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1. Introduction

ATM networks being a connection-oriented tech-
nology are providing service for real-time communi-
cation. Before two hosts can communicate, a connec-
tion has to be established between them. After a con-
nection is established, messages are divided into fixed
size packets called cells and are being sent from a
source host to a destination host. Real-time communi-
cation service requires the underlying network to pro-
vide performance guarantees for the on-time delivery
of cells. There are two types of performance guaran-
tees: deterministic and statistical guarantees. While a
deterministic guarantee provides an absolute bound on
the worst case cell delay, a statistical guarantee pro-
vides a probabilistic bound on the worst case cell de-
lay. This statistical guarantee is more suitable than the
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deterministic guarantee for the connection admission
control of an ATM network, especially for soft real-
time applications.

The delay analysis on ATM networks have been
studied by many researchers [1,5,7–9,11,14–16,20–
24,26–29,34,37,38]. Some recent works of ours [24,
26–29] have given a framework for the deterministic
delay computation. We derive the delay bound by
utilizing the inverse function of the arrival and service
functions during a server’s busy period. The method
is proven to be simple and efficient as compared to
the other methods proposed in the literature. Many
papers have shown that the networks traffic, including
the variable bit rate (VBR) video traffic, appears to
be statistically self-similar (“fractal”) [3,10,13,19].We
found out that if the input traffic can be described
by a self-similar fractional Brownian motion (FBM)
model, we can determine the statistical delay bound on
the worst case cell delay. Hence, in this paper, we use
a self-similar stochastic process (FBM) to characterize
the arrival of the ATM traffic, and extending from our
previous work on the deterministic delay guarantee,
we provide methods for determining the statistical
delay bound for the cell delay for an ATM switch with
different kind of output port schedulers.
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As for related work, there are relatively few delay
analysis on the self-similar traffic. Norros [32], Mayer
and Silvster [23], and Tsybakov [38] only obtained
delay approximation for an ATM switch with a FIFO
scheduling server in the output port. Our proposed
methods can provide the upper delay bounds, and are
applicable not only to the FIFO server but to other
scheduling servers such as the static priority driven
server, the Earliest Deadline First (EDF) server, and
the Generalized Processor Sharing (GPS) server.

The rest of the paper is organized as follows:
Section 2 describes the connections and the ATM
model. Section 3 summarizes the deterministic delay
bound for the worst case cell delay from our previous
works. Section 4 describes the self-similar traffic
model and the envelope process for the arrival traffic.
Section 5 presents the statistical delay analysis for
the worst case cell delay. In Section 6, we give an
algorithm for computing the statistical delay bound for
the worst case cell delay and a case study based on an
ordinary LAN traffic to show the effectiveness of our
statistical delay guarantee based on the FBM model as
compare to our delay guarantee based on a two-piece
linear maximal arrival function, as well as the actual
cell delay determined by the LAN traffic trace. And
lastly, we conclude the paper in Section 7.

2. Connections and ATM model

2.1. Connections

As mentioned before, ATM is a connection-oriented
packet-switched technology. Before two hosts begin to
communicate, a connection has to be set up between
them. The termconnectionis then often referred as
a stream of messages sent from a source host to
destination host. In ATM networks, messages from
individual connections are divided into fixed size
packets calledcells.

A real-time connection has a stringent deadline con-
straint on the delay of its cells. The admission control
for a real-time connections is: when a new connec-
tion request arrives, the network must determine if all
the cells within the connection can meet its deadline
constraint and without violating the guarantees already
provided to the currently active connections.

2.2. ATM switch model

An ATM switch itself consists of input ports,
switching fabric, and output ports. A cell that arrives
at an input port of a switch is transported by the
switching fabric to an output port where the cell is then
transmitted along the physical link associated with the
output port.

The scheduling policy at an output port controller
of an ATM switch determines the order of the cells
(from different connections) being transmitted. Typi-
cal scheduling policies adopted by the ATM switches
are either FIFO or priority driven. However, there are
also other scheduling policies such as Earliest Dead-
line First (EDF) and Generalized Processor Sharing
(GPS) [34].

