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ABSTRACT
Reliable smartphone app prediction can strongly benefit both
users and phone system performance alike. However, real-
world smartphone app usage behavior is a complex phenom-
ena driven by a number of competing factors. In this pa-
per, we develop an app usage prediction model that lever-
ages three key everyday factors that affect app usage deci-
sions – (1) intrinsic user app preferences and user histori-
cal patterns; (2) user activities and the environment as ob-
served through sensor-based contextual signals; and, (3) the
shared aggregate patterns of app behavior that appear in var-
ious user communities. While rapid progress has been made
recently in smartphone app prediction, existing prediction
models tend to focus on only one of these factors. We evalu-
ate a multi-faceted approach to prediction using (1) a 3-week
35-user field trial, along with (2) analysis of app usage logs
of 4,606 smartphone users worldwide. We find our app us-
age model can not only produce more robust app predictions
than conventional techniques, but it can also enable signifi-
cant smartphone system optimizations.
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INTRODUCTION
The prediction of smartphone app usage patterns is rapidly
growing in importance. As the market of smartphone apps
continues to expand, the consumer decision process of which
app to use is becoming increasingly complex. Automated
smartphone app recommendations can help the user simplify
this process, especially when such suggestions can be made
with awareness of the users’ current context and activity. Re-
cently, in order to improve device usability, the prediction
of app usage is being embedded in smartphone user inter-
faces [4]. For example, enabling smartphone interfaces that
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react to the expected needs of the user, or that simply make it
easier to find the app a user is likely to use next [3]. The ben-
efits of app prediction also extend to optimizing smartphone
operation. For example, by predicting apps likely to be used
in the near future, smartphones can pre-load apps – reducing
app load times from between 5 to 30 seconds down to be-
ing virtually instantaneous [6]. Similarly, app prediction can
be used to cache network content required by apps, again po-
tentially providing the appearance to the user of much higher
network speeds. All of above innovations in mobile technol-
ogy rely on the robust prediction of smartphone apps.

In response to the need for smartphone app prediction, a
number of prediction frameworks have been proposed re-
cently [7, 4, 6]. The majority of these existing frameworks
focus on one of three factors that can influence everyday app
decisions – namely, (1) user-specific preferences and his-
tory, (2) contextual signals and (3) aggregate behavior based
on patterns in the whole user population. However, real-
world smartphone app usage behavior is a complex phenom-
ena in which these factors interact and can not be consid-
ered in isolation. Further, modeling aggregate user behav-
ior in existing app prediction frameworks is commonly per-
formed with collaborative filtering techniques [25, 26, 27]
borrowed from recommendation systems – particularly book
and video recommendation systems. These techniques are
ill-suited to recognizing clusters of users that exhibit valu-
able community-level app behaviors useful in directing ro-
bust app predictions.

Our approach to smartphone app prediction is a framework
that jointly considers three key drivers of app usage (i.e.,
community behavior, contextual signals, and user-specific
preferences and history). To achieve this design objective
our learning framework initially trains per-user classifiers
that predict future app usage based on context, user activities
and phone state – while also incorporating the historical pat-
terns and preferences unique to each individual user. Later,
instead of relying on a single user-specific model for app
prediction, we incorporate all classifiers for all users into the
process. The weight of their influences on the final predic-
tion for each classifier depends on a novel similarity metric
between users and is specifically tuned according to app us-
age behavior. As a result, smartphone app predictions from
our framework can maintain two important properties. First,
personalization – predictions leverage user specific patterns
that connect app usages and signals extracted from their con-



text, location, phone state and activity. Second, awareness of
community-level behavior – app predictions are sensitive to
broader app usage patterns that exist within groups, rather
than individuals. For example, patterns that manifest in spe-
cific app user communities (e.g., heavy users of social me-
dia) or those users with similar lifestyles who have shared
context and activity patterns.

