, Gillespie’s (1992) algorithm was connected with collision theory. His
approach is easily extendable to arbitrary complex computational systems when
individual events have a prescribed transition probability per unit time. This is
often referred to as the kinetic Monte Carlo (KMC) or dynamic Monte Carlo

(DMC) method, and is the tool used herein. In contrast to the classic Me-
tropolis MC algorithm, KMC provides real-time information.

There are two different exact algorithms for stochastic simulation proposed
by Gillespie, namely, the direct simulation method and the first reaction sim-
ulation method. The former is computationally much more efficient and has
been the method of choice (it requires two random numbers per MC event as
compared to Nr random numbers for the latter, where Nr is the number of
reactions). The work of Gibson and Bruck (2000) aims at reducing the com-
putational cost of KMC for complex reaction networks by modifying the first
reaction simulation method of Gillespie. Their approach uses dependency
graphs to minimize the computation time spent on updating the transition
probabilities per unit time (propensities in the terminology of Gillespie). This
idea resembles the lists of neighbors approach used in spatial distributed mo-
lecular models (Allen and Tildesley, 1989; Frenkel and Smit, 1996) and graph
theory used in building complex reaction networks (Broadbelt et al., 1994).
Furthermore, Gibson and Bruck kept the time increments of unaffected reac-
tions, determining when reactions occur, fixed to their current values. As a
result, the number of random numbers needed per MC event is reduced to just
one.

The extension of Gillespie’s algorithm to spatially distributed systems is
straightforward. A lattice is often used to represent binding sites of adsorbates,
which correspond to local minima of the PES. The work of Bortz et al. (1975)
on the n-fold or continuous time MC (CTMC) method is a significant achieve-
ment in computational speedup of the lattice KMC method, which, however,
has been underutilized probably owing to its difficult implementation. In
CTMC, probabilities are computed a priori and each event is successful, in
contrast to null-event algorithms (e.g., Metropolis) whose fraction of unsuc-
cessful (null) events increases considerably at low temperatures and for stiff
problems (Reese et al., 2001; Vlachos et al., 1993). While simulations carried out
early on reported results in MC events or steps and lacked a connection with
real time, calculation of real time by a continuous amount is straightforward, as
demonstrated several years ago (e.g., Fichthorn and Weinberg, 1991; Vlachos et
al., 1990, 1991). Real time can be implemented in both null event and CTMC
methods, and practically the same results are obtained regardless of the algo-
rithm used (Reese et al., 2001). Generalization of the KMC method to treat
arbitrarily complex surface kinetics and comparison of null event KMC and
CTMC have been presented in Reese et al. (2001).

The microscopic processes occurring in a system, along with their corre-
sponding transition probabilities per unit time, are an input to a KMC sim-
ulation. This information can be obtained via the multiscale ladder using DFT,
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TST, and/or MD simulations (the choice depends mainly on whether the proc-
ess is activated or not). The creation of a database, a lookup table, or a map of
transition probabilities for use in KMC simulation emerges as a powerful
modeling approach in computational materials science and reaction arenas
(Maroudas, 2001; Raimondeau et al., 2001). This idea parallels tabulation ef-
forts in computationally intensive chemical kinetics simulations (Pope, 1997). In
turn, the KMC technique computes system averages, which are usually of in-
terest, as well as the probability density function (pdf) or higher moments, and
spatiotemporal information in a spatially distributed simulation.
IV. Classification of Multiscale Simulation Approaches
Multiscale simulation enables coupling of phenomena at various scales from
the quantum scale to the molecular, mesoscopic, device, and plant scale (Alkire
and Verhoff, 1998; Christofides, 2001; Lerou and Ng, 1996; Maroudas, 2000;
Raimondeau and Vlachos, 2002a; Villermaux, 1996; Weinan et al., 2003). For
most applications, multiscale modeling has been practiced sequentially. The
smaller (finer) scale model is typically solved first, and information is passed to
the larger (coarser) scale (upscaling), i.e., from the bottom-up. This is a one-way
information traffic paradigm (see also Fig. 1), also termed serial (Maroudas,
2003), and has been practiced successfully in several applications. One such
example includes the development of first principles chemistry via ab initio

methods, statistical mechanics, and kinetic theory. These finer length scale
models parameterize effectively the reaction rate constants that are subsequent-
ly employed in reacting process flow simulations. Laminar flames and chemical
vapor deposition (CVD) are two reaction-engineering applications where this
sequential approach has successfully been used. For gas-phase reacting flows at
low to moderate pressures, the density is so low that the probability of
trimolecular events is negligible. As a result, the PES of two chemical species
describes accurately the reaction coordinate, i.e., the coupling between scales is
practically non-existent. Therefore, one-way coupling is adequate. Another ex-
ample of one-way coupling for crystal growth of GaAs and InP was presented in
Rondanini et al. (2004), where FEM-computed fluxes were passed to a 3D
KMC code.

In most liquid- and solid-phase systems, the dilute approximation is typically
invalid, and, as a result, many body effects play a significant role. Many body
effects are manifested through the effect of solvent or catalyst on reactivity and
through concentration-dependent reaction rate parameters. Under these con-
ditions, the one-way coupling is inadequate, and fully coupled models across
scales are needed, i.e., two-way information traffic exists. This type of modeling
is the most common in chemical sciences and will be of primary interest here-
after. In recent papers the terms multiscale integration hybrid, parallel, dynamic,
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and concurrent simulation have been employed, depending on the algorithm
used (Abraham et al., 1998b; Maroudas, 2003; Rudd and Broughton, 2000;
Vlachos, 1997).

Figure 4 depicts the most common multiscale simulation approaches. When
there is a large separation of length scales between phenomena, then a different
model can be used at each scale. This type of multiscale simulation is termed as
hybrid. At the core QM simulations, farther out molecular models (e.g., MD,
KMC), and even farther out continuum mechanics form an onion structure or
nested hierarchy of models (Fig. 5). At the other extreme, in processes whose
phenomena do not exhibit separation of scales, one has two options (see Fig. 4).
The first one is to extend a suitable tool, such as a MD or KMC method, to
large length and time scales to enable comparison with experiments. This is
termed mesoscopic modeling or coarse graining. The second one is to apply a
coarser model over large length and time scales of experimental interest on a
coarse grid and estimate small-scale information for the coarser model from a
finer scale model on a fine grid (Fig. 6). This last method is hereafter termed
multigrid-type hybrid multiscale simulation, but the terms heterogeneous hybrid
simulation (Weinan et al., 2003) and tooth gap have also been used (Gear et al.,
2003) to denote similar ideas.
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Below, the various types of multiscale simulation are elaborated and various
examples are provided. The presentation on coarse graining is mainly focused on
stochastic (KMC) simulations to provide the underlying foundations and ideas
in some depth. Coarse graining of other atomistic, e.g., MD, and mesoscopic
tools will be covered in a forthcoming communication. Some excellent reviews
on coarse graining in soft-matter physics problems are available (e.g., Kremer
and Muller-Plathe, 2001; Muller-Plathe, 2002, 2003; Nielsen et al., 2004).
V. Hybrid Multiscale Simulation
Hybrid multiscale simulation is the most developed branch of multiscale
simulation and will be covered in this section. The onion-type hybrid simulation
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is first covered, followed by a discussion of its application to crystal growth and
then to other areas. The multigrid-type hybrid method is also discussed. Finally,
some of the challenges in hybrid multiscale simulation are elaborated.
A. ONION-TYPE HYBRID MULTISCALE SIMULATIONS AND ALGORITHMS

Consider an example from nucleation and growth of thin films. At least three
length scales can be identified, namely, (a) the fluid phase where the continuum
approximation is often valid (that may not be the case in micro- and nano-
devices), (b) the intermediate scale of the fluid/film interface where a discrete,
particle model may be needed, and (c) the atomistic/QM scale of relevance to
surface processes. Surface processes may include adsorption, desorption, sur-
face reaction, and surface diffusion. Aside from the disparity of length scales,
the time scales of various processes differ dramatically, ranging from picosecond
chemistry to seconds or hours for slow growth processes (Raimondeau and
Vlachos, 2002a, b).

The vastly varying time scales and similar variations in length scales prevent
simply ‘‘brute force’’ molecular simulation of the entire process. No amount of
foreseeable advances in computational power will ever enable such a modeling
approach. For these processes, application of different models and tools at
different scales is essential, resulting in onion-type hybrid multiscale models (see
Fig. 5). For example, a hybrid model for crystal growth may consist of a CFD
model far away from the growing interface, an appropriate molecular or me-
soscopic model (e.g., MD, DSMC, or BD) in the boundary layer, and MC or
MD, with potentials parameterized using DFT, to simulate microscopic proc-
esses on the surface of a growing nanoparticle. Another example of hybrid
simulation entails, the ONIOM method of the software Gaussian (Frisch et al.,
2002). In particular, one treats quantum mechanically the core where chemical
reactivity and high activity is crucial, uses molecular mechanics farther out, and
continuum approximation (e.g., via the dielectric constant) for the solvent even
farther out.

The overall idea of hybrid simulation lies in the domain being decomposed
into subdomains and the application of a different model in each subdomain
(see Fig. 5). This approach is called domain decomposition. In order to improve
the coupling between codes, an overlapping subdomain or interfacial or hand-

shaking region is created within which both models are solved and exchange
information. The size of the interface can be adjusted to ensure proper coupling
between codes (in physics terminology it can be diffuse or sharp, i.e., of zero
thickness). In general, the interface width has to be small enough to minimize
the cost of the finer scale model but sufficiently large to allow proper relaxation
of the macroscopic information in the atomistic domain.

Three algorithms, depicted in Fig. 4, have been proposed to solve onion-type
hybrid multiscale models (Vlachos, 1997). The first applies to steady-state
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problems. The solution can be obtained iteratively by passing the steady-state
information back and forth (in each iteration) between the two models until
convergence of the hybrid scheme is achieved (iterative scheme). Given the in-
herent noise of discrete particle simulations, suitable criteria are needed to ensure
steady-state convergence of a stochastic model (Vlachos, 1997). Furthermore,
owing to nonlinear phenomena, there is no guarantee of convergence (a common
observation for realistic systems) (Raimondeau and Vlachos, 2002b).

The second algorithm entails developing an approximate surface (a reduced
model) of the finer length scale model as a function of parameters of the coarser
scale model. For example, one could compute the isotherm in the case of fluid-
surface equilibrium or the reaction rates in the case of a catalytic reaction as a
function of surface temperature and partial pressures of the fluid phase. In
essence, what one does is to map or parameterize the boundary conditions of the
coarser scale model using the finer scale model. This mapping typically entails
some ensemble/spatial averaging technique that reduces the degrees of freedom
of the finer scale model to provide coarse information needed in the next model
up of the multiscale ladder. In mathematical terminology, this step can be
thought of as a restriction or contraction operator that operates onto the micro-
scopic model to provide coarse information. This reduced model is subsequently
coupled with or fed into the coarser scale model. This algorithm is suitable when
steady-state or quasi-steady-state (QSS) solutions are desired. In the latter case it
is tacitly assumed that the finer scale model relaxes fast enough for QSS to be
established. The idea of developing a reduced model (in this case a boundary
condition) using the finer scale model works well as long as the mapping is
accurate. Accuracy, however, is a non-trivial issue to satisfy (see Ludwig and
Vlachos (2004) for an example illustrating the difficulties in DFT/MD coupling).