2.3. Connection-server graph

To simplify the delay analysis, the network compo-
nents mentioned above are abstracted as servers. Thus,
an ATM network can be model as a connection-server
graph in which the nodes are the servers.

Servers are classified into two categories: constant
servers and variable servers [7,35,36]. A constant
server offers a constant delay to each cell that traverse
through it. A variable server, on the other hand, offers
different delay to each cell. Physical links and switch-
ing fabric are constant servers. Furthermore, since the
function of an input port is to de-multiplex and impose
a constant time delay to each cell, therefore, an input
port is also a constant server. The output port, on the
other hand, is a multiplexor thus it is considered as a
variable server and the delay suffered by a cell in this
server should depend on the queue length in the buffer
and the scheduling policy.

Note that the constant servers serving a connection
only add a fixed amount of delay to its cells and do not
change its traffic characteristics. Hence we can sub-
tract the appropriate constant delays encountered by
each of the connection from its deadline. We, there-
fore, eliminate all the constant servers from further
consideration and focus only on the variable servers.
We can view a connection as being served by a vari-
able server only. Fig. 1 shows how we can construct a
connection-server graph from an ATM switch having
four real-time connections passing through it.
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Fig. 1. Connection-server graph.

3. Deterministic performance guarantee

Throughout this paper,we assume a discrete time
model [8], where the time slots are numbered start-
ing at 0,1,2, . . . and so on. We based on our previous
works on the deterministic delay bound and provide
our methods for the statistical delay analysis in follow
sections. Consider a server system with some connec-
tions and assumes the server servesC cells in one time
slot and every cell has the same service time. We also
assume that the cells of a connection arrive only on the
start of each time slot. LetRi [t] be the number of cells
arrived from connectionMi at slott , then

Fi(t, I )=
t+I∑
j=t+1

Ri [j ]

is the number of cells arrived during the time interval
of (t, t + I ]. Suppose in any time interval of length
I , the maximum number of cells from connectionMi

that can arrive at the server is upper-bounded by a
constraint functionFi(I), then, for anyt > 0

Fi(t, I )6 Fi(I). (1)

Given this relation,Fi(I) is called themaximum
arrival function for connectionMi . Because of this,
we can selectFi(I) to be an increasing, right-continue
and sub-additive function [5,21]. Furthermore, since
our delay computation utilized the inverse functions
of the arrival and the server functions, we define the
inverse function as follows:

LetG(x) be a non-decreasing function.G−1(y), the
inverse function ofG(x) is given as

G−1(y)= inf
{
x |G(x)> y}. (2)

We also define abusy periodof a connection in
a server as the time interval during which any extra
cells from the connection arrived at the server must
be waiting for the service. Obviously, we are only
interested in the busy period. We further state that an
instant timet is thestarting pointof a busy period if
at t − 1, the queue of the server is empty and starting
at t , it is not.

Definition 3.1. Si(t, I ) is the service function for
connectionMi during the time interval[t, t + I) in a
busy period starting at timet . That is,Si(t, I ) specifies
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the number of cells from connectionMi that can be
served (i.e., transmitted) by a server during the time
interval betweent andt + I .

Let Fi(I) be the maximum arrival function for
connectionMi , andCi(I) be the lower bound of the
service function forMi . Ci(I) is defined as

Ci(I)6 Si(t, I ), (3)

for any busy period starting at timet with a time
interval of lengthI .

Theorem 3.1. Given Fi(I) and Ci(I), the upper
bound ofFi(t, I ) and the lower bound ofSi(t, I ),
respectively, the worst case delay bound for the cells
from connectionMi is

di 6max
c>0

{
C−1
i (c)− F−1

i (c)
}
, (4)

whereF−1
i (c) andC−1

i (c) are the inverse functions of
Fi(I) andCi(I), respectively.

For the proof of the theorem, please refer to the
technical report [25].

Definition 3.2. The input of a server is greedy if all
arrival functions are always at their maximum from
the starting point of the busy period. That means

Fj (t, I )= Fj (I), (5)

for all j wheret is the starting point of the busy period.