This paper makes the following contributions. (1) Our pre-
diction framework incorporates multiple factors that signif-
icantly influence app usage patterns. Our prediction model
captures not only user-specific patterns and contextual sig-
nals, but also usage patterns that emerge at the community-
level and are present only in groups of people, rather than in-
dividuals. (2) We propose a novel similarity metric and clas-
sifier training process that: (a) identifies individuals within
the broader user population who share key behaviors that
drive app usage, (b) appropriately balances the influence of
user-specific factors, community behavior and context sig-
nals on the final prediction result; and, (c) relies only on data
readily available from off-the-shelf smartphones. (3) We
have evaluated the prediction accuracy of our framework us-
ing a 35-subject 3-week field trial, comparing our approach
to a series of baseline prediction techniques. To further un-
derstand the potential benefits of our prediction framework,
we study a dataset of smartphone app usage traces from
4,606 users world-wide; we investigate reductions in app
load times and app-related network latency by pre-loading
apps and pre-fetching data based on the predictions of our
framework.

SMARTPHONE APP USAGE PATTERNS
In what follows, we highlight key factors that underpin app
usage patterns and describe how these factors have been pre-
viously leveraged by existing app prediction frameworks.

Influencers of Smartphone App Usage
Smartphone app usage is a complex phenomenon without a
single cause; rather, there are several concurrent drivers that
jointly influence each user and instance of smartphone app
usage. In our proposed framework, we define and use three
main categories of app usage influence: context, community
behavior and user preferences and historical patterns.

Context
Context is an important factor in app usage patterns: intu-
itively, many apps are correlated to aspects of context, such
as location, time and user activity. For example, city-specific
transportation apps (e.g., MTA Subway Time [1]) are tied to
specific places, calendars are accessed mostly during work
hours and run-monitoring apps (e.g., RunKeeper [2]) are
used while jogging. The strength of this relationship has
been validated by a number of prior studies. For instance,
[19] shows that the surroundings (e.g., home, work, on the
move), the day of the week and the time of the day strongly
influence which apps are used. Similarly, Böhmer et al.,
have collected a large context/app usage dataset from over
4,000 users. By analyzing user smartphone behavior and
the corresponding location and time, the authors have shown

that context is a good indicator of app usage frequency and
duration [21].

Community Behavior
User communities exhibit important patterns that are useful
for predicting individual app usage [29]. For example, if
a person belongs to a gaming user community, then he/she
tends to have patterns of prolonged game play as he/she
commutes home. Similarly, business or productivity groups
of users will have specific patterns as well. For instance,
this group may use email for short bursts every few hours.
Outside of smartphone app user communities, recent studies
have shown that people with a similar socio-economic status
have similar app usage patterns [22]. Or in [24] the authors
interview more than 3,000 medical providers and show peo-
ple with similar working roles use a similar set of apps.

Exploiting such community ties can lead to more robust pre-
dictions, and can compensate in situations of low amounts
of per-user training data. For example, one user may lack
enough training data in the system to clearly identify his/her
personal app usage patterns. However, once data from other
relevant user communities are utilized, this user’s patterns
can be learned.

User Preferences and Historical Patterns
Context and social networks are strong drivers of app usage.
However, usage also depends on factors that are unique to
each user, such as specific needs, preferences and interests.
For example, a person with a long commute may be more
interested in casual gaming apps even if they are unpopular
with others of the same occupation and background. Simi-
larly, a young man strongly interested in cooking will tend
to use more recipe apps even – if such apps are not broadly
popular in his demographic group. Such differences between
individuals and the aggregate communities to which they be-
long will be reflected in the apps that they install and their
usage history. Thus, monitoring the usage patterns of a sin-
gle individual provides important data to understand their
specific needs and makes predictions better tailored to their
personal interests.

Existing Approaches
The holistic approach of our framework puts it at the in-
tersection of a number of different research topics: recom-
mendation systems, community-guided learning, and exist-
ing app prediction systems.