Obviously, the above algorithms are not suitable when transients of the finer
scale model are involved (Raimondeau and Vlachos, 2000), as, for example,
during startup, shut down, or at a short time after perturbations in macroscopic
variables have occurred. The third coupling algorithm attempts fully dynamic,
simultaneous solution of the two models where one passes information back and
forth at each time step. This method is computationally more intensive, since it
involves continuous calls of the microscopic code but eliminates the need for a
priori development of accurate surfaces. As a result, it does not suffer from the
problem of accuracy as this is taken care of on-the-fly. In dynamic simulation,
one could take advantage of the fast relaxation of a finer (microscopic) model.
What the separation of time scales between finer and coarser scale models
implies is that in each (macroscopic) time step of the coarse model, one could
solve the fine scale model for short (microscopic) time intervals only and pass
the information into the coarse model. These ideas have been discussed for
model systems in Gear and Kevrekidis (2003), Vanden-Eijnden (2003), and
Weinan et al. (2003) but have not been implemented yet in realistic MC sim-
ulations. The term projective method was introduced for a specific implemen-
tation of this approach (Gear and Kevrekidis, 2003).
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B. APPLICATION OF ONION-TYPE HYBRID MULTISCALE SIMULATION TO GROWTH OF

MATERIALS

In the area of nanomaterials and thin films, product ‘‘quality’’ is judged from
the sharpness of interfaces, crystallinity, defects, polymorphism, shape, uni-
formity in particle-size distribution, film texture, etc. Engineering product qual-
ity demands linking of phenomena at very different scales and has attracted
considerable interest over the last few years (Alkire and Verhoff, 1998; Christ-
ofides, 2001; Raimondeau and Vlachos, 2002a). A recent review of multiscale
simulation of CVD processes for various materials is given in Dollet (2004).

Several hybrid simulations on crystal growth can be found in recent literature.
Examples include dendritic solidification by coupling finite-different discretizat-
ion of a phase field model to a MC simulation (Plapp and Karma, 2000),
coupling a finite difference for the melt with a cellular automata for the so-
lidification (Grujicic et al., 2001), a DSMC model for the fluid phase with a
Metropolis-based MC for the surface to address cluster deposition onto subst-
rates (Hongo et al., 2002; Mizuseki et al., 2002), a step model for the surface
processes coupled with a CFD simulation of flow (Kwon and Derby, 2001) (two
continuum but different feature scale models), an adaptive FEM CVD model
coupled with a feature scale model (Merchant et al., 2000), and one-way coupled
growth models in plasma systems (Hoekstra et al., 1997). Some specific appli-
cations are discussed in more detail below.
1. Polycrystalline Films

Fabrication of polycrystalline films is an inherently multiscale problem of
substantial technological importance; as a result, several studies have been
conducted recently. For the most part, these have been serial (one-way coupling
or even fully disconnected) simulations. Gilmer and co-workers presented de-
coupled, different scale growth models of sputtering. Specifically, the level-set
method was used at the largest scale for film evolution, the level-set method
coupled with a diffusion model for dissolution of TiN clusters on a surface, and,
finally, a dual lattice KMC model for Al particle growth (see Baumann et al.
(2001) and references therein). In a similar spirit, front-tracking techniques were
employed by our group to delineate the factors controlling zeolitic film texture
fabricated from pre-grown seeds (Bonilla et al., 2001) followed by fundamental
transport/colloids or KMC-based models to elucidate single nanoparticle
growth mechanisms (Nikolakis et al., 1999, 2000, 2003). The work of Srolovitz
et al. on diamond film growth under CVD conditions is yet another example
where film texture is important and where decoupled, different type simulations
were exploited; see overview in Srolovitz et al. (1997). While these models were
applied to different materials and scales (completely decoupled), the insights
gained at different scales have been instrumental for materials design in
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different applications. It is expected that future work will aim at linking these
models and phenomena over multiple scales.
2. Physical and Chemical Fluid Deposition of Thin Films (Fluid– Surface

Coupling)

In microelectronics fabrication, small-scale features (e.g., trenches) need to be
conformally covered, i.e., a spatial uniform deposit is desired. In such small
features, the continuum approximation typically breaks down when the mean
free path becomes comparable to the feature size, whereas the continuum ap-
proximation is often fine in the main body of the reactor. This separation of
geometric length scales demands a multiscale approach beyond just mesh ad-
aptation. In CVD, a ballistic growth model was used by Rodgers and Jensen
(1998) to compute an effective sticking coefficient of incoming molecules as a
function of surface topology in the case of non-continuum transport of mol-
ecules in small-scale features (large Knudsen number). This information was
passed to the boundary condition of an FEM code of a CVD reactor. Given the
disparity of time scales, QSS could be assumed at the reactor scale and iterations
could be used where information is passed between the two models to evolve the
growing interface of a trench (a moving boundary problem). This coupling
algorithm is an example of parameterization of boundary conditions method
(surface response approach; see solution strategies at the left of Fig. 4). In order
to account for the sticking probability of molecules, semi-empirical potential-
based MD have been carried out as a function of incident angle and energy, and
this information was incorporated (by suitable integration over necessary de-
grees of freedom) in a line-of-sight transport model to compute local growth
velocities (Hansen et al., 2000). This lower scale model information was then
incorporated into a level-set calculation that is ideal for moving boundary
problems arising in crystal growth or etching.

Next, coupled hybrid stochastic-continuum models are discussed. The stoc-
hastic KMC model is employed to describe surface processes of epitaxy and
account for spatial correlation effects, nucleation, and microstructure evolution.
The continuum model, on the other hand, describes the fluid mechanics and
transport phenomena at the reactor scale. One of the first such hybrid multiscale
growth simulations coupled a fluid-phase PDE model with a pseudo-3D KMC
model to study the transition between growth modes in epitaxial growth of films
(Lam and Vlachos, 2001; Vlachos, 1999). These simulations were performed in
stagnation flow geometry, where a similarity transformation reduces the 3D
fluid-phase problem into a 1D problem, with isoconcentrations being parallel to
the surface (this is an important point, discussed further below in the multigrid
methods, because it requires a single KMC-simulation box). Pseudo-3D KMC
simulations are based on the solid-on-solid (SOS) approximation and are ac-
tually 2D simulations. In particular, each point represents the film height, so the
3D surface can be described by a 2D array of heights; within the SOS
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approximation, no vacancies and overhangs can form in a film. While the SOS
assumption is not fully realistic, it is commonly employed in KMC simulations
of crystal growth.

In these hybrid simulations, coupling happened through the boundary condi-
tion. In particular, the fluid phase provided the concentration to the KMC
method to update the adsorption transition probability, and the KMC model
computed spatially averaged adsorption and desorption rates, which were sup-
plied to the boundary condition of the continuum model, as depicted in Fig. 7.
The models were solved fully coupled. Note that since surface processes relax
much faster than gas-phase ones, the QSS assumption is typically fulfilled for the
microscopic processes: one could solve for the surface evolution using the KMC
method alone, i.e., in an uncoupled manner, for a combination of fluid-phase
continuum model parameter values to develop a reduced model (see solution
strategies on the left of Fig. 4). Note again that the QSS approach does not hold
at very short (induction) times where the microscopic model evolves considerably.

These multiscale simulations linked, for the first time, macroscopic variables,
such as flow rate, substrate temperature, and composition, with microscopic
features, e.g., surface roughness of a growing film. As an example of such a link,
Fig. 8a depicts a kinetic phase diagram in the growth rate-inverse temperature
plane from simulations where various conditions were varied (Lam and
Vlachos, 2001). At relatively high temperatures and slow growth, the atoms
have sufficient time to reach steps, and step flow is the observed growth mode.
On the other hand, at relatively low temperatures and fast flow, the atoms do
not have sufficient time to reach steps, and small nuclei form between steps,
contributing to roughening. Typical snapshots of film morphologies from the
two modes are also shown in Figs. 8c and d. The solid line in Fig. 8a separates
the desirable step propagation growth mode (higher temperatures and lower
growth rates) from the 2D nucleation mode (lower temperatures and higher
growth rates).
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ulations of homoepitaxy in an atmospheric pressure reactor depicting the transition from step flow
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tetraethyl–gallium flux. (c) and (d): snapshots depicting different growth modes.
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There is a limited number of experiments from coupled systems to enable
comparison to experiments, in part because UHV techniques are difficult to
apply to higher pressures where coupling of fluid flow and surface processes are
important. Nonetheless, Fig. 8b shows a similar kinetic phase diagram for
growth of GaAs obtained by X-rays (Kisker et al., 1995). The similarity (e.g.,
Arrhenius type of behavior) of experimental data with the simulations is strik-
ing, but more quantitative comparison with the prototype (simple) model is
meaningless. Owing to the linking of micro-features with macroscopic variables,
multiscale simulation could be used to enable design or control of films and
nanoparticles with certain characteristics, such as a certain surface roughness,
i.e., a top-down realization of multiscale simulation depicted in Fig. 1. This issue
is further discussed in the systems tasks section.

In a similar spirit, Alkire, Braatz and co-workers developed coupled hybrid
continuum-KMC simulations to study the electrodeposition of Cu on flat sur-
faces and in trenches (Drews et al., 2003b, 2004; Pricer et al., 2002a, b). A 3D
KMC simulation accounted for the surface processes as well as diffusion in the
boundary layer next to the surface, whereas a 1D or 2D continuum model (with
adaptive mesh) was applied to simulate the boundary layer farther away. In
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their initial implementation, the continuum model passed fluxes to the KMC
and the KMC passed concentrations to the continuum model. Since the length
scales simulated by the KMC method are relatively small, each cell of KMC was
assumed to extend over a certain non-atomic length scale (�10–100 nm) to
enable comparison with experiments (an ad hoc coarse-grained KMC). Com-
parison of surface roughness to AFM data for Cu deposition was also done.
These studies have nicely demonstrated that linking multiscale simulation with
experimental results is definitely a reasonable short-term goal. In fact, one could
also use such experiments to parameterize transition probabilities of KMC. This
issue is revisited in the systems tasks’ section.

In coarse graining of KMC on a single monolayer entailing the same mi-
croscopic processes as in growth, the transition probabilities of various proc-
esses are scaled by different factors (Katsoulakis et al., 2003b; Katsoulakis and
Vlachos, 2003); thus, when multiple processes occur (as in the case of growth),
appropriate scaling of the various processes is necessary. Future work in coarse
graining (see section on spatially coarse-grained KMC) related to crystal growth
is essential to further extend the exciting hybrid simulations of Alkire, Braatz
and co-workers.
3. Deposition by Molecular Beam Epitaxy (Uncoupled Fluid– Surface Systems)

Another problem of hybrid multiscale simulation in crystal growth entails
coupling of KMC with a diffusion/reaction, continuum type of model to de-
scribe epitaxial growth of a film. Here, the bulk fluid phase is ignored, i.e., the
model applies to molecular beam epitaxy (MBE) conditions. Crystal growth
may occur on low index crystallographic planes, such as the (1 0 0) surface, or
vicinal surfaces, such as an (h10) plane, consisting of terraces separated by steps
(see Fig. 8c for step–terrace structure). Planes corresponding to small misorien-
tations with respect to a low index surface ðhb1Þ are composed of large terraces
separated by steps that are far apart. These surfaces are impossible to simulate
with currently available KMC simulations even in the absence of flow. Careful
examination of the aforementioned hybrid KMC/flow simulations reveals that
they have all been performed for step distances (or more generally features) that
are too small so they can be handled by a single KMC simulation box.

So how can one handle situations where the steps are far apart? One answer
lies in the pioneering work of Burton et al. (1951), also known as the BCF
model. The BCF model is a continuum PDE that describes adsorption of atoms
to and desorption from terraces along with surface diffusion on terraces [see Eq.
(2) below for a simplified version of the BCF model]. When the concentration of
adatoms is relatively large, nucleation between distant steps is most likely to
occur, because the probability of a diffusing adatom to reach steps before en-
countering another adatom is low. Under these conditions, the BCF model is
inadequate since it does not account for nucleation. Furthermore, the boundary
conditions in the BCF model ignore the discrete nature of steps and treat them



DIONISIOS G. VLACHOS22
as continuum points where either partial equilibrium or Robin boundary con-
ditions are applied. Robin boundary conditions can account for the adatom
kinetics of attachment to and detachment from steps. Accumulated recent ex-
perimental work from STM and statistical thermodynamic analysis dating back
to the original BCF paper have clearly shown that steps consist of kinks and
straight ledges, and that thermal fluctuations control the structure of steps and,
thus, the velocity by which steps advance on a film. Therefore, a microscopic
resolution of the steps could be important under certain conditions.

As a first step toward overcoming the above problems, a hybrid diffusion–ad-
sorption model for the terrace linked with a KMC model near the steps was
developed (Schulze, 2004; Schulze et al., 2003). This domain decomposition stems
from a natural separation of scales. The continuum terrace model between steps is

@c

@t
¼ Dr2cþ F (2)

where D is the surface diffusivity, c the adatom concentration, and F the ad-
sorption flux. A KMC simulation is employed near each step to provide the
boundary conditions of Eq. (2).