Definition 3.3. Si(I) is the service function for con-
nectionMi when the input of the server is greedy start-
ing at time zero, the beginning of a busy period.

For FIFO scheduling server, Priority driven schedul-
ing server, Leaky bucket server and GPS server [34],
. . . , etc., the worst case delay occurs when the in-
put of the server is greedy. We have proven these re-
sults for a regulated priority driven server and a regu-
lated FIFO server in [24,26,27]. For all the scheduling
servers mentioned above, the worst case delay can be
computed by the following theorem.

Theorem 3.2. If the worst case delay for a connection
Mi occurs when the input of the server is greedy, then
the worst case delay is

di =max
c

(
S−1
i (c)− F−1

i (c)
)
, (6)

whereF−1
i (c) andS−1

i (c) are the inverse functions of
Fi(I) andSi(I), respectively.

For the proof of the theorem, please refer to the
technical report [25].

4. The arrival process model and the envelope
process

In recent years, many studies [3,4,6,10,13,19,38]
have pointed out that network traffic in high-speed net-
works are best described by traffic models possess-
ing long-range dependency. Consider the network traf-
fic to be a stochastic process. Statistical analysis has
shown that the kind of traffic is self-similar with a sur-
prising accuracy. Norros [32] has given a Fractional
Brownian Motion (FBM) model to represent the ar-
rival process. FBM plays the same fundamental role
among self-similar process that a standard Brownian
motion does among processes with independent incre-
ments [3,4,6,33]. Erramilli et al. [10] has validated the
FBM model by real traffic data. On the other hand,
Konstantopoulos [17] has proven that under their as-
sumptions, FBM is the limit of point processes with
long-range dependency.

In this paper, we use the FBM model to describe the
input traffic as a self-similar input process (see [23,32,
33]). DenoteZ(t) a normalized fractional Brownian
motion process with a self-similarity parameter (Hurst
parameter),H , whereH ∈ [12,1). Following Norros’
work [32], the arrival traffic processA(t) is given as

A(t)= at + σZ(t), (7)

wherea is the mean input rate,σ 2> 0 is the variance.
A(t) represents the number of cells that arrived at time
interval(0, t].

Restrict a traffic processA(t) to be a stochastic
process of discrete timet ∈ {0,1,2, . . .}. A(t) has
stationary increments. It can be proved thatA(t) is
exactly a second-order self-similar process.3

Mayer [23] presented an envelope processÂ(t) =
at+ kσ tH as the bound ofA(t) and derived the queue
length and delay approximation for FIFO servers. The

3 Since we used different notations from Norros’ work [32],
please refer to Appendix A for the details about the equivalency of
Eq. (7) and Norros’ equation.



J.K.-Y. Ng et al. / Information Processing Letters 74 (2000) 163–173 167

delay approximation is statistical but the guarantee
probability of the delay were not given in his work.
In this paper, we extend our delay bounds derived
from the deterministic envelope process in Section 3
to provide a statistical delay bound based on the self-
similar FBM input traffic model. Furthermore, our
methods are applicable to different kinds of typical
servers and at the same time we can provide the
guarantee probability.

We define the envelope process for the FBM traffic
as follows:

Definition 4.1. A(t) is a FBM arrival process. For a
givenε, let Â(t)= at + kσ tH be the envelope process
of the inputA(t) with error levelε if

P
{
A(t)6 Â(t), t = 1,2, . . .

}
> 1− ε. (8)

This definition is different from Mayer’s [23] in that
the probability in our definition applies to all instances
of t but Mayer’s definition only specifies a probability
for a given timet . By our FBM model, the probability
of {A(t)6 Â(t), t = 1,2, . . .} is given as

P
{
A(t)6 Â(t), t = 1,2, . . .

}
= P{at + σZ(t)6 at + kσ tH , t = 1,2, . . .

}
= P{Z(t)6 ktH , t = 1,2, . . .