Recommendation systems. For many years, systems that
aim to automatically suggest new items (e.g., books, videos,
restaurants) to users have been actively investigated. Collab-
orative Filtering (CF) [25, 26, 27] has become the dominant
approach used by these systems. Under CF, predictions and
recommendations are made by exploiting the usage histories
and ratings from many different users. Generally speaking,
CF algorithms can be divided into two varieties: user-based
methods and item-based methods. User-based methods [25]
design a specific metric to evaluate the similarity among
users. For example, Breese et al. [25] defined a vector-based



similarity among users, which help evaluate the recommen-
dation score of each user for an item. On the other hand,
item-based methods [27] propose an item-oriented metric to
measure the similarity among items. More recently, AppJoy
[10] applied item-based collaborative filtering algorithms for
smartphone app recommendation. However, unlike our frame-
work, AppJoy only exploits usage history information and
explicit user rating feedback, ignoring the context informa-
tion when people use various apps.

Community-guided learning. Growing interest exists in
leveraging communities to build a variety of user models.
Until now these ideas have been applied primarily to ac-
tivity recognition. The general idea is that the efforts from
other users in the community are utilized as a means to im-
prove classification accuracy without requiring additional la-
bels from each user. Examples include: Community-guided
Learning (CGL) [8], that leverages community efforts to clean
noisy labels provided by untrained members of the commu-
nity; and, Community Similarity Networks (CSN) [28], that
enables the scalable personalization of activity classifiers.
To the best of our knowledge, exploiting community-guided
learning for mobile app recommendations remains almost
untouched.

Smartphone app prediction systems. Our framework adopts
a multi-faceted approach to app prediction that exploits the
combination of context, social/similarity networks and user
traits. Despite the strong interest in smartphone app predic-
tion and recommendation, prior work has tended to study
these factors in isolation. For example, [19, 21, 24, 23] ex-
amine app usage patterns but largely focus only on the rela-
tionship between usage and contextual factors. AppJoy [10]
recommends app based on usage patterns and user ratings,
without taking into account usage context. Similarly, Get-
Jar [7], suggests new apps based on the recent application
usage history only, thus ignoring social and contextual as-
pects. FALCON [6] is a launcher that predicts which app
will be used based on past usage history and data collected
from smartphone sensors; however, it does not recommend
new apps and does not leverage social information. [18] pro-
poses a technique that predicts new mobile apps installation
based on user social relationships: however, it ignores app
usage history (i.e., user traits) and usage context.

MULTI-FACTOR SMARTPHONE APP USAGE PREDICTION
In what follows, we detail our framework for smartphone
app prediction. This framework incorporates each of the
three key drivers of app usage in phones described in the
prior section – namely: contextual signals, community be-
havior and user-specific preferences and history.

Framework Overview. As illustrated in Figure 1, our frame-
work includes three primary modeling phases that result in
app usage predictions that have the following qualities. (1)
Personalized – predictions exploit learned user-specific rela-
tionships between app usage and signals driven by context,
location, phone state and activity. (2) Community-aware –
predictions are influenced by the strong app usage patterns
seen in users from the same app user communities (e.g.,
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Figure 1. Multi-factor Smartphone App Usage Prediction Framework

game players) or those users with shared context and activi-
ties patterns (i.e., users who live in similar environments and
perform related activities).

At a high-level our framework operates as follows. We for-
mulate smartphone app prediction as a classification prob-
lem. The basic unit of classification is an App Bag. An
App Bag represents a single use of an app and contains fea-
tures that summarize user context, location, activities and
phone state. By training per-user classifiers across multiple
App Bags (i.e., App Bag classifiers), our framework learns
how these features relate to likely app usage. The key to
exploiting patterns of community app behavior is to iden-
tify presence of strong user similarity. We calculate a sim-
ilarity metric between each pair of users that capture user
app behavior (e.g., categories of apps used, sequences, dura-
tion) along with similarity in contextual conditions that drive
app use (e.g., location, activities). As a result, when per-
forming final app prediction instead of relying solely on the
user-specific App Bag classifiers, our framework can incor-
porate the classification result of App Bag classifiers from
other highly similar users.