Note that in this specific model, desorption is neglected, and sites get regen-
erated upon adsorption, so the classic Langmuir blocking of sites is uncommon
for MBE modeling. Furthermore, the diffusion–adsorption model for the ter-
race is only approximate since interactions between molecules are not accounted
for. As a result, this hybrid model cannot handle nucleation between terraces,
and applies only to small supersaturations or high temperatures [note that for
high temperatures, one needs to include desorption in Eq. (2)] where the adatom
concentration on terraces is relatively low.

The rationale of using hybrid simulation here is that a classic diffusion–ad-
sorption type of model, Eq. (2), can efficiently handle large distances between
steps by a finite difference coarse discretization in space. As often happens in
hybrid simulations, an explicit, forward discretization in time was employed. On
the other hand, KMC can properly handle thermal fluctuations at the steps, i.e.,
provide suitable boundary conditions to the continuum model. Initial simula-
tions were done in ð1þ 1Þ dimensions [a pseudo-2D KMC and a 1D version of
Eq. (2)] and subsequently extended to ð2þ 1Þ dimensions [a pseudo-3D KMC
and a 2D version of Eq. (2)] (Schulze, 2004; Schulze et al., 2003). Again, the
term pseudo is used as above to imply the SOS approximation. Speedup up to a
factor of 5 was reported in comparison with KMC (Schulze, 2004), which while
important, is not as dramatic, at least for the conditions studied. As pointed out
by Schulze, one would expect improved speedup, as the separation between
steps increases while the KMC region remains relatively fixed in size. At the
same time, implementation is definitely complex because it involves swapping a
microscopic KMC cell with continuum model cells as the steps move on the
surface of a growing film.
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C. APPLICATIONS OF ONION-TYPE HYBRID MULTISCALE SIMULATION TO OTHER

AREAS

There have been many hybrid multiscale simulations published recently in
other diverse areas. It appears that the first onion-type hybrid multiscale sim-
ulation that dynamically coupled a spatially distributed 2D KMC for a surface
reaction with a deterministic, continuum ODE CSTR model for the fluid phase
was presented in Vlachos et al. (1990). Extension to 2D KMC coupled with
1D PDE flow model was described in Vlachos (1997) and for complex reaction
networks studied using 2D KMC coupled with a CSTR ODEs model in
Raimondeau and Vlachos (2002a, b, 2003). Other examples from catalytic ap-
plications include Tammaro et al. (1995), Kissel-Osterrieder et al. (1998), Qin et

al. (1998), and Monine et al. (2004). For reviews, see Raimondeau and Vlachos
(2002a) on surface–fluid interactions and chemical reactions, and Li et al. (2004)
for chemical reactors.

In the area of fluids, coupling of MD near a wall with a continuum, de-
terministic description of the Navier–Stokes unidirectional flow farther away
from the wall based on overlapping subdomains of domain decomposition was
presented in O’Connell and Thompson (1995). A nice description of ensuring
continuity of momentum flux was given and the velocity field was made con-
sistent across the interface by using constraint dynamics in MD. See also Nie
et al. (2003) for coupling of MD with a continuum model of flow, and
Hadjiconstantinou and Patera (1997), where MD was again coupled with a
continuum description of the incompressible Navier–Stokes solved using a
spectral element method and the Schwart alternating method with overlapping
subdomains. While the work of Hadjiconstantinou and Patera was applied to
steady-state problems and invoked an iterative scheme to reach convergence
(see solution strategies in Fig. 4), the separation of time scales between mi-
croscopic and continuum models was emphasized as a means of reducing the
computational burden of hybrid schemes. Another example of MD/CFD for a
tethered polymer on a surface in share flow was recently studied (Barsky et al.,
2004) and shown to be in very good agreement with MD simulations, with
significant reduction in CPU. Coupling of continuum mesoscopic or stochastic
models near the Earth’s surface with a fluid model has successfully been ap-
plied to tropical convection in order to study the effect of fluctuations from
unresolved degrees of freedom of fine scales on climatology (Khouider et al.,
2003; Majda and Khouider, 2002).

The materials community has made significant advances in predicting me-
chanical properties of materials and initiation of defects using hybrid multiscale
simulation. This is one of the application areas where multiscale simulation has
advanced the most. Several nice reviews and perspectives have already been
published (Maroudas, 2000, 2003; Miller and Tadmor, 2002; Rudd and
Broughton, 2000). Therefore, it suffices to give only a brief account of the
evolution of multiscale simulation in this area here. One of the earlier and
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successful multiscale approaches in solid mechanics is the quasi-continuum

method of Tadmor et al. (1996), Philips (1998), Shenoy et al. (1999), and Miller
and Tadmor (2002), where an adaptive finite element mesh that is refined to
atomistic dimensions at interfaces is used. The energy of each cell is computed
from the underlying Hamiltonian from a single ‘‘representative’’ atom that is
embedded in the cell and subject to the deformation field of the cell. Subse-
quently, the equilibrium configuration at 0K is determined from an energy
minimization of the total energy of all cells to provide the deformation field. It is
worth noting that the embedding process of the quasi-continuum method (single
atom resolving the energy of a coarse FEM cell) has a stronger parallel to the
multigrid-type hybrid simulation discussed in the next section than the onion-
type simulation, at least in the overlapping regime.

The quasi-continuum approach has been successful in static problems but
limited to equilibrium situations and 0K. Its extension to dynamic problems has
not been easy, as revealed by subsequent works (Abraham et al., 1998a;
Broughton et al., 1999; Cai et al., 2000; Maroudas, 2000; Weinan and Huang,
2002). The simulations by Abraham et al. (1998a) are one of the first to con-
currently couple quantum mechanics at the core of a dislocation, MD to capture
the atomic motion near the core, and finite elements of continuum elasticity
farther out to simulate defect formation and propagation in materials. In a
similar spirit, application of onion-type hybrid multiscale simulation to oxida-
tion of Si has also been reported (Nakano et al., 2001; Ogata et al., 2001).
Coupling of atomistic MD and continuum FEM models in the overlapping
region can be accomplished by refining the mesh of FEM to atomistic sizes.
However, materials simulations have revealed that this approach causes prob-
lems in some cases. Coarse graining of MD to large scales (Rudd and Brough-
ton, 1998), or combination of FEM refining and MD coarse graining are other
options that may in fact be superior (for a review see Rudd and Broughton
(2000)). The issues of proper coupling in the overlapping subdomain, along with
additional challenges of hybrid simulations, are discussed in detail in section F.
D. MULTIGRID-TYPE HYBRID MULTISCALE SIMULATIONS

The above problems exhibit phenomena with well-separated length scales,
where the coupling between the continuum and discrete models happens at an
interface (the overlapping or handshaking regime). In most published work on
discrete particle/flow distributed systems, the external field (e.g., the concentra-
tion profile) of the continuum model parallel to a surface is either uniform, such
as in an ideal, infinite-size stagnation flow, or exhibits nanometer-scale in-
homogeneities (smaller than the KMC simulation box size). In this situation, a
single discrete particle simulation is adequate to resolve the spatial correlations,
and one could couple it with the deterministic, continuum model.
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There is another very important class of problems where no well-defined sep-
aration of length scales and spatial gradients exist over large length scales. There
are numerous examples of such problems. Flow along a long tube is one where
gradients in pressure and velocity fields occur. Growth on a large wafer is another
where flow, concentration, and temperature non-uniformities across the substrate
exist. Nucleation and growth of materials within a thick substrate in the coun-
tercurrent diffusion-reaction configuration (Gummalla et al., 2004) and diffusion
through realistically thick microporous films used for separation or membrane
reactors (Chatterjee et al., 2004a) are two more. These problems exhibit mac-
roscopic gradients (over millimeters to inches), which are beyond the realm of
conventional discrete particle models. Furthermore, with a few exceptions, mainly
in our group (Lam et al., 2001; Snyder et al., 2003; Vlachos and Katsoulakis,
2000), KMC simulations have been limited to situations where the external field
(e.g., pressure) is uniform, and as a result, they were carried out under periodic
boundary conditions. On the other hand, non-equilibriumMD simulations under
a gradient in chemical potential have already been introduced (Cracknell et al.,
1995; Fritzsche et al., 1995; Heffelfinger and van Swol, 1994; MacElroy, 1994;
MacElroy and Suh, 1997; Maginn et al., 1993; Sunderrajan et al., 1996; Xu et al.,
1998). While microscopic models under gradients are now available, they cannot
cope with the large length and time scales of realistic systems.

Recently, there has been strong interest in multigrid-type hybrid multiscale
simulation. As depicted in Fig. 6, a coarse mesh is employed to advance the
macroscopic, continuum variable over macroscopic length and time scales. At
each node of the coarse mesh, a microscopic simulation is performed on a finer
mesh in a simulation box that is much smaller than the coarse mesh disc-
retization size. The microscopic simulation information is averaged (model re-
duction or restriction or contraction) to provide information to the coarser
mesh by interpolation. On the other hand, the coarse mesh determines the
macroscopic variable evolution that can be imposed as a constraint on micro-
scopic simulations. Passing of information between the two meshes enables
dynamic coupling.

The computational advantages of such multigrid methods arise from two key
factors. First, microscopic simulations are carried out over microscopic length
scales instead of the entire domain. For example, if the size of fine grid is 1% of
the coarse grid in each dimension, the computational cost of the hybrid scheme
is reduced by 10�2d, compared with a microscopic simulation over the entire
domain, where d is the dimensionality of the problem. Second, since relaxation
of the microscopic model is very fast, QSS can be applied at the microscopic
grid while the entire system evolves over macroscopic time scales. In other
words, one needs to perform a microscopic simulation at each macroscopic
node for a much shorter time than the macroscopic time increment, as was the
case for the onion-type hybrid models as well.

The multigrid branch of multiscale simulation is less developed. To my
knowledge, Tammaro and Evans were the first to introduce such multigrid-type



DIONISIOS G. VLACHOS26
hybrid multiscale simulations for the example of a traveling wave in a catalytic
reaction (Tammaro et al., 1995). In their example, species A diffuses very
quickly, whereas species B diffuses slowly. To cope with the large length scales
and separation of time scales, they advanced over the entire interface of the
traveling wave species A, using the continuity equation based on a finite dif-
ference coarse grid. At each node of the finite difference grid, they carried out a
KMC simulation in which species A was randomly distributed (this approach
copes with the huge disparity in time scales between diffusion of species A and B
and is another type of hybrid simulation) and species B was treated by KMC.
Information was passed back and forth between the two models at the two
grids.

Interesting results from coupling MD with continuum equations using the
multigrid-type hybrid approach were presented by Weinan et al. (2003) for
dislocation dynamics and crack propagation. The method was termed hetero-

geneous multiscale method and is conceptually in the same spirit as the work of
Tammaro et al. (1995). The tooth-gap method is a related technique (Gear et al.,
2003) to deal with these problems. In a different context of fluid flow simu-
lations, coarse levels were modeled with continuum fluid mechanics and fine
levels with discrete particle simulations (the DSMC method) (Garcia et al.,
1999). Multigrid ideas to resolve small-scale information and pass it into large-
scale models for climate predictions have also been discussed by Majda and co-
workers (Majda and Khouider, 2002).
E. AN EXAMPLE OF MULTIGRID-TYPE HYBRID MULTISCALE SIMULATION FOR

GROWTH UNDER LARGE LENGTH SCALE GRADIENTS

An example of the aforementioned multigrid-type hybrid multiscale simula-
tion from crystal growth for simulating nucleation and growth in large length
scale systems is provided following Gummalla et al. (2004). Nucleation and
growth are distributed in space and occur often in relatively localized areas, but
the time and place where this happens is stochastic, i.e., the multiple grids have
to be built as a simulation progresses and remeshing may be necessary as time
evolves. The specific system refers to Pd deposition under CO2 supercritical
conditions within an alumina disk �1mm thick. Hydrogen and the organome-
tallic precursor are introduced from opposite sides of a countercurrent geometry
to react, leaving behind Pd, as depicted in Fig. 9a. Experimentally, a challenge is
to confine the chemistry within the substrate in such a way that a thin but
continuum Pd film forms, which can be used for hydrogen separation. In this
system, gradients in concentrations of species develop over the entire domain
owing to diffusion and chemical reactions. On the other hand, nucleation occurs
at random locations and times but is limited to the nanometer scale. Nucleation
can be thought of as a noisy term within the governing PDEs, whose closed
form is unknown, rather than in the boundary condition.
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This disparity in length scales on the one hand and the stochastic nature of
nucleation on the other underscore the multiscale nature of the problem. The
governing PDEs describing the concentrations of reagents determine the prob-
ability of nucleation and must be solved over large length scales that are far
beyond the realm of microscopic KMC. To overcome the disparity of length
scales, an adaptive mesh refinement strategy has been used with four levels that
enable linking macroscopic scales to the nanometer, as shown schematically in
Fig. 9b (note that these multiple grids differ from the schematic of Fig. 6 to
better fit the problem at hand). One question is: Where and when does one
decide to refine the mesh? This is actually done probabilistically. Since
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nucleation has a higher probability of occurrence wherever concentrations are
high, the mesh is refined when and where the probability for nucleation is above
a certain low threshold. The chosen region for mesh refinement typically in-
volves high concentrations of nucleation precursors. Nuclei can also form in
regimes where the probability of nucleation is low, but in our experience, this
does not lead to growth but to a few isolated nucleation events. The use of a
threshold eliminates spurious mesh refinement in ‘‘wrong’’ regions.