}
. (9)

In order to determine the envelope process, we only
need to findk for a given ε. However, since it is
difficult to find k from Eq. (8) or Eq. (9), we provide
two methods to find the value ofk.

The simulation method

For the statistical guarantee, we only need to con-
sider the busy periods and find a statistical bound for
the length of the busy period. As the arrival process
A(t) is stationary, we assume the busy period starts at
time 0. The length of the busy periodB satisfies:

P {B > b̂} = P{A(t)>Ct, t = 1,2, . . . , b̂
}

6 P
{
A(b̂)> Cb̂

}
= P

{
Z(b̂)> (C − a)b̂

σ

}
= P

{
Z(1)> (C − a)

σ b̂H−1

}
. (10)

Given a very smallp (→ 0), such that

P

{
Z(1)> (C − a)

σ b̂H−1

}
= p

then

P {B 6 b̂} = 1− P {B > b̂}> 1− p.
Thus, we can find a bound̂b for the length of the busy
period with a probability of not less than 1−p (→ 1).

Since p is very small, we can useP {A(t) 6
Â(t), t = 1,2, . . . , b̂} to approximateP {A(t)6 Â(t),
t = 1,2, . . .}, hence, we have

P
{
A(t)6 Â(t), t = 1, . . . , b̂

}
= P{at + σZ(t)6 at + kσ tH , t = 1,2, . . . , b̂

}
= P{Z(t)6 ktH , t = 1,2, . . . , b̂

}
. (11)

We use a simulation to find the value ofk for a
givenε. We first generate data according toZ(t) with
a specificH . With these data, we can compare them
with ktH wheret = 1,2, . . . , b̂ at different values of
k wherek = 1,2, . . . and construct a table recording
different values ofk with its corresponding probability
of P {Z(t)6 ktH , t = 1,2, . . . , b̂}.

After constructing such a table, we can find the
value of k at a givenε or probability (1 − ε) by
a simple table lookup and determine the envelope
processÂ(t).

The approximation method

We present here a faster and simpler method for
finding the envelope procesŝA(t). Due to the fact that

P
{
A(t)6 Â(t), t = 1, . . . , b̂

}
= P

{
b̂⋂
t=1

{A(t)6 Â(t)}
}

= 1− P
{

b̂⋃
t=1

{A(t) > Â(t)}
}

> 1−
b̂∑
t=1

P
{
A(t) > Â(t)

}
= 1−

b̂∑
t=1

P
{
Z(t) > ktH

}
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= 1−
b̂∑
t=1

P
{
Z(1) > k

}
= 1− b̂P{Z(1) > k}. (12)

For a givenε, we can findk fromP {Z(1) > k} = ε/b̂,
and by Eq. (12)

P
{
A(t)6 Â(t), t = 1, . . . , b̂

}
> 1− b̂P{Z(1) > k}= 1− ε. (13)

This method is simpler and faster but the envelope
process is looser than that by the simulation method.

5. The statistical delay analysis

There are a few papers [1–4,6,10,17,22,23,32,38]
that describe and analyze queuing systems with long
range dependent inputs. However, these results only
provide delay approximation that are based on the
FIFO server. Our proposed methods, can provide the
upper delay bounds, and are applicable not only to the
FIFO server but to other scheduling servers such as the
static priority driven server, the Earliest Deadline First
(EDF) server, and the Generalized Processor Sharing
(GPS) server.

In this section, we provide the statistical delay
analysis for the ATM switch with some typical output
port schedulers. Assuming a FBM traffic, the statisti-
cal delay bound for the cell delay of a connection can
be obtained by each of the followings.

5.1. The FIFO server

For a FIFO server withm connections. LetAi(t) be
a FBM process for the connectionMi , such that

Ai(t)= ait + σiZ(t), (14)

whereZ(t) is a normalized FBM process with a self-
similarity parameterH .

For a givenεi , the envelope process ofMi is

Âi(t)= ait + kiσi tHi (15)

such that

P
{
Ai(t)6 Âi(t), t = 1,2, . . .