In the remainder of this section we describe in detail the key
phases of our framework.

App Bags
There are three steps in the construction of App Bags: (1)
segment different types of sensor data into a bag for each
user; (2) extract contextual features from each bag; and (3)
evaluate the distance/similarity between App Bags.



Segment Sensor/Phone Data into App Bags
Our framework begins by gathering traces of training data
from smartphone users that contain (1) sensor and phone
state data and (2) a log of smartphone app usage. From
this trace, the stream of data from each type of sensor or
phone state information is partitioned into separate segments
of variable length. After partitioning, all trace data segments
are grouped together to form individual App Bags. Each App
Bag represents a single usage of a smartphone app by the
user, with the data segments contained in the bag all occur-
ring during this particular usage.

We adopt this App Bag approach to cope with the mismatch
in sensor/phone data sampling rates and the duration smart-
phone apps are typically used. For example, while often
an app is used for dozens of seconds, sensors like the ac-
celerometer are sampled between 8 and 60 Hz. In our frame-
work audio data and accelerometer data are partitioned into
segments of 1.5 and 2.5 seconds respectively – with phone
state being treated as an event stream. Consequently, we
adopt a bag of features representation where features are ex-
tracted from data collected in an orderless (i.e., set) manner
that allows multiple features to be associated to a single class
(i.e., application use). Thus, all the data within a set (i.e.,
App Bag) jointly provide a complete description of the label
space (i.e., potential smartphone apps).

Extract Contextual Features from App Bags
We exploit a number of contextual features previously proven
to be effective for smartphone app prediction [7, 4, 6]. These
features can be coarsely categorized into the following groups:
(1) environment, (2) time and space, and (3) phone state. We
now detail the individual features found within each group,
each of which is extracted from every App Bag.

Environment. To capture contextual signals associated with
user activities and places that impact application usage, we
collect data from the accelerometer and microphone. From
these sensors we extract commonly used time and frequency
domain features that are capable of discriminating a wide
variety of human activities. Specifically, we adopt the par-
ticular combination of 50 accelerometer and audio features
proposed in [9] and proven to be robust to the particular chal-
lenges when sensing with smartphones.

Time and Space. As discussed in the previous section, lo-
cation and time have been found to be strongly linked to
app usage. We leverage this relationship by including the
following features: (1) time of day, which discretizes time
into three periods - morning (beginning at 6am and ending
at noon), afternoon (ending at 6pm), night (all remaining
hours); (2) weekend, a binary indicator that is set to 1 if
the day is on the weekend, and 0 otherwise; and (3) location,
that represents location as one of a series of clusters – clus-
ters are determined by applying the density-based algorithm
DBSCAN [17] to the user’s mobility trajectory.

Phone State. We employ the following phone state features:
(1) last application used; (2) last application category 1 used;
1App category is based on the Android App Store

(3) airplane mode; (4) vibration mode; and, (5) screen state
(i.e., is the phone screen sleeping or active).

Measure Similarity between App Bags with Mercer Kernel
For correct operation, our framework requires a kernel func-
tion with certain properties when evaluating the “closeness”
of any two App Bags. Performing this measurement is a ba-
sic building block operation of any supervised (i.e., example-
based) classifier and a key step in the final prediction phase
of our framework. Such a kernel function must meet the
following requirements: (1) maintain bag of features seman-
tics – in other words, the difference between each App Bag
should be determined by correspondence relations between
features of the same type; (2) cope with the heterogeneity
of data types (and the resulting features) that comprise each
App Bag; and, (3) satisfy the Mercer condition – i.e., the
kernel is a positive semi-definite [11]. In fact, the Mercer
condition plays a critical role in whether a global optimal
solutions exist for a supervised kernel-based classifier [11].