The multigrid, hybrid multiscale approach entails solving the continuum
governing (diffusion–reaction) equations in porous media at the three coarser
meshes and a stochastic treatment of nucleation at the finest mesh. In the finest
mesh, a KMC simulation could be employed and linked to a front tracking
technique to follow the evolution of growing clusters. Upon significant growth
of clusters (cluster size4mesh size of level 3), growth could be handled from the
next coarser mesh. In order to accelerate the hybrid scheme, an exponential
distribution was used instead of an actual KMC. KMC simulations in a well-
mixed batch reactor have been compared with the hybrid approach, and good
agreement was found (Gummalla et al., 2004). Thus, at each location of the
finest mesh the probability for nucleation per unit time, Po, which is propor-
tional to the nucleation rate, is computed. The probability for a nucleation event
in a time tnuc after the creation of a previous nucleus is assumed to be

PðtnucÞ ¼ 1� exp½�tnucPo� (3)

As time evolves by Dt, the continuum model at the third mesh provides con-
centrations that affect the nucleation rate of the stochastic model via Eq. (3). At
every time step, PðtnucÞ is computed and compared with a random number
between 0 and 1. When the random number is larger than PðtnucÞ, tnuc increases
by Dt, whereas when the random number is less than PðtnucÞ, a new nucleus is
seeded and tnuc is set to zero. Nucleation and growth, when occurring at the
finest mesh, consume nucleation precursors, whose rate of consumption is
passed to coarse grids. These hybrid multiscale simulations can provide insights
into the roles of nucleation and growth kinetics in microstructure, defects, film
continuity, etc. that can be directly compared with experiments. An example is
depicted in Figs. 9c and d.

These hybrid approaches have a lot of potential for treating nucleation stoc-
hastically while enabling simulations on large domains. Simulations in higher
dimensionalities and of self-organization phenomena (e.g., Lebedeva et al.,
2004a, b) using multigrid hybrid multiscale models are definitely desirable.
F. CHALLENGES IN HYBRID MULTISCALE SIMULATIONS

The major issue in hybrid multiscale simulation is ‘‘patching’’ of models used
in different subdomains (Nie et al., 2003; Raimondeau and Vlachos, 2002a). In
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brief, coupling may lack convergence (Raimondeau and Vlachos, 2002b)
(especially in an iterative scheme) and could result in spurious solutions (Reich,
1999) and violation of conservation laws. One of the best expositions of patch-
ing problems can be found in Weinan and Huang (2002) for problems related to
dislocations, friction, and crack propagation. Matching conditions were devel-
oped between atomistic (MD) and continuum regions to minimize reflection of
phonons of MD at the MD/continuum model interface. While the authors were
successful, they noted that at higher temperatures and in nonlinear situations,
overheating may occur. General solutions to patching in most applications are
still needed. These issues are elaborated below, and recent progress made in
overcoming them is outlined by focusing on crystal growth problems.

A frequent problem in hybrid multiscale simulations is noise-induced nu-
merical instability (Raimondeau and Vlachos, 2002a, b; Rusli et al., 2004). Such
instabilities may occur when the time step of the KMC becomes too large to
violate the numerical stability criterion of the continuum model, or when rare
events happen that create huge variations in the boundary condition or in the
source/sink term of the continuum model. This numerical instability is a result
of the small size of the KMC simulation box (a problem stemming from our
inability to deal with realistically large length scales). Consequently, the KMC
response is considerably noisier than what one would have for realistic length
scales. In order to reduce the noise of KMC passed to the continuum model, in
Vlachos (1999) and Lam and Vlachos (2001) the KMC simulation was run for a
certain number of events before the gas-phase model was solved. This is jus-
tifiable, given that the time step of KMC is typically much smaller than that of
the gas-phase model, i.e., surface processes have a much shorter relaxation time.
Thus, the numerical strategy followed is spatial and temporal averaging in
KMC to compute rates with reduced noise (variance reduction) prior to passing
them to the continuum model. The number of MC events used in temporal
averaging was varied to ensure that the results were unaffected. In cases where
the time scales of the KMC and the continuum model are comparable, one
could use parallel processing by running multiple images of the KMC to create
microscopic-model based rates with reduced noise. Similar problems were
also reported by Drews et al. They used a filtering approach to reduce the noise
in hybrid simulations for improved code robustness (Drews et al., 2004;
Rusli et al., 2004). Note that temporal averaging in a discrete particle model
has the advantage of minimizing the number of continuum model calls; as a
result, it leads to a speedup of a hybrid scheme. System level tasks, such
as filtering, arising from the controls community, was also employed in the
work of Lou and Christofides (2003a, b, 2004) (see also corresponding section
below).

The exposition in Schulze’s (2004) recent paper underscores in an excellent
manner some additional difficulties encountered in hybrid multiscale simulation
(not just of crystal growth problems) when overlapping subdomains are used.
The replacement of KMC on terraces with the continuum model Eq. (2) reduces
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the noise of the hybrid scheme compared with the microscopic KMC model,
and alters phenomena controlled by noise such as the time scale for bunching of
steps (a common instability in crystal growth). It was reported that while
bunching of steps occurs under the same conditions as in KMC, the dynamics of
the processes was altered. This is obviously an undesirable situation and results
from over coarse graining the microscopic processes on a terrace, i.e., from
replacing the microscopic KMC method with a continuum model.

The unintentional noise-induced numerical instability in coupled fluid-KMC
codes and the reduced noise in the growth on a terrace model underpin just one
of the problems of hybrid multiscale simulation that stem from the incorrect
(over- or under coarse graining of) noise. We expect that coupling of continuum
models with the recently introduced coarse-grained KMC (CG-KMC) simula-
tions, discussed below, will improve or eliminate this noise-induced numerical
instability. This improvement is expected because the much larger length scales
simulated via CG-KMC will result in (correctly) less noisy signals than those
produced by microscopic KMC simulation. On the other hand, use of
the adaptive coarse-grained-KMC (ACG-KMC) method, also touched upon
below, could completely eliminate the need for hybrid simulation for surface
processes, such as the terrace-step model of Schulze, and overcome the reduc-
tion in noise that in turn affects nucleation. Further work is needed to exploit
these ideas.

There is another subtle but fundamental issue in coupling of hybrid models
that has to do with differences in constitutive relations in various subdomains.
In particular, models at various scales correspond (upon passing to the con-
tinuum limit) to different constitutive relations. For example, in the continuum
model on a terrace, Eq. (2), there are no interactions between molecules. Con-
sequently, Fick’s first law

j ¼ �Drc (4)

describes the system adequately. On the other hand, within the KMC subdo-
main, interactions between molecules result in a different underlying mesoscopic
transport equation and constitutive relation, i.e., Fick’s first law does not hold.
We have found out that the specifics of mesoscopic equations and constitutive
relations depend on the microscopic mechanisms of diffusion. For example,
when the activation energy depends only on the energy of the departing site, the
corresponding continuum model (termed Arrhenius dynamics) for the problem
of growth, based on Vlachos and Katsoulakis (2000), is

@c

@t
¼ Drfe�bJ�c½rc� bcð1� cÞrJ � c�g þ F (5)

where D ¼ Doe
�bUo is the diffusion coefficient, Do the diffusion coefficient at

high (infinite) temperature, J the intermolecular potential of adatom–adatom
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interactions, and J � c ¼
R
Jðjr� r0jÞcðr0Þ dr0 a convolution. In this case, the

constitutive relation reads

j ¼ �Dfe�bJ�c½rc� bcð1� cÞrJ � c�g (6)

As another example, when the activation energy for diffusion depends on the
energy difference between the initial and final locations (termed Metropolis
dynamics), the corresponding continuum model for growth reads

@c

@t
¼ rDof½rc� bcð1� cÞrJ � c�g þ F (7)

and the constitutive relation is

j ¼ �Dof½rc� bcð1� cÞrJ � c� (8)

Equations (6) and (8) reduce to Eq. (4) only when the intermolecular potential J
is zero. These are the proper constitutive relations if the microscopic mecha-
nisms of diffusion are the assumed ones.

What are the implications of different constitutive relations in different re-
gimes? In brief, conservation laws are not that easy to satisfy. For example, in
the presence of interactions, matching the concentration profiles in the over-
lapping regime (a common strategy in domain decomposition) is inadequate
since continuity in concentration and its gradient does not ensure the same flux
at the interface. Matching of chemical potentials is potentially a more rigorous
approach, but different mobility terms do not guarantee continuity in fluxes
across the overlapping region. Furthermore, this is a difficult task to accomplish
because constitutive equations, such as the ones written above, do not exist for
most microscopic models. Matching of fluxes at the interface leads at least to
conservation, but further work is needed to fully understand this point.

Another issue in hybrid multiscale simulation pertains to possible mass con-
servation caused by truncation errors. In particular, mapping discrete molecules
into continuum quantities, e.g., updating the concentration, is easy. However,
the reverse task of mapping continuum changes of concentrations into an in-
teger number of molecules along with their spatial placement is also important
(see Schulze (2004)) for some interesting ideas and a coupling factor that is
iteratively determined to match fluxes).

The discussion above focused on onion-type hybrid multiscale simulation.
Finally, even though there are a limited number of examples published, I expect
that the multigrid-type hybrid simulations share the same problems with onion-
type hybrid multiscale models. In addition, appropriate boundary conditions
for the microscopic grid model need to be developed to increase the accuracy
and robustness of the hybrid scheme. Furthermore, the inverse problem of
mapping coarse-grid information into a microscopic grid is ill posed. Thus, it is
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not currently clear what the best way of reconstructing the information on the
fine grid is. Future work will elucidate these issues.
VI. Coarse Graining of Stochastic Models
Hybrid multiscale simulation is currently by far the main multiscale compu-
tational toolkit under development. However, as discussed in the last section,
many problems lack separation of scales, and since a molecular model cannot be
applied to the entire process, coarse graining (upscaling) of molecular models is
an appealing approach, leading to mesoscopic models that can reach larger
length and time scales. These coarse grained or mesoscopic models could be
used as stand-alone models (see examples below) or in hybrid multiscale sim-
ulators (see Fig. 4), e.g., a coarse grained surface simulator is linked with a fluid-
phase model, as in the work of Pricer et al. (2002a, b) and Drews et al. (2003b,
2004). One advantage of stand-alone coarse-grained models over multigrid-type
hybrid simulations is that one does not have to interface multiple models; thus,
one avoids the challenges mentioned in the previous section. Another is that it is
possible to retain the correct noise and thus overcome either numerical insta-
bilities or the alteration of the physics (see discussion above on challenges in
hybrid simulation, and below for the effect of coarse graining on noise).