}
> 1− εi. (16)

Theorem 5.1. For a FIFO server withm connections
and with the input ofMi beingAi(t) and its envelope

process beinĝAi(t), the probability for the worst case
cell delay ofMi to exceed̂di is less than1−∑m

j=1 εj

in which d̂i is given as

d̂i =max
t

{
m∑
j=1

Âj (t)−Ct
}
, (17)

whereC is the constant service rate of the server.

Proof. For a FIFO server withm connections, if
the envelope procesŝAi(t) is the maximum arrival
function, then by Theorem 3.2, the worst case delay
of a cell is bounded bŷdi :

d̂i =max
t

{
m∑
j=1

Âj (t)−Ct
}
.

Since d̂i is the deterministic delay bound in the
server for inputÂi(t), in any busy period, ifAj(t) 6
Âj (t), for j = 1, . . . ,m,∀t > 0, then the delay of the
cell, d , in the busy period will not exceed̂di . So we
have,{
Aj(t)6 Âj (t), j = 1, . . . ,m, t = 1,2, . . .

}
⊆ {d 6 d̂i}. (18)

DenoteQj = {Aj(t)6 Âj (t), t = 1,2, . . .}, j = 1,
2, . . . ,m, by Eq. (16), we haveP {Qj }6 εj , hence,

P {d 6 d̂i}
> P

{
Aj(t)6 Âj (t), t = 1,2, . . . , j = 1, . . . ,m

}
= P

{
m⋂
j=1

Qj

}
= 1−P

{
m⋃
j=1

Qj

}

> 1−
m∑
j=1

P {Qj }> 1−
m∑
j=1

εj . (19)

That means, the probability of a cell delay that will
not exceed̂di is not less than 1−∑m

j=1 εj . 2
5.2. The static priority driven server

For a static priority driven server withm connec-
tions and suppose the priorities are assigned in the
same order as the connection indices. LetÂi(t) =
ait + kiσi tHi be the envelope process of the input
Ai(t) with error levelεi . Definingd̂i as

d̂i =max
c

{
S−1
i (c)− Â−1

i (c)
}
, (20)
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where Â−1
i (c), S−1

i (c) are the inverse functions of

Âi(t), Si(t), respectively. AndSi(t) is given as:

Si(t)=
{
Ct −

i−1∑
j=1

Âj (t)

}+
. (21)

In this paper, for a functionψ , byψ+, we mean

ψ+ =
{
ψ ψ > 0,

0 ψ 6 0.
(22)

We arrive at the following theorem, and the proof of
this theorem is similar to that of Theorem 5.1.

Theorem 5.2. For a static priority driven server with
m connections, and with the input ofMi beingAi(t)
and its envelope process beinĝAi(t), the probability
for the cell delay fromMi to exceedd̂i is less than
1−∑i

j=1 εj whered̂i is given as in Eq.(20).

5.3. The EDF priority driven server

For an EDF server withm connections. Let̂Ai(t)=
ait + kiσitHi be the envelope process of the input
Ai(t) with error levelεi . Definingd̂i as

d̂i =max
c

{
S−1
i (c)− Â−1

i (c)
}
, (23)

where Â−1
i (c), S−1

i (c) are the inverse functions of

Âi(t), Si(t), respectively, andSi(t), is given as

Si(t)=
{
Ct −

i−1∑
j=1

Âj (t −Dk)
}+
, (24)

whereDk is the deadline for connectionMk . Thus
we have the following theorem and the proof of this
theorem is similar to that of Theorem 5.1.

Theorem 5.3. For a EDF server withm connections,
and with the input ofMi beingAi(t) and its envelope
process beingÂi(t), the probability for the cell delay
ofMi to exceed̂di is less than1−∑m

j=1 εj .

5.4. The GPS server

For a GPS server withm connections, a parameter
of φi is being assigned to connectionMi [34]. Let

Âi(t)= ait + kiσi tHi

be the envelope process of the inputAi(t) with error
levelεi . Definingd̂i as

d̂i =max
c

{
C−1
i (c)− Â−1

i (c)
}
, (25)

where Â−1
i (c), C

−1
i (c) are the inverse functions of

Âi(t),Ci(t), respectively and the lower bound of the
service function for connectionMi , Ci(t), is given as

Ci(t)= φi∑m
j=1φj

t. (26)

We have the following theorem, and the proof of this
theorem is similar to that of Theorem 5.1.