We now describe our kernel design that fulfills the aforemen-
tioned design requirements. Let,

Dis(Xi,Xj) =
1

L

L∑
l=1

K(X
(l)
i ,X

(l)
j ) (1)

where: Xi and Xj are an arbitrary two App Bag instances;
L is the number of heterogeneous bag-level data types; X(l)

i

is the collection of the lth type of bag-level data in App Bag
Xi; and, K(·, ·) is the Mercer Kernel. K(·, ·) is defined as
follows:

K(X
(l)
i ,X

(l)
j ) =

1

|X(l)
i |

1

|X(l)
j |

|X(l)
i |∑

a=1

|X(l)
j |∑

b=1

(K(x
(l)
ia ,x

(l)
jb ))p

(2)

where: x
(l)
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of data in App Bag; Xi, p ≥ 1 is the kernel parameter; and,
K(·, ·) is the kernel function defined at the traditional data
level [14, 13].

This kernel considers the relations among each type of App
Bag data independently. For each type of App Bag data, the
correspondence relations are captured by using the pairwise-
correspondence mechanism [12]. [14] demonstrates that the
kernel defined in Eq.(2) is a Mercer kernel. Thus, Eq.(1) –
its linear combination – also satisfies the Mercer condition.

Compute Community Similarity
As described in the previous section, shared patterns of app
usage exist between people with overlapped personal traits
and behaviors. The critical component in leveraging com-
munity information is the computation of similarity between
framework users. By measuring similarity, the framework
can determine how influential the app usage behavior of one
user can be on another.

In our framework, two key factors are taken into account
when computing user similarity. First, repeated contextual



similarity – which is an indicator of affinity, such as: re-
lated activities being performed, visits to related places or
smartphone usage of similar types. Second, shared applica-
tion usage history – which suggests users have related app
preferences and app needs.

Under our framework, pairwise similarity between two users
is simply the mean similarity computed between their re-
spective collection of App Bags – extracted in the previous
framework step. At the bag-level we treat similarity as a
probability using a binomial distribution. More formally, the
similarity between two bags – Xi and Xj – is,

P (Xi,Xj;µ) = C(N,m)µm(1− µ)N−m (3)

where: µ is the binomial distribution parameter; N is the to-
tal number of pairs of items between Xi and Xj; m is the
number of these pairs that correspond; and, C(N,m) is the
number of m−combinations from a set of N elements. Two
bag items correspond if they have a small L2-norm differ-
ence [15]. In other words, if the inner product inequality
x>iaxjb ≥ δ is satisfied, then xia and xjb have correspon-
dence. Therein, δ is a threshold between 0 and 1 and is de-
termined experimentally.

We incorporate historical application usage information, if
available, as a prior. Since we adopt a binomial distribu-
tion for bag-level similarity we use the Beta distribution, the
conjugate distribution of binomial, to model the historical
app usage over the parameter µ. Specifically, we define:

P (µ|a, b) ∼ Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1

(4)
where a and b are the parameters of Beta distribution, and
Γ(·) is the Gamma function.

Hence, the posterior distribution of µ can be obtained by
multiplying the Beta priori Eq.(4) by the binomial likelihood
function Eq.(3), and then normalizing. As we only keep the
factors that depend on µ, the following form of posterior
distribution can be obtained: P (µ|Xi,Xj) ∝ µa+N−1(1 −
µ)b+N−m−1. This indicates that the posterior distribution of
µ is subject to the distribution of Beta(µ|N+a,N−m+b).

According to the Bayesian theory [16], the Bayesian optimal
estimation in term of square error loss is the expectation of
posterior. Or formally,

µopt = E{P (µ|Xi,Xj)} =
a+m

N + a+ b
. (5)

Note that under the condition that the app usage history is
not available, we can simply set the priori as an uninforma-
tive prior [16]. In other words, let P (µ) = 1. Thus, our sim-
ilarity computation considers both context information and
app usage history; while it can still cope with cases where
application history is unavailable.

