

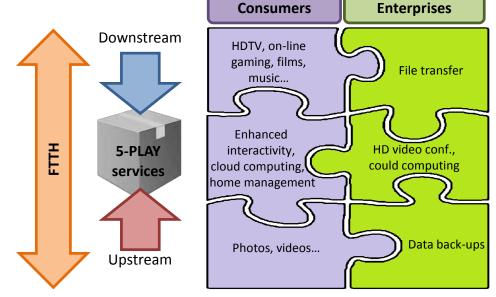
Radio-over-Fiber Quintuple-Play Service Provision for Deep Fiber-to-the-Home Passive Networks

R. Llorente¹, M. Morant¹, E. Pellicer¹, <u>M. Herman²</u>, Z. Nagy², J.Herrera³, J. Correcher³, T. Alves⁴, A. Cartaxo⁴, T. Quinlan⁵,
S.Walker⁵, C. Rodrigues⁶, P. Cluzeaud⁷, A. Schmidt⁸, R.Sambaraju⁹, R.Piesiewicz¹⁰, E. Rico¹¹

¹Nanophotonics Technology Center, Universidad Politécnica de Valencia (Spain)
 ³Fibernova Systems S.L., Valencia (Spain)
 ⁵School of Computer Science and Electronic Engineering, University of Essex (UK)
 ⁷THALES Communications, Gennevilliers (France)
 ⁹CORNING Incorporated, Corning, NY (USA)
 ¹¹DAS Photonics S.L, Valencia (Spain)

²Towercom a.s., Bratislava (Slovak Republic)
 ⁴Instituto de Telecomunicações, IST Lisboa (Portugal)
 ⁶PT Inovaçao, Aveiro (Portugal)
 ⁸Hochschule für Technik und Wirtschaft, Dresden (Germany)
 ¹⁰Wrocławskie Centrum Badan EIT+ sp. Wrocław (Poland)

Motivation

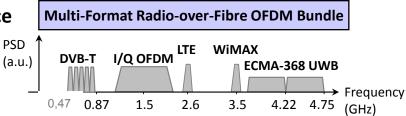

Outline

- Deep FTTH network with legacy coaxial support
- **Experimental deployment in a real FTTH network**
- Open-house show-room demonstrator

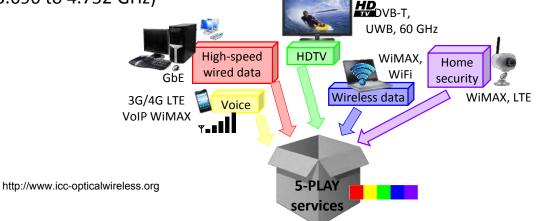
Conclusion

Motivation

- In the last decade, user's bitrate demand has grown roughly 50-60% per year
- The broadband adoption is fast and (seems) very addictive:
 - 41% of UK users would rather keep Internet connection than TV [*]
 - 84% of German user in their 20s would rather give up their car or partner than the broadband connection [*]
- Fiber-to-the-home (FTTH) access is a flexible, future-proof access technology that enables the provision of Gb/s bitrates per user

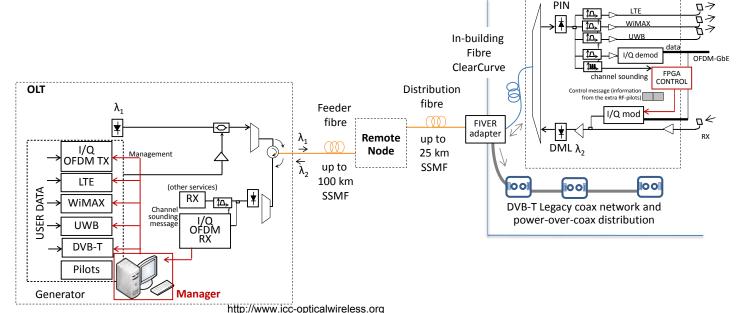


http://www.icc-opticalwireless.org


[*] FTTH Council Europe, "FTTH: shaping the future of a content-based world", white paper 2012

Quintuple-play service provision

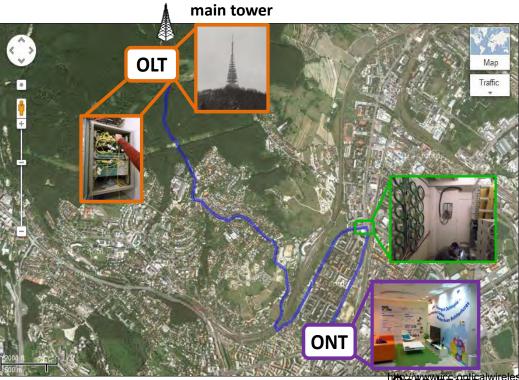
- FIVER optical access architecture is based on WDM LR-PON user provision :
 - Different network services provided in coexistence