Next time acceleration is first discussed, followed by space acceleration, and
finally by space-time acceleration of KMC methods. Similar developments are
under way for MD, but this subject is left for a future communication.
A. TEMPORAL UPSCALING OF KMC SIMULATION IN WELL-MIXED SYSTEMS

Separation of time scales is the rule rather than the exception in chemical
kinetics, irrespective of deterministic or stochastic modeling. The disparity of
time scales is easily rationalized by the considerable difference in activation
energies and the strong dependence of reaction rates on activation energies via
the Boltzmann factor. The stiffness of deterministic ODEs is now easily handled
owing to the machinery of implicit, adaptive time step, variable-order solvers.
However, extensions to stochastic systems are far behind. Until recently, KMC
simulations could not deal with separation in time scales. In a conventional
KMC simulation, fast processes with large transition probabilities are fre-
quently sampled, resulting in small simulated times, whereas slow events are
rare and are poorly sampled during a simulation.

Recently, several approaches have been proposed to overcome the disparity
of time scales for certain classes of problems. In order to overcome the problem
of stiffness caused by rapid, partial equilibrated reactions in a living free-radical
polymerization system, a hybrid analytical-KMC method was suggested (He
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et al., 1997). In particular, the partial equilibrium (PE) was enforced to elim-
inate the fast processes by adjusting deterministically the concentrations of
species involved in PE, whereas the slow reaction events were treated stochas-
tically. A problem with this technique is that when the separation of time scales
is moderate, PE is not as accurate. Furthermore, PE applies only after some
induction time. Finally, PE requires conversion of real numbers into integers,
and while this can be done so that mass is conserved, it is not clear what the
errors are.

Resat et al. generalized the above idea and implemented a weighted-prob-
ability KMC method (WP-KMC) to overcome the separation of time scales of
stochastic simulation (Resat et al., 2001). The idea of probability weighting
stems from equilibriumMC umbrella sampling simulations introduced in Torrie
and Valleau (1977). The slow reactions determine the long-term dynamics of
system evolution. In WP-KMC, during each slow reaction event, several events
of fast reactions are simultaneously executed, i.e., one moves a number of mol-
ecules (bundles) rather than moving one molecule per time. The rationale for
this method is that over the time scale of slow reactions (rare events), the
transition probabilities of fast reactions and the concentrations of major reac-
tants (large populations) vary slowly. As a result, one may assume that they do
not change as much, and consequently execute a number of events simultane-
ously. A problem with this approach is that the weighting of probabilities am-
plifies the noise, a physically unrealistic situation (see Fig. 10).

The net-event KMC (NE-KMC) or lumping approach has been introduced
by our group. The essence of the technique is that fast reversible events
are lumped into an event with a rate equal to the net, i.e., the difference
between forward and backward transition probabilities per unit time (Vlachos,
1998). The NE-KMC technique has recently been extended to spatially distrib-
uted systems (Snyder et al., 2005), and it was shown that savings are propor-
tional to the separation of time scales between slow and fast events. The method
is applicable to complex systems, and is robust and easy to implement.
Furthermore, the method is self-adjusted, i.e., it behaves like a conven-
tional KMC when there is no separation of time scales or at short times,
and gradually switches to using the net-event construct, resulting in accelera-
tion, only as PE is approached. A disadvantage of the method is that the noise
is reduced.

A comparison of the WP-KMC, NE-KMC, and conventional KMC is shown
in Fig. 10. These acceleration approaches are successful regarding CPU. How-
ever, since the objective is often to study the role of noise, they do not provide
the correct fluctuations. In a similar vein, use of simple rate expressions, such as
the Michaelis–Menten or Hill kinetics, derived via PE and QSS approximations,
are capable of accelerating KMC simulation since fast processes are eliminated.
However, the noise of the resulting simulation, based on a reduced rate ex-
pression that lumps some of the reaction steps, is usually adversely affected
(Bundschuh et al., 2003).
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Recently, Gillespie (2001) introduced an approximate approach, termed the
t-leap method, for solving stochastic models. The main idea is the same as in the
WP-KMC method. One selects a time increment t that is larger than the mi-
croscopic KMC time increment, and multiple molecular bundles of fast events
occur. However, one now samples how many times each reaction will be
executed from a Poisson rather than a uniform random number distribution.
Prototype examples indicate that the t-leap method provides comparable noise
with the microscopic KMC when the leap condition is satisfied, i.e., the time
increments are such that the populations do not change significantly between
time steps.

Gillespie’s recent work on the t-leap method is a significant advance in ac-
celerating KMC simulation with respect to time constraints. However, some
issues need to be resolved before the method becomes widely used. First, dis-
parity in time scales caused by reaction rate constants rather than concentra-
tions may not be as easy to handle. Second, negative concentrations result with
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probability one, i.e., if one runs long enough, since the Poisson distribution is
unbounded and a molecular bundle can be larger than the actual population of
a species. This situation becomes common as the size of the molecular bundle,
and thus the time step, increases. Additional problems are that large jumps in
time can cause incorrect behavior even if the concentrations are non-negative,
and that the magnitude of the noise is increased for substantial coarse graining
in time increments.

In order to overcome the problem of negative concentrations, two versions of
the binomial t-leap method were recently introduced (Chatterjee et al., 2005d;
Tian and Burrage, 2004). While the essence of the techniques is the same, the
method of Tian and Burrage (2004) appears to be limited to reaction networks
whose species are not shared by multiple chemical reactions. The elimination of
negative concentrations enables substantial acceleration of stochastic simulation
of complex biological networks (Chatterjee et al., 2005b). It has also been shown
analytically and numerically that the binomial t-leap method gives a better
approximation of the noise in comparison with the original Poisson-based
t-leap method of Gillespie (Chatterjee et al., 2005d).

The initial criterion proposed to ensure accuracy and avoid negative con-
centrations in simulations of typical length required a small change in the pro-
pensity functions. While an improved criterion was subsequently proposed
(Gillespie and Petzold, 2003), improved and additional criteria should be de-
veloped. Finally, calculation of Poisson random numbers required by the
method is more expensive. We will illustrate some of these issues below in the
context of spatiotemporal CG-KMC. The t-leap method has further been ex-
tended by Petzold, Gillespie, and co-workers (Rathinam et al., 2003) by em-
ploying implicit solvers that could potentially further increase the time step
increments and overcome the problem of stiffness of stochastic systems. With
the implicit t-leap the evolution is captured more accurately for large jumps in
time, even though the noise is now actually reduced. Stability criteria for the
various t-leap methods were recently developed and the variation of noise be-
tween various methods was rationalized (Cao et al., 2004). A trapezoidal t-leap
method was found to provide better noise characteristics. The t-leap method is
revisited in the section on spatial CG-KMC methods.

Noteworthy are some alternative approaches that address the issue of sep-
aration of time scales by starting with the master equation. Rao and Arkin
(2003) have employed the QSS assumption in stochastic simulation, expanding
on ‘‘adiabatic elimination’’ ideas of fast variables from the master equation
discussed in Janssen (1989a, b) and Vlad and Pop (1989). Haseltine and Raw-
lings portioned events into slow and fast (instead of treating species as done in
the work of Rao and Arkin), and treated fast reactions either deterministically
or with Langevin equations, and slow reactions as stochastic events (Haseltine
and Rawlings, 2002). This hybrid type of modeling builds upon the hierarchy of
models depicted in Fig. 3b and is further discussed below in the biological
networks section.
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It is clear that this is an exploding branch of multiscale simulation. While
significant progress has already been made, different methods pose different
advantages and disadvantages. The main difficulty with most techniques is their
inability to preserve the noise. In this regard, the t-leap method and its deriv-
atives are promising. I expect more work to be devoted to this rapidly growing
branch of multiscale simulation along with many applications from various
areas. While simple reaction networks have been treated with some success, I
believe that there is a clear need to develop a robust, generic methodology that
overcomes the problem of stiffness of complex reaction networks while preserv-
ing the noise that can be important in some applications.
B. SPATIAL UPSCALING OF DISTRIBUTED (LATTICE) KMC SIMULATION

The problem of coarse graining in space is also very important but has re-
ceived less attention. The overall idea of coarse graining degrees of freedom to
move up in scales comes originally from renormalization group theory. An
interesting idea revolves around coarse graining of the Hamiltonian using
wavelets. This idea has been applied successfully to study critical behavior of
prototype fluids (Ismail et al., 2003a, b) and is being currently extended to
complex polymeric systems (Ismail et al., 2005a, b). Coarse graining of the
Hamiltonian was also presented by Ishikawa and Ogawa (2002), but it can be
shown that the proposed expression does not obey detailed balance.

Recently, the mathematical foundations for spatial CG-KMC have been
introduced for grand canonical and canonical ensemble simulations of
Ising-type systems in Katsoulakis et al. (2003a, b) and Katsoulakis and Vlachos
(2003). This work deserves a review of its own. However, in order to put it
in context with the other multiscale developments, some exciting developments
are briefly summarized. The essence of the method is the creation of a lattice
of coarse cells, each consisting of several microscopic cells. Within a coarse
cell, the local mean field is assumed (a closure at the stochastic level). In this
way, some information (degrees of freedom) is lost during coarse graining.
The potential of interactions, the Hamiltonian, and the transition probabilities
are all coarse-grained using wavelets for projecting the energetics and by en-
suring that the microscopic and macroscopic limits are correctly captured (this
is an essential attribute for the success of the method). Simulations have
demonstrated that when the intermolecular potential is relatively long, CG-
KMC gives results in very close agreement with microscopic KMC in terms of
dynamics and equilibrium states, while retaining the noise and reducing the
CPU by many orders of magnitude. Thus, CG-KMC is an ideal tool for reach-
ing large length scales.

While CG-KMC can reach large scales at reasonable computational cost,
it can lead to substantial errors at boundaries and interfaces where large
gradients exist, and the local mean field assumption is not as accurate. Recent
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work has extended coarse graining to adaptive meshes (Chatterjee et al., 2005a,
2004b), in a similar spirit to well-established discretization methods of PDEs.
This method is termed ACG-KMC, and can considerably improve accuracy
with similar or improved computational savings compared with the uniform
mesh CG-KMC simulation. Analytical error estimates of information loss
during coarse graining from finer to coarser scales can be used to design
optimum meshes that ensure high accuracy with minimal computational cost
(Chatterjee et al., 2005a, c).

Next, an example of CG-KMC from pattern formation on surfaces is pre-
sented. Another application to relatively thick membranes was given in Snyder
et al. (2004). In the example considered here, atoms adsorb from a fluid res-
ervoir on a flat surface. Subsequently, they may desorb back to the fluid, diffuse
on the surface, or be annihilated by a first-order surface reaction, as shown in
Fig. 11a. Attractive interactions between atoms trigger a phase transition from a
dilute phase (a low coverage) to a dense phase (a high coverage) (Vlachos et al.,
1991), analogous to van der Waals loops of fluid–vapor coexistence. Surface
reactions limit the extent of phase separation; the competition between micro-
phase separation and reaction leads to nanoscopic patterns by self-organization
under certain conditions (Hildebrand et al., 1998).

A major challenge in simulating such problems is that nucleation occurs at
the nanometer scale whereas self-organization entails competition between nu-
merous pattern blocks for reagents over microns to millimeters. These problems
do not exhibit an obvious separation of length scales. From a different point of
view, the stochasticity is built within the PDE as a source or sink term (if one
were able to write such a PDE). Furthermore, surface diffusion is faster than the
other microscopic processes by many orders of magnitude, but PE cannot be
applied since the actual value of diffusion dictates the presence or absence of
patterns.
Space 

Time

(b)(a)

  Grand canonical  
ensemble

Canonical ensemble 

Surface reaction 

FIG. 11. (a) Schematic of microscopic processes for fluid–surface interacting systems. (b) Spa-

tiotemporal evolution of 1D concentration patterns (coarse graining of two sites into each coarse cell

is used). Bifurcation splittings and mergings occur as time evolves. The fast diffusion necessary for

pattern formation (five to six orders of magnitude faster than the rest of the processes) renders

microscopic KMC unsuitable even for small domains.
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Instead of using multigrid-type hybrid multiscale simulation discussed above,
the CG-KMC method that retains the noise is employed, and it can thus cor-
rectly capture the effect of fluctuations on nucleation and pattern evolution.
Figure 11b shows an example of such a 1D simulation [see also Chatterjee et al.
(2004a)]. Nucleation happens at short times at different locations and times (not
shown), and patterns evolve in time owing to thermal fluctuations, giving rise to
bifurcation splittings and mergings. This evolution of patterns is driven entirely
by thermal fluctuations.