Perform App Prediction
The prediction of future app usage requires two steps: (1) the
training of per-user classifiers across all App Bag instances
gathered from each user’s training data; and, (2) performing
app prediction with each of these per-user classifiers - after
aggregating each individual classifier result using classifier
confidence and pairwise similarity.

Train App Bag Classifier
Based on the kernel defined earlier in Eq.(1) we train a per-
sonalized classifier for every user that relies only on their
own collected training data trace. These classifiers need to
be trained rarely, for most users being trained once – with
only highly active users benefiting from classifier retraining
if their app usage patterns change.

Our framework is agnostic to the particular classifier used
and so can be adapted based on the modeling needs of spe-
cific context and phone state data. This flexibility is impor-
tant as often the classification performance is strongly influ-
enced by the combination of the model selection in relation
to the sensor data and the exact application to be classified.
The only two classifier requirements of our framework are:
(1) N-predictions – the classifier must be able to produce not
only a single prediction but the N most likely app to occur;
(2) prediction confidence – for each prediction, an associ-
ated measure of certainty by the classifier is required and
used in community phase of our framework. As a result, we
can employ any distance based classification method, such
as Gaussian Mixture Model (GMM) or Nearest Neighbor
Classification (NNC) [17]. Note that in this paper we focus
on the general framework for app prediction rather than the
specific classification algorithms. Thus in our experiments,
we use NNC due to its simplicity.

Classification Exploiting Community Behavior
We formulate the prediction of an app as a classification
problem, based on the relationship between app use and con-
text and phone state as represented within an App Bag. How-
ever, by selectively leveraging patterns of community app
behavior – guided by user similarity – we overcome impor-
tant sources of classification error. For example, insufficient
training data from a specific user for either a particular app,
or a particular combination of context and phone state. In
other words, through the use of community similarity, our
framework identifies and uses examples of strong app us-
age present in clusters of similar users – rather than relying
solely on the training examples observed from each individ-
ual user.

Our framework relies on robust similarity estimation between
users, and incorporates this measure into prediction with a
relatively simple voting scheme. Final app prediction for any
user targeted for prediction considers not only the App Bag
classifier of the target user; but, also all App Bag classifiers
belonging to all other users. More precisely, we compute for
each possible app j for target user i:

score(ui, j) =

N∑
k=1

weight(ui, uk)conf(uk, j) (6)



where: score(ui, j) is the recommendation score reflecting
the probability that user iwill use application j;weight(ui, uk)
is previously calculated similarity between user i and user k;
and, conf(uk, j) is the certainty in prediction for app j by
the App Bag classifier of user k. The specific app j with
the highest score is final prediction. (When N possible app
are to be predicted, those apps with the N highest scores are
used). Intuitively, if two persons ui and uk are highly similar
to each other, the results of each others App Bag classifiers
can be used with high confidence. Note that the target user’s
own App Bag classifier will always have high influence over
the result as the user is perfectly similar to themselves (i.e.,
his/her similarity weight with him/herself is 1.0).

EVALUATION
In this section, we first evaluate the accuracy of our predic-
tion framework before studying potential benefits to smart-
phone usability. Our findings show (1) our community-based
framework is able to predict app usage patterns more accu-
rately than a variety of conventional techniques; and (2) sig-
nificant reductions in smartphone app-related load times and
network latency are possible by leveraging our framework.

Methodology
To evaluate our framework we use two large real-world data-
sets and four representative baselines.

Datasets
Our experiments are performed using two different datasets.

The first dataset – ContextData – is based on a field trial
of 35 participants. All subjects live in the Hanover, NH
area and are either college students or employees from a lo-
cal software company. For three weeks, all subjects carry
a Google Nexus S smartphone running our data collection
software that samples sensor data (viz. the accelerometer,
microphone and GPS), in addition to phone state informa-
tion required by our framework. All foreground apps in use
during the study are logged to provide ground truth to vali-
date app prediction techniques. Subjects use, on average, 9
different apps during the study.