- All signals transmitted are OFDM-based:
 - DVB-T signals (ETSI EN 300 744) in the UHF band up to 862 MHz for digital TV broadcasting
 - Ad-hoc OFDM signal, between 1 and 2 GHz, to provide features of GbE service
 - LTE (3GPP TS 36.101 Release 8) signal for voice service transmitted in Band E-UTRA 7 with up to 20 MHz bandwidth
 - WiMAX (IEEE 802.16) signal for wireless data transmission, security and domotic services at 3.5 GHz with up to 20 MHz bandwidth
 - UWB (ECMA-368) signals for high-definition audio and video provisioning transmitted in band 2 and 3 of band group 1 (from 3.696 to 4.752 GHz)

Deep FTTH network with legacy coaxial support

- FIVER optical network integrates the access network and the in-building distribution:
 - Single λ allocated per user in a PON architecture
 - Long-reach access network enabled by OFDM bundle and compensation in place [*]
 - Simple FIVER adapter sub-system for in-building distribution
 - In-building distribution includes:
 - Bend-insensitive single mode fibre (BI-SMF) Corning ClearCurve[®]
 - "Legacy" coaxial network for DVB-T signals transmission

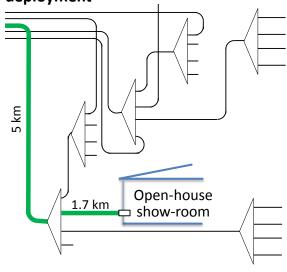


ONT

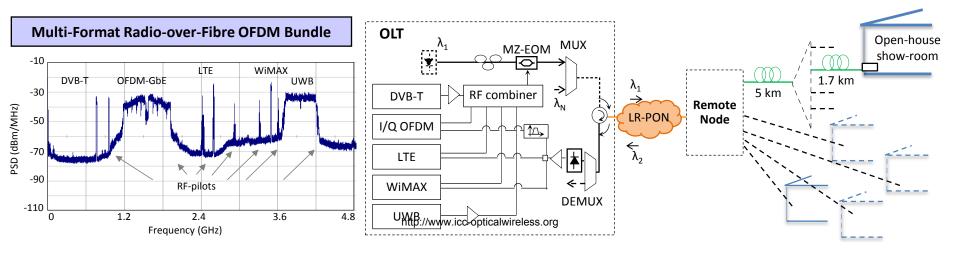
[*] M. Morant, T. Alves, A. Cartaxo, R. Llorente, "Transmission impairment compensation using broadband channel sounding in multi-format OFDM-based long-reach PONs", OFC 2012, paper OW3B.2, March 2012.

EEE ICC 2013 Workshop on Optical-Wireless Integrated Technologies for Systems and Networks Experimental deployment in a real FTTH network

- FIVER network was evaluated in the real FTTH deployment of Towercom operator in Bratislava
 - The open-house demonstrator was installed in a commercial mall in December 2012 at Račianske mýto 1/C, Bratislava


Towercom

hopen-house^{alwireless.org} show-room



Towercom fibre deployment

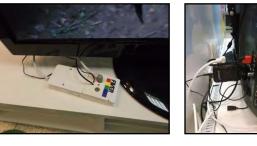
Experimental deployment in a real FTTH network

- At the central office (OLT):
 - The quintuple-play services are generated with commercial devices and combined
 - Two neighbor DVB-T channels (ch57 and ch58) generated with Ikusi MAC-401 generators at 762 MHz and 770 MHz, using 8 MHz each with 8k carrier mode in 64-QAM modulation
 - OFDM-GbE generated with an I/Q OFDM modem manufactured by Fibernova Systems
 - A 3GPP LTE signal working in the band of 2.6 GHz
 - A WiMAX signal at 3.5 GHz band using commercial RuggedMAX[™] WiN7200 base station
 - A UWB channel working in 528 MHz at 3.96 GHz with Wisair transmitter
 - External Mach-Zehnder modulator (MZ-EOM) working at quadrature bias
 - Multi-user operation combining different wavelengths with an optical multiplexer (MUX)
 - Downstream and upstream paths are divided using optical circulators

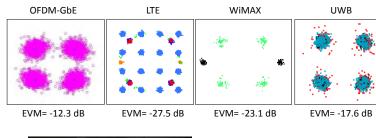
Experimental deployment in a real FTTH network

- After the FTTH transmission, the optical signal is divided in two branches:
 - In-building fiber network using <u>bend-insensitive single mode fiber</u> to receive/radiate the OFDM-GbE, LTE, WIMAX and UWB signals
 - For the upstream a directly modulated laser (DML) is used characterized by threshold I_{th}=8.1 mA and bias I_{bias}=30 mA currents
 - Control information is included in the upstream information of the custom OFDM-GbE, but could be also included in LTE or WiMAX signals as it is transmitted in a TCP packet
 - The DVB-T signals are injected in the <u>legacy coaxial network</u> with simultaneous lowpower distribution
 - USB 3.0 devices can be charged directly from the TV plug