Theorem 5.4. For a GPS server withm connections,
and with the input ofMi beingAi(t) and its envelope
process beingÂi(t), the probability for the cell delay
ofMi to exceed̂di is less than1− εi .

6. An algorithm for computing the statistical
delay bound

In Section 5, we obtained the statistical delay bound
for each of the scheduling server in an ATM switch. In
this section, we present an algorithm for computing
these statistical delay bounds.

6.1. Estimation of the self-similar parameter

Under the Fractional Brownian Motion traffic mo-
del,A(t)= at+σZ(t), wherea is the mean,σ 2 is the
variance,H is the self-similar parameter of the input
process andZ(t) is a normalized Fractional Brownian
Motion process. We present here how to estimate the
self-similar process parameters as in [3].

Given the traffic observationsX1, . . . ,Xn, . . . ,
whereXi is the number of cells arrived between the
time interval(i − 1, i].

We define

Xn = 1

n

n∑
j=1

Xj, (27)

s2
n =

1

n− 1

n∑
j=1

(Xj −Xn)2. (28)
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6.1.1. The variance plot method for estimatingH
(1) Let k be an integer, 26 k 6 n/2. For a sufficient

number (saymk) for a sub-series of lengthk,
calculate the sample meansX1(k),X2(k), . . . ,

Xmk (k) and the overall mean

X(k)=m−1
k

mk∑
j=1

Xj(k). (29)

(2) For eachk, calculate the sample variance of the
sample meansXj(k) wherej = 1, . . . ,mk

s2(k)= (mk − 1)−1
mk∑
k=1

(
Xj(k)−X(k)

)2
. (30)

(3) Plot logs2(k) against logk. For large values ofk,
the points in this plot are expected to be scattered
around a straight line with a negative slope of
2H − 2, and therefore the estimator̂H can be
found.

6.1.2. The estimation of mean and variance
The estimators of the meana and varianceσ 2 is

given as

â =Xn, (31)

σ̂ 2= n− n
2Ĥ−1

n− 1
s2
n. (32)

With these parameters, we can find the value for
the envelope process of the inputA(t) with error
level ε. Thus, we can compute the delay bounds
for the connections as given by the methods from
Sections 5.1–5.4 depending on the ATM output port
scheduling server.

6.2. A case study on regular LAN traffic

Now that we have a way to compute the statistical
delay bound for the cell delay in an ATM switch, we
present here a case study based on regular LAN traffic
for the comparison among our delay bounds, and the
actual cell delay experienced at the ATM switch.

In this study, we assume an ATM switch with
a FIFO scheduler as its output port controller. One
hundred connections are fed through the switch and
each of these connections is derived from a real packet
trace with a network load of about 1.05 Mbps. This
trace was done at the Bellcore Morristown Research

and Engineering Facility, on the computing lab’s LAN,
which carried the local traffic as well as the traffic
between Bellcore and the Internet on August 29, 1989.
For details about the trace, please refer to [12,18,
19].4

As for our previous delay bound for an ATM switch
with a FIFO scheduling server, we assume the arrival
traffic can be described by a two-piece linear function
with parameters:ρ andβ . With the givenρ andβ ,
the worst case delay bound can be determined and
can be found in Cruz’s5 and in our previous work [7,
8,24,26–28,30,31]. In choosing the parameter ofρ

andβ , we adopted Mayor’s approach [23] in defining
an envelope process such thatρt + β > Â(t), ∀t >
0. With such an envelope process,ρ, andβ should
satisfy the following inequality, and hence, the delay
bound assuming a two-piece linear maximal arrival
function can be computed as given in these previous
work.