The second dataset – AppJoy – is collected by the authors
of [10] and contains a time-series trace of the app usage for
4,606 different users. Over 16,000 apps are used within this
dataset and more than 10 million hours of data are collected.
Because this dataset does not contain any contextual data, we
are unable to test it directly against our framework. How-
ever, it is well suited to providing a realistic app workload
that allows us to investigate the potential benefits to system
performance based on our prediction framework.

Baselines
We compare the performance of our framework to the fol-
lowing prediction strategies.

(1) SVM+Context – to represent the performance of re-
cent app prediction strategies (e.g., [4]) this baseline uses a
SVM [17] and only context information (e.g., location, time,

N Accuracy
LRU 1 2%
MRU 1 36%
MFU 1 34%
Framework 1 39%
Framework 5 67%
Framework w.o Community 1 10%
Framework w.o Community 5 62%
SVM+Context 1 36%

Table 1. Average Prediction Performance

Figure 2. Time-series Prediction Performance. (N = 5)

phone state). This framework uses the same contextual fea-
tures used by our own framework (see previous section).
(2) MRU – the predicted app is the most recently used app.
(3) LRU – the predicted app is the least recently used app.
(4) MFU – the predicted app is the most frequently used app.

Prediction Accuracy
Our first experiment considers per-user prediction accuracy
for our framework and each baseline. We also test the effect
of changing the N parameter – which regulates how many
predictions are made. Under the parameterN , the prediction
is still considered correct if any of the predicted set of N
apps is the actual app that is next launched by the user. This
experiment solely uses the ContextData dataset.

Table 1 shows the average per-user prediction accuracy for
each tested combination of prediction technique andN value.
From the table, we can see that the best result is when we uti-
lize our framework – regardless of which value ofN is used.

To test the benefit of considering community influences within
our framework, we perform additional experiments where
we temporarily disable the community-related stages in our
model. Again in Table 1, we see that for different values
of N there is a notable increase in our model performance
when we include these community-related stages.

The value of incorporating community-awareness within our
framework can also be seen in Figure 2. This figure shows
the time-series prediction of smartphone apps when using
our framework withN = 5. In the figure, the horizontal axis
indicates the time while the vertical axis indicates the num-
ber of apps used at one specific moment. This figure contains



Figure 3. CDF of prediction accuracy across all subjects. (N = 5)

Figure 4. CDF of prediction accuracy across all applications. (N = 5)

three subfigures, the bottom row illustrates the ground truth
while the middle and top rows show our framework with and
without community-related stages, respectively. Figure 2 in-
dicates our framework – when considering the influence of
communities – results in a prediction output that follows the
ground truth much more closely.

Performance Variability for Users and Apps
Prediction accuracy must remain consistent across different
users and different smartphone apps. Without prediction
consistency, the performance of smartphone services that
use prediction (e.g., user interface optimizations or system
performance tuning) will be unreliable resulting in a vari-
able user experience. To examine this issue, we again use
the ContextData dataset.

Figure 3 illustrates the variability of prediction accuracy for
our framework when N = 5. From this figure we can see
that prediction accuracy remains fairly consistent across all
study subjects. More than 60% of the subjects experience a
prediction accuracy greater than 62% – this is approximately
the same as the average accuracy of our framework (when
N = 5), and is greater than any tested baseline method.

Similarly, we also examine how well our prediction model
generalizes to different smartphone apps. Figure 4 presents
the spread of prediction accuracy across all apps contained
in the ContextData dataset. Again, we find that accuracy
is relatively consistent for all apps.

Optimizing Smartphone App Responsiveness
In our final set of experiments, we investigate the potential
benefit of our prediction framework to smartphone perfor-
mance. Specifically, we consider: (1) how much faster apps
may load or (2) how much user wait-time can be eliminated;
if apps usage can be predicted, enabling app pre-loading and
network pre-fetching to be performed. The following results
are obtained using the AppJoy dataset and a Android Nexus
S smartphone.