It is expected that simulations like this as well as various other coarse-grained
fluid-like simulation tools (e.g., LB) will become key players in nanometer scale
design and control in the emerging area of nanotechnology, as well as in in-
tervention for control in biological systems. Examples include pattern forma-
tion, self-assembly of nanoparticles, nucleation and growth of materials, and
computational cell biology. Given that these models are generic, application to
very diverse areas is entirely feasible. For a recent application example to trop-
ical convection, see Khouider et al. (2003).
C. SPATIOTEMPORAL ACCELERATION OF DISTRIBUTED (LATTICE) KMC SIMULATION

Integration of spatial and temporal acceleration methods discussed above to
create a stochastic simulation toolkit that can reach large length and time scales
is entirely possible. The first example of integrating spatial and temporal ac-
celeration methods entails the combination of NE-KMC with ACG-KMC
methods to simulate diffusion through relatively thick (�10 mm) membranes
where diffusion becomes rate determining (Snyder et al., 2005). While combi-
nation of time-acceleration methods with lattice KMC is possible, most time
acceleration methods affect noise adversely. Therefore, it appears that integra-
tion of the t-leap method (or a derivative of it) with a spatially distributed
(lattice) KMC simulation is the most promising approach for many applica-
tions. It turns out that the t-leap method developed for well-mixed systems is
fully consistent with the local mean field assumption of the CG-KMC method.

Here, the first example of combining the two methods for the grand canonical
ensemble (adsorption/desorption) is presented. Figure 12a compares the results
of the t-leap CG-KMC method to the CG-KMC ones for a fixed value of the
acceleration parameter e, (see Gillespie (2001) for a precise definition of e). In
this simulation one starts from an empty lattice and monitors the lattice uptake,
i.e., the spatially averaged coverage vs. time, for a fixed value of the fluid
chemical potential. Figure 12b shows the corresponding bundle sizes vs. time. It
is clear that in each adsorption/desorption event molecular bundles greater than
a single molecule occur, leading to acceleration of the simulation. As the ac-
celeration parameter increases, the size of molecular bundles, i.e., the number of
molecules or processes participating in each event, increases. However, for
larger bundle sizes, the possibility of getting negative concentrations, as happens
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FIG. 12. (a) Coverage on an initially empty lattice vs. time from both the CG-KMC simulation

and the Poisson-based t-leap CG-KMC simulation in the grand canonical ensemble. The agreement

is excellent. (b) Corresponding molecular bundles vs. time. (c) Standard deviation (STD) in noise of

coverage vs. coverage (corresponding to different values of the fluid chemical potential) for various

values of the acceleration parameter e. For smaller bundles the noise is nearly exact. However, as one

coarse-grains considerably the time increments, the noise of the t-leap method is slightly increased.

(d) CPU of CG-KMC and of t-leap CG-KMC for two meshes (q is the coarse cell size and m is the

number of coarse cells) and a fixed lattice size of N ¼ mq ¼ 2� 105 microscopic sites. Application of

the Poisson-based t-leap can accelerate the lattice CG-KMC by orders of magnitude, especially

when the meshes are coarse to enable large time increments.
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with well-mixed systems, limits the application of the t-leap CG-KMC method
(an expected result; not shown). Use of the binomial t-leap overcomes this
problem (Chatterjee and Vlachos, 2005).

Next, two main issues are discussed. First, Fig. 12c compares the noise of CG-
KMC to that obtained from t-leaping as a function of coverage, obtained by
varying the fluid chemical potential, for various values of the acceleration
parameter e. At relatively small bundle sizes compared to the coarse cell size q,
the t-leap CG-KMC method gives very good results in both the expected value
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and the standard deviation. However, when larger time increments are at-
tempted, the noise is slightly increased. Finally, Fig. 12d compares the CPU
from the standard CG-KMC simulation and the t-leap CG-KMC simulation
for two meshes as the time increments increase. It is clear that substantially
higher savings than by CG-KMC simulation can be obtained when large time
increments are attempted. This is an exciting result that opens up the possibility
of stochastic simulation of large length and time scales.

One may ask, what are some of the important future directions suggested by
such findings? Developments so far have been focused on examples of prototype
statistical mechanics. There is a need to extend these to realistic, complex sys-
tems such as catalytic reactions, crystal growth, polymers, proteins, self-organ-
ization, etc. Furthermore, benchmark examples from other areas are needed to
further evaluate the success and limitation of various methods. Finally, inte-
gration of the t-leap method with the CG-KMC method, demonstrated here,
holds the greatest promise for enabling stochastic simulation of large length and
time scales.
VII. Multiscale, Stochastic Modeling of Biological Networks
A. SPATIALLY WELL-MIXED SYSTEMS

The need for multiscale modeling of biological networks in zero-dimensional
(well mixed) systems has been emphasized in Rao et al. (2002). The multiscale
nature of stochastic simulation for well-mixed systems arises from separation of
time scales, either disparity in rate constants or population sizes. In particular,
the disparity in species concentrations is commonplace in biological networks.
The disparity in population sizes of biological systems was in fact recognized
early on by Stephanopoulos and Fredrickson (1981). This disparity in time
scales creates slow and fast events. Conventional KMC samples only fast events
and cannot reach long times.

Several methods for speeding up Gillespie’s original algorithm for well-mixed
systems were reviewed above. Among these, the WP-KMC method was recently
employed to study the coupled epidermal growth factor receptor (EGFR) traf-
ficking and transduction (Resat et al., 2003). The binomial t-leap method ap-
plied to the complex MAP kinase cascade (94 signaling species among 296
reactions) demonstrated hundred- to thousand-fold savings in CPU with ex-
cellent accuracy despite the disparity in species populations (Chatterjee et al.,
2005b). An alternative approach to cope with the disparity in population sizes
that has received more attention is hybrid multiscale simulation. In particular,
one treats deterministically species in excess or reactions that involve species in
large populations and stochastically species in low concentration or reactions
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invoking species in low population (see hierarchy in Fig. 3b). Other possible
pairs of models depicted in Fig. 3b could be employed and are mentioned below.

The first applications of such hybrid approaches have just emerged. An ex-
ample of coupled deterministic/stochastic ODEs was recently introduced by Zak
et al. (2003) for a relatively large regulatory genetic network (118 reactions, 44
species, 97 parameters). In this case, species in large concentrations (proteins
and transcription factor dimers) were treated as continuum variables and in-
tegrated with the implicit Euler method, whereas species in relatively low
concentrations (promoters and transcripts) were treated as discrete variables
and their corresponding material balances were solved using the KMC method.
The use of an implicit deterministic integrator demands solution of the KMC;
therefore, some reactions describing the effect of small species on large ones
were omitted (their effect was found negligible when carrying out fully deter-
ministic simulations), leading to one-dimensional coupling of the subsystems,
which was found to provide correct solutions.

It is entirely possible that the ensemble average (expected values) of a stoc-
hastic system differs from the deterministic model solution. For example, in the
simulations of Zak et al. (2003), single stochastic trajectories were found to
deviate significantly from the deterministic ones. In particular, the deterministic
solution does not show adaptation, whereas some of the stochastic trajectories
show adaptation and others do not. One question is whether a system composed
of hundreds to thousands of subsystems, i.e., the ensemble average, approaches
the deterministic behavior or not. Simulations were performed for the model of
Zak et al. (2003) using 2300 different random number initializations, and the
simulations were extended to 1000 h (simulated time). To economize simulation
time, only genes in the ‘‘core’’ of the network (genes A, B, C, D, E, and F) were
simulated. However, the simulation results for the core genes are identical to
those that would be obtained if the cascade genes were included in the sim-
ulations. The ensemble mean of the stochastic simulations converged to ap-
proximately the value from the deterministic simulations for only two out of the
six genes. However, for the remaining genes, the ensemble median or mode did
generally converge to values that were close to the deterministic value. Figure 13
shows illustrative results from these ensemble-based hybrid multiscale simula-
tions (corresponding to their Fig. 3). Gene F had the most complex distribution
of the genes, but the ensemble median did match the deterministic result rea-
sonably well. Despite the large number of simulations, ensemble properties,
especially of gene F, exhibit systematic differences from their deterministic pre-
diction.

As another example of hybrid simulation touched upon above, Haseltine and
Rawlings (2002) treated fast reactions either deterministically or with Langevin
equations and slow reactions as stochastic events. Vasudeva and Bhalla (2004)
presented an adaptive, hybrid, deterministic-stochastic simulation scheme of
fixed time step. This scheme automatically switches reactions from one type to
the other based on population size and magnitude of transition probability.
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Two prototype reaction examples (reversible first-order and irreversible
second-order kinetics) were discussed to address issues of rounding when
switching from deterministic variables to stochastic (i.e., conversion of real
numbers to integers), as well as the thresholds of population sizes and transition
probabilities to control accuracy in the first two moments of the population
(mean and variance). Other more complex examples were also mentioned. The
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BioNetS software was recently published. It can perform various types of sim-
ulations in well-mixed environments (exact stochastic Gillespie method, chem-
ical Langevin model, and deterministic ODE model) as well as hybrid
deterministic simulation for some reactions coupled with exact stochastic sim-
ulation for the rest (Adalsteinsson et al., 2004). The issue of time patching of
hybrid schemes was touched upon, and partitioning of reactions was done based
on the population size (small populations require stochastic treatment, whereas
large populations are treated deterministically). Several examples, including a
dimerization reaction in constant volume as well as cell growth and division, a
chemical oscillator, and a synthetic gene network, were used for model vali-
dation. In a similar spirit, Kiehl et al. (2004) proposed hybrid multiscale sim-
ulation by combining deterministic with exact stochastic simulation. Emphasis
was placed on the time patching between the two types (levels) of models and
the algorithm was applied to the lambda phage switch model system.

As another example of hybrid multiscale simulation, recent work combined
the Poisson-based t-leap method of Gillespie with the next reaction method of
Gibson and Bruck (2000) for reactions invoking large and small populations
(Puchalka and Kierzek, 2004). This two-level method, termed the maximal time
step method, is an interesting hybrid multiscale simulation where large disparity
in populations can be handled efficiently while the noise is nearly exact. Fur-
thermore, partitioning of reaction sets between the two algorithms is easy to
automate. The method was applied to the simulation of glucose, lactose, and
glycerol metabolism in Escherichia coli. Partitioning reactions as jump and
continuous Markov processes, and handling them using the next reaction
method and Langevin method, respectively, were also proposed by Salis and
Kaznessis (2005). In their approach, reactions modeled using the Langevin
method were defined as those that have a large transition probability (occur
many times in the time scale of slow reactions) and slightly change the pop-
ulations of reactants and products.

Burrage et al. (2004) provided an overview of the various methods used for
modeling of chemical kinetics with emphasis on SODEs. Hybrid schemes,
building on the hierarchy depicted in Fig. 3b, were again developed by com-
bining the exact stochastic simulation method of Gillespie, the t-leap method,
and the chemical Langevin equation (first three levels of Fig. 3b). A departure
from other recent hybrid simulations mentioned above is that the authors par-
titioned the reactions into three levels, namely, slow, intermediate, and fast. This
partitioning was based not only on propensities but also on population sizes.
Furthermore, they emphasized that semi-implicit or implicit solvers should be
used for SODEs to cope with possible stiffness, a very reasonable proposal that
was also followed by Zak et al. (2003). The constraint on the t-leap time in-
crement of the original method being sufficiently small to avoid negative con-
centrations (see section on temporal acceleration of KMC methods) was also
brought up, and it appears that it limited, at least in part, the computational
speed up to less than a factor of 2. Their hybrid simulation was applied to the
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expression and activity of LacZ and LacY proteins in E. coli consisting of 22
reactions among 23 species. This study highlighted the point made earlier about
the original t-leap method. It would be interesting to study these examples using
the new binomial t-leap method of Chatterjee et al. (2005d). Furthermore, it
becomes clear that while the proposed partitioning was successful, automatic,
generic criteria allowing one to partition on-the-fly reactions into the various
levels of models of Fig. 3b are needed. Furthermore, the adverse effect of hybrid
schemes on fluctuations of shared species (Takahashi et al., 2004) needs to be
addressed.