(a − ρ)
[
kσH

ρ − a
]1/(1−H)

+ kσ
[
kσH

ρ − a
]H/(1−H)

− β 6 0. (33)

As for our approach in finding the statistical delay
bound, we can find the value for the envelope process
for the inputA(t) with error levelε as described in the
previous sections. The statistical delay bound can be
obtained by the envelope process with a probability of
ε that the cell delays will be outside the bound.

In order to show how tight and effective these delay
bounds are, we also compute the actual delay for each
cell in each busy period while the connections are
passing through the ATM switch. We recorded the cell
delay in each busy period and sort these cell delays
in an ascending order so that we can compare the
percentile of these cell delays with the statistical delay
bound at the corresponding probability of(1− ε).

Fig. 2 shows the delay bound based on a two-piece
linear maximal arrival function, the FBM statistical
bound and the actual maximum cell delay for our 100-

4 The traces are also available at http://ita.ee.lbl.gov/html/contrib/
BC.html.

5 Cruz’s delay bound is the same as ours under a single connection
and with a FIFO server. With schedulers other than the FIFO server
and for multiple connections, our methods are found to be more
efficient and effective (see [30,31]).
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Fig. 2. Comparison among delay bounds and the real delays.

connections system with different probability guar-
antees. Fig. 2 clearly shows that the statistical delay
bound is tighter than the delay bound based on a two-
piece linear arrival function and that the statistical de-
lay bound is an accurate statistical bound for the long-
range dependent connections with respect to the actual
cell delays.

7. Conclusion

As many researchers had proven and validated that
many real-time network traffic appear to be statis-
tically self-similar, we use a self-similar stochastic
process to characterize the arrival traffic for an ATM
switch. As a result, we can determine the statistical
delay bound on the worst case cell delay. This statis-
tical delay analysis was based on our previous work
on the deterministic delay analysis on an ATM switch.
With the statistical delay analysis, we provide meth-
ods to determine the statistical delay bound for the net-
work traffic which is more suitable for the connection
admission control for an ATM network with different
output port controllers. Through our LAN traffic ex-
periments, we show that the statistical bound is tighter
than the delay bound derived by our previous method
and stays close to the actual maximum cell delay in
an ATM network. Not only showing that the statistical

bound performs better, our methods are also applica-
ble to different kinds of output port schedulers in the
ATM switches other than the FIFO server.

Appendix A. Self-similar traffic equations

A.1. The definition of self-similar traffic model in
Eq.(7) in Section4 is the same as the one given
by (2.2)of Norros[32]

In Norros [32],A(t) is given by

A(t)=mt +√amZ(t), t ∈ (−∞,∞)
andm,a are two different constants for a givenA(t),
we just take a transform from(m,a) to (ā, σ ){
ā =m,
σ =√am

it has inverse transform{
m= ā,
a = σ 2/m

and we get an equivalent model of Eq. (2.2) in
Norros [32]

A(t)= āt + σZ(t), t ∈ (−∞,∞).
Replaceā with a, we can see that this is the same
model of Eq. (7) in Section 4.
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A.2. About the average rate and the variance

In Norros [32], we have

var
(
A(t)

)= var
(√
amZ(t)

)
= am× var

(
Z(t)

)= amt2H
and so

var
(
A(1)

)= am.
We can see thata is just a “variance coefficient”, not a
“variance” ofA(1), as stated by Norros [32].

A.3. Multiple input traffic case

Actually, in multiple connection case, i.e., there
are m(>1) connections, with input trafficsAi(t),
our model is more general than the one given by
Norros [32].

In Norros [32]’s Proposition 2.2,Ai(t) is defined by

Ai(t)=mit +√amiZi(t), t ∈ (−∞,∞),
wherea is the same for differenti ’s, the two coeffi-
cientmi,

√
ami are known if we knowmi , they sat-

isfy the relationy =√ax. SoAi(t) is determined by
mi, Zi(t).

In Eq. (10),Ai(t) is defined by

Ai(t)= ait + σiZi(t), t ∈ (−∞,∞),
where the two coefficientai, σi have no relations, and
Ai(t) is determined byai , σi , Zi(t).

If we add a condition

σi = cai
we will get the model of Norros [32].
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