App Pre-loading. We begin by profiling the launch time
of the 25 most frequently used apps within the dataset. The
launch time of each app is measured and we record the aver-
age time of 10 app launches. We find for more than 20% of
the apps the launch time is 15 seconds or longer. Similarly,
around 50% of the apps take 10 seconds or more. In con-
trast, we find if the app is first pre-loaded then these same
apps take, on average, less than 0.5 seconds to restart.

Network Pre-fetching. Next, we profile the typical overhead
caused by accessing network content during simple app us-
age. To provide low-level monitoring of network usage for
each app we use the AppScope [5] tool. We again attempt to
select the 25 most frequently used apps within the dataset.
However, we exclude any app that does not immediately re-
quire a network connection after it is launched and replace
it with the next most popular app that requires network ac-
cess. Each app is tested 5 times using a 3G data connection.
We find that 20% of these apps wait, on average, 21 seconds
or more to complete their network activity, with 50% taking
around 6 seconds.

Although we did not implement any data caching scheme
to test the benefit of pre-fetching, we test a similar behavior
using the built-in web-cache of the phone browser. We find
10 web sites that require on average 21 seconds of network
wait-time to load. We then return to each web site to exploit
the built-in phone cache. We find none of these sites take
longer than 2 seconds to load, with the majority being less
than one second.

User Benefits at Scale. To understand the potential perfor-
mance benefits of app prediction, we perform a simulation
using the app usage traces contained in the AppJoy dataset.
Under the simulation, app usage traces are replayed and the
previously reported app prediction performance (39%) un-
der the ContextData dataset is assumed to hold. During
simulation we estimate the reduction in app load times and
network latency assuming the distribution of per-app savings
quantified in the previously described two experiments.

Figure 5(a) and 5(b) present the CDF of average per-app per-
formance gains, in terms of app loading and network wait
times, across all users in the AppJoy dataset. Importantly,
these figures indicate even under fairly low levels of predic-
tion accuracy significant savings can result. For example,
in Figure 5(a) we find that for 50% of all users the average
app load time is lowered by 11 seconds. Similarly, we find
in Figure 5(b) that for 80% of all users the wait time due to
network activity is lowered by 4 seconds.
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Figure 5. Smartphone users can experience significant gains in app
responsiveness by exploiting prediction to perform efficient app pre-
loading and app network data caching.

DISCUSSION
In the following, we acknowledge the limitations of our study
and highlight areas of future research.

Experiment Limitations. Our current results are based on
a 35-person experiment; a larger experiment over a longer
duration is required to ensure our findings will hold for a
broader and more heterogeneous population.

Scalability Issues. The system overhead and scalability of
our framework have yet to be carefully evaluated. In partic-
ular, the support for communities – training per-user models
and computing similarity – is a resource-intensive process
that may struggle when supporting a large user base. To
overcome this limitation, we are investigating a user pro-
file condensing scheme. Such an approach would incremen-
tally adapt user profiles as new information about the user
is gathered, while also removing data from the system (e.g.,
training process etc.) that are no longer relevant.

Privacy. Our proposal relies on sensor data that could con-
tain sensitive information. Although, this is a widespread
problem that exists with many mobile sensing systems. One
way forward is to perform feature extraction directly on the
phone. In this way, the server does not receive raw data,
rather it receives features useful for classification only. While
not water-tight this would provide significantly improved pro-
tection.

CONCLUSION
In this paper, we have presented a prediction framework for
smartphone app usage that incorporates three important ev-
eryday factors influencing user app behavior – namely: con-
text, community behavior and user preferences. We eval-
uated this framework with a 3-week 35-subject field trial
and compared it to a variety of conventional prediction ap-
proaches. To understand the potential for smartphone system
optimization enabled by our framework, we also performed
a detailed analysis over a large-scale dataset of app usage
traces from 4,606 users world-wide. Collectively, our re-
sults show the proposed multi-faceted prediction framework
is able to operate more robustly than existing techniques;
which in turn can then drive meaningful improvements in
smartphone usability and app responsiveness.
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