As temporal upscaling methods for acceleration of KMC simulation become
mature and more robust, I expect that they will have a significant impact on the
modeling of biological reaction networks.
B. SPATIALLY DISTRIBUTED SYSTEMS

Spatially realistic models are important because most systems, while, not
being well mixed, still comprise a small number of molecules deeming stochasti-
city important. The ramifications of spatial non-uniformity can be substantial.
As an example, spatial variations in the receptor concentration on the mem-
brane surface of a living cell, i.e., receptor clustering, can have important effects
on downstream signaling (Duke and Bray, 1999; Goldman et al., 2002; Shea
et al., 1997). In their review, Meng et al. (2004) made the comment that spa-
tiotemporal modeling of biological systems is still infeasible. However, some
papers have started to emerge. One of the first examples of spatial KMC in
biological systems entails the spatial clustering of membrane receptors in bac-
terial chemotaxis that may lead to collective activity (Shimizu et al., 2003). This
is basically an Ising type of model with first nearest–neighbor interactions that
trigger local spatial organization of receptors close to and below the critical
temperature. Goldman and co-workers have conducted the first off-and-on lat-
tice simulations of a single type of EGF receptor by allowing dimerization,
cluster–cluster collisions, and diffusion of all cluster sizes (Goldman et al., 2002;
Gullick et al., 2002). As discussed in Goldman et al. (2002), off lattice simu-
lations are very slow even when there is no significant separation of time scales
to enable a molecular-level simulation of cell receptor dynamics. Very interest-
ing lattice KMC simulations of diffusion and dimerization events leading to
spatial self-organization of the G-protein-coupled receptor family have been
carried out by Woolf and Linderman (2003, 2004). Other spatially distributed
biological systems modeling using KMC simulation include that of Saxton
(1995, 2001) and Shea et al. (1997). But none of these papers have really ad-
dressed multiscale issues.

Examination of reported values of diffusion and reaction rate constants point
to the inherent multiscale challenges encountered in spatiotemporal modeling of
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realistic systems using molecular models (Mayawala et al., 2005). What are the
multiscale challenges? First, there is a huge disparity in time scales between
various transport and reaction events. For example, this disparity is estimated
to be at least eight orders of magnitude in the dimerization and auto-
phosphorylation events of EFGR on the cell membrane. Second, a microscopic
KMC simulation box (�100� 100 nm2 in 2D or 30� 30� 30 nm3 in 3D) is far
too small to be applied to an entire cell of �10 mm diameter, and periodic
boundary conditions may be inadequate for such systems owing to the
extremely low density of several features such as surface pits. The disparity in
length scales is further attenuated owing to the low density of molecules, which
makes the probability of collision too low. This, in turn, results in inefficient
sampling and extremely long simulations that currently cannot reach experi-
mental time scales. As a result, only simulations with judiciously chosen pa-
rameters, i.e., probabilities of similar magnitude (see Goldman et al. (2002)), in
model systems have been carried out.

Two CG-KMC simulations for diffusion of non-interacting molecules and
simple reaction mechanisms have been proposed apparently independently (Elf
et al., 2003; Stundzia and Lumsden, 1996) as the first multiscale spatial models
for biological application. These models discretize the space into cells or ele-
ments (the latter term is more suitable here, to avoid confusion with biological
cells), in exactly the same way as in the CG-KMC simulation described above.
Within each element, the local mean field is assumed, and thus, the connection
with the Gillespie algorithm is straightforward. A major difference between the
aforementioned CG-KMC simulations of Katsoulakis et al. (2003a, b) and
Katsoulakis and Vlachos (2003) and the work of Stundzia and Lumsden and Elf
et al. is that in the latter, there is neither an exclusion principle nor interactions
between molecules. When the chemistry is nonlinear, strong spatial correlations
between molecules usually arise rendering the local mean field approximation
inaccurate. Therefore, these CG-KMC models are reasonable only when the
diffusion is relatively fast compared with reactions to locally homogenize the
concentrations of species and establish local mean field conditions (see Chat-
terjee et al., 2004a for an example). Under such conditions, these are local mean
field models, but they include noise and are thus suitable for small populations.
Obviously, this is an area to which significant multiscale efforts are expected to
be devoted in future work, in order to enable spatiotemporal modeling of bi-
ological systems.
VIII. Systems Tasks
The widespread use of multiscale modeling necessitates the concomitant de-
velopment of system-level tasks (see Fig. 1) for designing suitable experiments,
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estimation of important parameters, reconstruction of entire reaction networks
(reverse engineering), metabolic path optimization and control, model-based
optimization and control of nanomaterials, to mention a few. A main difference
from previous systems tasks work is that one has to extract information from
spatiotemporal data of unprecedented resolution that are more noisy. At the
same time, one is interested in estimating and controlling additional variables
such as population size, intermolecular forces, and spatial correlations, tasks
that were inconceivable a few years ago. The systems branch of multiscale
simulation is at the embryonic stage, but is expected to grow rapidly. After all,
the benefit of multiscale simulation is not only to provide insights into complex
systems, but also to enable tasks that lead to improved performance and
control. Here, a brief outline of some recent progress on systems-level tasks is
provided. Perspectives on systems tasks have appeared recently (Braatz et al.,
2004; Christofides, 2001; Kevrekidis et al., 2004).
A. SENSITIVITY AND IDENTIFIABILITY ANALYSES

One of the most important tools in complex systems modeling and analysis is
sensitivity analysis (SA) (Tomlin et al., 1997; Varma et al., 1999). In order to
carry out SA, system responses (R) have to be defined first. These responses are
system specific, and some may be experimentally measurable whereas others may
not. For example, in developing gas-phase combustion mechanisms, the ignition
delay time, the flame speed, flammability limits, and concentrations of major and
some radical species are common responses. These responses are actually ob-
tained with different types of experiments, such as shock tubes, flame-propa-
gation experiments in wide tubes, continuous flow jet stirred reactor or one-
dimensional burner flame species measurements. In a typical catalytic reactor on
the other hand, conversion and selectivity are two key responses. Pollutant mole
fractions, explosion limits for safety, and hot spots are just some additional
responses. Lastly, in advanced materials and pharmaceuticals growth, the pri-
mary concerns are different: making the right material (e.g., the correct poly-
morph) with specific particle morphology (habit), high growth rate, appropriate
roughness, controllable fraction of defects, etc. is the main goal.

I expect that SA of stochastic and multiscale models will be important in
traditional tasks such as the identification of rate-determining steps and pa-
rameter estimation. I propose that SA will also be a key tool in controlling
errors in information passing between scales. For example, within a multiscale
framework, one could identify what features of a coarse-level model are affected
from a finer scale model and need higher-level theory to improve accuracy of the
overall multiscale simulation. Next a brief overview of SA for deterministic
systems is given followed by recent work on SA of stochastic and multiscale
systems.
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1. Sensitivity Analysis of Deterministic Systems

SA determines the change in a response R as a result of a perturbation in one
of the parameters P of the model. Parameters of a model can be any conceivable
ones. For example, in a MD simulation, parameters could be all factors ap-
pearing in the intermolecular potential. Since the magnitude of various param-
eters can be very different, it is common to compute a normalized sensitivity
coefficient (NSC) defined as

NSCij ¼
d lnRi

d lnPj

¼
Pi

Rj

dRj

dPi

�
Pi

Rj

RjðPi þ DPiÞ � RjðPiÞ

DPi

(9)

The last approximate equality is simply a forward finite difference approxima-
tion of the derivative (higher order, more accurate approximations can obvi-
ously be used). The partial derivative simply indicates the slope, i.e., the change
in a response for an infinitesimal change in a parameter. When the partial
derivative is computed by differentiation of the response function, the SA is
termed local SA. On the other hand, when the parameter is changed and the
response is recomputed by solving the entire problem, the SA is termed brute

force. Brute force SA is straightforward. However, a perturbation must be per-
formed for each parameter, leading to prohibitive computational costs, espe-
cially when the number of parameters is large and the simulation is expensive.
This is typically the case with multiscale codes.
2. Sensitivity Analysis of Stochastic and Multiscale Models

SA of SODEs describing chemically reacting systems was introduced early
on, in the case of white noise added to an ODE (Dacol and Rabitz, 1984). In
addition to expected values (time or ensemble average quantities), SA of var-
iances or other correlation functions, or even the entire pdf, may also be of
interest. In other words, in stochastic or multiscale systems one may also be
interested in identifying model parameters that mostly affect the variance of
different responses. In many experimental systems, the noise is due to multiple
sources; as a result, comparison with model-based SA for parameter estimation
needs identification of the sources of experimental noise for meaningful con-
clusions.

One of the difficulties in performing SA of stochastic or more generally mul-
tiscale models is that a closed form equation does not often exist. As a result,
brute force SA has so far been the method of choice, which, while possible, is
computationally intensive. As suggested in Raimondeau et al. (2003), since the
response obtained is noisy, one has to introduce relatively large perturbations to
ensure that the responses are ‘‘reliable,’’ so that meaningful SA results are
obtained. For most complex systems, local SA may not be feasible. However, I
do not see this being an impediment since SA is typically used to rank-order the
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importance of model parameters (see section on parameter estimation for a
different use of SA).

In our group we have used SA in lattice 2D and 3D KMC in order to identify
key parameters for parameter estimation from experimental data (see corre-
sponding section below). Finite difference approximations of NSC were em-
ployed (Raimondeau et al., 2003; Snyder and Vlachos, 2004). Drews et al.
(2003a) motivated by extraction of parameters for Cu electrodeposition, ob-
tained an expression for the sensitivity coefficient, analogous to Eq. (9), that
minimizes the effect of noise on the NSC assuming that the variance of the
stochastic correction is unaffected by the perturbation.

In order to elucidate some of the issues in SA of stochastic systems, the gene-
expression model proposed in Thattai and van Oudenaarden (2001) and
Ozbudak et al. (2002) for transcription and translation, shown schematically in
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the inset of Fig. 14, is studied. At the deterministic, continuum level, the con-
centrations of mRNA (r) and protein (p) are given by the following ODEs:

dr

dt
¼ kr � grr (10)

dp

dt
¼ kpr� gpp (11)

where g denotes the rate of decay (lnð2Þ=g is the half-life time) and k is the rate
constant for transcription or translation. The steady-state solution is hri ¼ kr=gr
and hpi ¼ kpkr=ðgpgrÞ ¼ bkr=gp, where b ¼ kp=gr is the average number of
proteins produced per transcript. For this linear system, it is relatively easy to
show that the variance over the mean (termed the Fano factor) is given by

hdp2i
hpi

¼ 1þ kp=ðgp þ grÞ (12)

Typically, gp=gr is small (the mRNA is unstable compared to the protein).
Single stochastic trajectories obtained using Gillespie’s KMC algorithm are

shown in Fig. 14 for the protein and the mRNA levels vs. time. The corre-
sponding pdfs are also shown. Figure 15 shows the dependence of copies of
mRNA and proteins along with the variance of proteins on kr. Using the steady
solution of deterministic equations, the NSC with respect to kr (chosen pa-
rameter for illustration) can be easily computed to be 1. In order to exploit the
accuracy of computed NSCs, central second-order and forward or backward
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first-order finite difference approximations were employed, and the results are
depicted in Fig. 16. Owing to the inherent noise, the different methods make
little difference in the value of NSC, at least using steady-state data from a
single KMC trajectory and the perturbation sizes indicated (expected values are
typically computed from a total of 106–109 MC events to ensure very good
statistics). That is, there is no specific, clear-cut trend regarding accuracy in
computing NSCs. From a fundamental point of view, it is obviously desirable to
understand how many simulations and what simulation sizes are needed to
improve accuracy. Future work should explore this issue in detail.

Doyle and co-workers have used sensitivity and identifiability analyses in a
complex genetic regulatory network to determine practically identifiable pa-
rameters (Zak et al., 2003), i.e., parameters that can be extracted from exper-
iments with a certain confidence interval, e.g., 95%. The data used for analyses
were based on simulation of their genetic network. Different perturbations (e.g.,
step, pulse) were exploited, and an identifiability analysis was performed. An
important outcome of their analysis is that the best type of perturbations for
maximizing the information content from hybrid multiscale simulations differs
from that of the deterministic, continuum counterpart model. The implication
of this interesting finding is that noise may play a role in systems-level tasks.