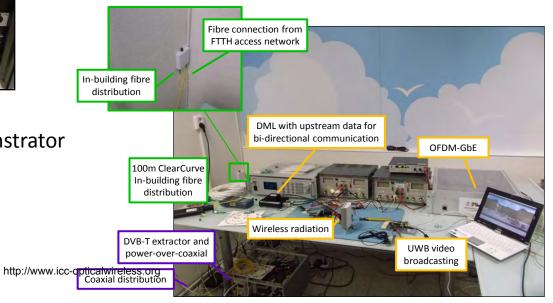
wireles ONT DOWNSTREAM radiation LTE, WIMAX, UWB WiMAX OFDM-GH 100 m BI-SMF **Receiver installed in open-house demonstrator** ClearCurve® UPSTREAM LTE, WIMAX DMI UWB Adapter 3 dB Coaxial DVB-T 20 m FTTH (3) DVB-T Powe 5.5 Vn http://w poticalwireless.org


IEEE ICC 2013 Workshop on Optical-Wireless Integrated Technologies for Systems and Networks **Open-house show-room demonstrator**

- All wireless signals are compliant with the EVM antenna requirements specified in current standards
- Ethernet data is correctly received using the OFDM-GbE signal with $2.6 \cdot 10^{-4}$ bit error rate (BER)
- DVB-T TV channels are correctly received at the TV
- A digital TV receiver is connected to the low-power distribution supply


Low-power over coaxial distribution


camera



A WiMAX security camera was installed in the open-house demonstrator



Workshop on Optical-Wireless Integrated Technologies for Systems and Networks Converged and hybrid 5-PLAY service provision

- This integrated transmission approach permits the hybrid service provision of quintuple-play services with the possibility of receiving the same service over different technologies
 - This is enabled by the unique centralized radio-over-fibre bundle of signals proposed by FIVER project

Example of video-on-demand received with different technologies

IEEE ICC 2013 Workshop on Optical-Wireless Integrated Technologies for Systems and Networks

Centralized management

- Operator control panel for centralized management at the OLT
- Enables the provision of custom pack of contents or each subscriber

Status of the quintuple-play service signals

STATUS	011 +	STATUS ON +	STATUS CN +	STATUS ON +	STATLS ON +	PLOT #1(0Em) -32
FREQUENCY (CH2)	1.5 -	FREQUENCY (GHz) 25	FREQUENCY (GHz) 3.6 -		FREQUENCY (MHz) 768 -	PILOT #2 (dBm) -32
ANDWIGTH (MHz)	900 +	BANDWIDTH (MHz) 10	BANDWIDTH(MH2) 10 +	EITRATE (Mops) 200 +	BANDWIDTH (MHz) 8 +	HLOT #3 (dEm) -32
RF. POWER (dEm)	-13	RE POWER (dBm) -6	RF FOWER (dBm) 0	RF POWER (dBm)	HF POWER (dEm)	PIEQT #4 (dBm) -31
REFRESH	CONFIC	REFRESH CONFIC	REFRESH	REFRESH CONFIG	REFRESH	PILOT #5 (dBm) -3. PILOT #6 (dBm) -3.

Received quality of FIVER quintuple-play signals

Alarms

• **Control** of the quintuple-play signals:

- <u>Turn on/off</u>each service
- Change <u>centre frequency</u> of each signal OFDM-GbE, LTE, WiMAX, UWB and DVB-T
- Configure the <u>bandwidth</u> of each signal according to current wireless standards
- Change the <u>transmitted power</u> of each signal
- Manage the RF-pilots for <u>channel sounding</u>

Conclusion

- We have demonstrated the converged and hybrid provision of quintuple-play services employing only OFDM-based RoF optical transmission in a deep FTTH network including:
 - Digital television broadcasting with DVB-T signals
 - High-speed data with OFDM-GbE signal
 - Voice service with LTE
 - Wireless data, domotics and security service with WiMAX
 - High-definition audio and video with UWB
- The demonstration was done in a real FTTH network installed in Bratislava including a hands-on demonstration in a open-house show-room
- The attendants to the open-house demonstrator were especially interested in the plug-and-play functionalities of the quintuple-play services using commercial available devices
- Also the attendants liked the possibility of getting the same service using different devices and different technologies

The European Commission is acknowledged for partly funding this work through:

FP7 ICT-4-249142 FIVER project

Fully-Converged Quintuple-Play Integrated Optical-Wireless Access Architectures

www.ict-fiver.eu

Support from Spanish National projects **TEC2009-14250 ULTRADEF** and **TEC2012-38558-C02-01 MODAL** is also acknowledged

http://www.icc-opticalwireless.org