3. Hierarchical Approaches to Sensitivity Analysis

A hierarchical approach could be an efficient way of reducing the CPU re-
quirements for performing systems-level tasks. In my experience, mean field or
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continuum models, while not as accurate, provide a qualitatively picture of
sensitivity when the model itself is qualitatively correct (Raimondeau et al.,
2003; Snyder and Vlachos, 2004). Mean field-based SA could be used in various
ways. First, SA of a mean field model could identify key processes controlling a
system. Second, optimization of parameters of a stochastic model can be done
by first optimizing the parameters of the mean field model. These optimized
parameters could serve as a good initial guess for optimizing the parameters of a
KMC or multiscale model. The advantage of this hierarchical approach is that it
narrows down the parameter space where an optimum parameter search has to
be conducted for a stochastic or multiscale model. Obviously, this idea is based
on the premise that the optimum set of parameters of the stochastic or
multiscale model is close to that of the corresponding continuum model. This
looks to be the case in several examples explored by our group so far. However,
it is expected to fail when mean field models are qualitatively different from
stochastic or multiscale models.

The evolution equation of the sensitivity of the chemical master equation,
along with a first-order deterministic approximation of the sensitivity of the
mean, was recently derived in Haseltine (2005). In a similar spirit, the SA ev-
olution equations in MD simulations were developed in Stefanovic and Pant-
elides (2001). Haseltine et al. suggested computing the mean using the KMC
method and the sensitivity evolution of the mean through the deterministic first-
order approximation. This is an improvement over simply using the SA of the
mean field model mentioned above. The advantage of this hierarchical, hybrid
approach is that the sensitivity is a smooth function of time, an important aspect
for many systems tasks, and less expensive to compute. For the examples con-
sidered in a batch reactor by Haseltine (2005), the deterministic approximation
gave a smooth evolution of the sensitivity that works very well for linear systems,
and shows moderate deviations from the exact sensitivity for nonlinear systems.
From the prolegomena it is clear that hierarchical methods have significant
potential for accomplishing systems tasks at reduced computational cost.
B. PARAMETER ESTIMATION FROM EXPERIMENTAL DATA AND FINER SCALE MODELS

One question that arises is: if one uses multiscale simulation to predict sys-
tems behavior from first principles, then why does one need to carry out pa-
rameter estimation from experimental data? The fact is that model predictions
using even the most accurate QM techniques have errors. In the foreseeable
future, one would have to refine parameters from experiments to create a fully
quantitative multiscale model. Furthermore, for complex systems, QM tech-
niques may be too expensive to carry out in a reasonable time frame. As a result,
one may rely on estimating parameters from experimental data. Finally, an
important, new class of problems arises when one has to estimate parameters of
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a coarser scale model in order to minimize the difference in predictions (in some
proper measure) from the ones of the finer scale model.

Parameter estimation is a very mature subject for continuum, deterministic
models and is an integral part of reverse engineering. In general, a cost function,
such as the Euclidean distance between modeling results and experimental ob-
servables, is formulated. For deterministic systems, this is sufficient. For mul-
tiscale models, however, a cost function for expected values may not be enough.
For example, in a stochastic simulation one would like to fit the entire pdf,
described by a Fokker–Planck equation. However, the pdf is known only for a
limited number of rather trivial problems, and its calculation is computationally
impractical. Practically, one may extend the approach of deterministic systems
to stochastic or multiscale models by including, aside from expected values,
additional quantities such as variances. While this is possible, including variance
into the objective function requires hundreds to thousands of trajectories, ren-
dering parameter estimation very time-consuming (Fullana and Rossi, 2002). In
passing, I should note an overview of parameter estimation of stochastic dif-
ferential equations based on maximum approximate likelihood ideas given in
Nielsen et al. (2000). Some additional complications in parameter estimation are
due to the large number of parameters of multiscale models and the noisy results
arising from molecular models. The introduction of high throughput exper-
iments or combinatorial methods opens up the possibility of creating massive
data sets for parameter estimation. However, one may not be able to extract
useful information for all parameters. It is important that the relevant param-
eters get extracted.

Rawlings and co-workers proposed to carry out parameter estimation using
Newton’s method, where the gradient can be cast in terms of the sensitivity of
the mean (Haseltine, 2005). Estimation of one parameter in kinetic, well-mixed
models showed that convergence was attained within a few iterations. As ex-
pected, the parameter values fluctuate around some average values once con-
vergence has been reached. Finally, since control problems can also be
formulated as minimization of a cost function over a control horizon, it was also
suggested to use Newton’s method with relatively smooth sensitivities to ac-
complish this task. The proposed method results in short computational times,
and if local optimization is desired, it could be very useful.

Since complex systems most probably exhibit complicated surfaces with mul-
tiple minima, convergence may not be obtained using local searching tech-
niques, and the probability of obtaining the global optimum with local
optimizers is low. Alternatively, one can employ global-type optimization
methods, such as simulated annealing and genetic algorithms. While these
techniques are often successful in determining the global minimum, they require
hundreds of thousands of function evaluations, i.e., KMC or multiscale sim-
ulations. Such a task is impractical. To overcome this challenge we have pro-
posed to develop reduced models or surfaces approximated by low-order degree
polynomials using solution mapping or surface response methods typically
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employed in design of experiments. This idea leads to a relatively smooth sur-
face that can be used in optimization (Raimondeau et al., 2003). Hierarchical
parameterization where the mean field model parameters are estimated first and
serve as an initial guess for optimization of the molecular or multiscale model
parameters offer an attractive approach for constructing accurate surfaces.

The first application of hierarchical SA for parameter estimation included
refinement of the pre-exponentials in a surface kinetics mechanism of CO
oxidation on Pt (a lattice KMC model with �6 parameters) (Raimondeau et al.,
2003). A second example entailed parameter estimation of a dual site 3D lattice
KMC model for the benzene/faujasite zeolite system where benzene–benzene
interactions, equilibrium constants for adsorption/desorption of benzene on
different types of sites, and diffusion parameters of benzene (a total of �15
parameters) were determined (Snyder and Vlachos, 2004). While this approach
appears promising, the development of accurate but inexpensive surfaces (re-
duced models) deserves further attention to fully understand its success and
limitation.
C. MODEL REDUCTION AND CONTROL

Online multiscale model-based control is beyond current computer capabil-
ities owing to the computational intensity of multiscale simulation. Two ap-
proaches are proposed to enable control at the nanometer scale using multiscale
simulation. The first entails a suitable model reduction, where the full multiscale
model is effectively mapped into an approximate surface that is subsequently
used in process design and control. Toward this goal, proper-orthogonal de-
composition was explored to derive a small number of modes (space dimen-
sion), i.e., spatially global eigenfunctions, to form a basis that captures
spatiotemporal computer data. While this is indeed possible, we have found that
the noise of KMC or multiscale simulations renders model reduction challeng-
ing Raimondeau and Vlachos (2000). In a way, microscopic surface processes
have slower dissipation mechanisms than fluid-phase processes, and as a result,
noise-induced phenomena, such as nucleation, demand many modes for accu-
rate reduction. It appears then that a second strategy based on optimum design,
where one designs the system using a multiscale model to behave in a desirable
manner, may be more suitable than online control. This is also underscored by
the current lack of easy implementation of sensors and actuators operating at
the nanoscopic scale the way their macroscopic counterparts work at the large
scale. While materials engineering could possibly overcome this problem in the
future, at least in part, manipulating a few input and output coarse variables
may still remain the only viable way for many processes. A similar view is
shared by Braatz and co-workers (2004). However, further work is needed to
delineate the necessity of online control and the suitability of various model
reduction tools for this task.
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Aside from proper orthogonal decomposition, alternative model reduction
strategies have also been explored. For a simple reaction network with a species
in QSS, a reduced description of the master equation has been successful by
applying the projection operator formalism (Shibata, 2003), and subsequently
applied to a simple gene expression network. An advantage of this theoretical
study is that it provides insight into how the noise of the eliminated species
affects the population of the other species. However, extension of such theo-
retical analysis to complex reaction networks is not straightforward. Reduction
of the master equation was also carried out, and the reduced model was used to
determine open-loop temperature profiles for epitaxial growth (Gallivan and
Atwater, 2004; Gallivan and Murray, 2003, 2004).

One of the objectives of model reduction is the possibility of carrying
out model-based control. Some initial, promising efforts along this direction
have already appeared. Control of surface roughness and growth rate in hybrid
KMC/stagnation flow simulations of epitaxial growth mentioned above
was demonstrated by employing integral control in Lou and Christofides
(2003a, b, 2004). In particular, the overall approach employed real-time
estimators from KMC (using multiple, small KMC simulation boxes),
filters to reduce the noise of KMC, and error compensators followed by
feedback controllers. In an alternative approach, a time stepper method was
used to derive an optimal control policy for reactions (modeled by the
LB technique or a well-mixed KMC model to stabilize an unstable open-
loop state) or to derive a local linearization of a stochastic model that was
subsequently employed in linear control theory (Armaou et al., 2004; Siettos
et al., 2003).

Systems approach borrowed from the optimization and control communities
can be used to achieve various other tasks of interest in multiscale simulation.
For example, Hurst and Wen (2005) have recently considered shear viscosity as
a scalar input/output map from shear stress to shear strain rate, and estimated
the viscosity from the frequency response of the system by performing short,
non-equilibrium MD. Multiscale model reduction, along with optimal control
and design strategies, offers substantial promise for engineering systems. In-
tensive work on this topic is therefore expected in the near future.
D. BIFURCATION

Many systems exhibit nonlinear behavior. This is another systems-level
task that is computationally very demanding. Application of bifurcation
analysis to simple and complex chemistry hybrid stochastic (KMC)-deterministic
(ODE) models has been presented by our group (Raimondeau and Vlachos, 2002b,
2003; Vlachos et al., 1990) for various catalytic surface reactions.
Prototype hybrid continuum-stochastic models that exhibit bifurcations
were recently explored by Katsoulakis et al. (2004). It was found that mesoscopic
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models based on the stochastic averaging principle are excellent approximations of
fully stochastic models when there is disparity in relaxation times of microscopic
(fast) and flow (slow) processes. Multiple states in tropical convection model pre-
diction were reported in Majda and Khouider (2002). Kevrekidis and co-workers
have been successful in applying time steppers in constructing bifurcation diagrams
of stochastic simulation such as KMC (e.g., Makeev et al., 2002). One of the
advantages of their method is that unstable branches and bifurcation points can be
computed, a task that is difficult with direct KMC simulation. On the other hand, it
is expected that the stabilization has an adverse effect on understanding metasta-
bility and transitions between states of small systems.
IX. Outlook
The multiscale simulation framework presented here is generic and can be
applied across multiple disciplines and problems of chemical sciences. Obvi-
ously, specific scientific problems may be amenable to special twists. While
substantial progress in multiscale analysis has already been achieved, the
emerging field is still at an embryonic stage; many exciting developments are
expected in the next decade. The area of systems tasks is by far the least de-
veloped. However, the significantly increasing number of presentations at the
AIChE meeting (in area 10d) is an indicator of the explosion of the new field
and the exciting contributions of the systems community to the design and
control of complex systems via multiscale modeling and simulation. A central
theme in multiscale modeling, as one moves from finer to coarser scales, is
model reduction. While universal approaches to model reduction may not exist
or even be desirable, robust reduction methodologies along with methods of
assessing the resulting errors of coarse graining for various types of multiscale
simulation are needed.

I believe that growth in a number of critical areas of technological importance
to the nation, such as nanotechnology, biotechnology, and microengineering,
will be accelerated and catalyzed by the new multiscale modeling and compu-
tational paradigm. In all these and other areas of chemical sciences, as alluded
to in the introduction, multiscale analysis could have the most significant en-
gineering impact in top-down and reverse engineering modes. While multiscale
analysis research is multidisciplinary and is currently conducted, in many cases,
in a collaborative manner, training of future undergraduate and graduate stu-
dents on these topics is also important. Graduate and undergraduate education
is at a crossroads (Cussler et al., 2002; Dudukovic, 2003), and modern and in
many cases undeveloped tools need to be taught in efficient ways for preparing
students for the modeling challenges arising from the new technologies. To
achieve this goal, there is a clear need for revision of core courses to incorporate
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elements of multiscale analysis and for development of new multiscale modeling
and simulation courses.
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