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Abstract 
This paper unifies “line-process” approaches for 
regularization with discontinuities and robust es- 
timation techniques. We generalize the notion of 
a “line process” to that of an analog “outlier pro- 
cess” and show that a problem formulated in terms 
of outlier processes can be viewed an terms of ro- 
bust statistics. We also characterize a class of 
robust statistical problems for  which an equiva- 
lent outlier-process formulation exists and give a 
straightforward method for  converting a robust es- 
timation problem into an outlier-process formula- 
tion. This outlier-processes approach provides a 
general framework which subsumes the traditional 
lane-process approaches as well as a wade class of 
robust estimation problems. Examples in image 
reconstruction and optical flow are used to illus- 
trate the approach. 

1 Introduction 
The modeling of spatial discontinuities for problems 
such as surface recovery, segmentation, image recon- 
struction, and optical flow has been intensely studied. 
In particular “line-process” models of discontinuities 
have been popular due, in part, to their intuitive and 
physical appeal, as well as their ability to model spa- 
tial properties of discontinuities. More recently, the 
use of robust statistics in computer vision has become 
popular and, at first glance, it is not at  all clear that 
line-process approaches and robust statistics have any- 
thing in common. The goal of this paper is to show that 
they are closely related and that, by bringing this re- 
lationship to light, each approach can benefit from the 
other. Moreover, we propose a new framework based 
on analog or binary “outlier processes” which subsumes 
traditional line process approaches and a wide class of 
robust estimation approaches. 
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We first generalize the notion of a “line process)’ to 
that of an “outlier process” and show that a problem 
formulated in terms of outlier processes can be viewed 
in terms of robust statistics. While line processes have 
been used to  account for spatial discontinuities, out- 
lier processes are intended to be more general and can 
also be used to cope with gross measurement errors 
encountered in problems like stereo and optical flow. 

Then we characterize a class of robust statistical 
problems for which an equivalent outlier-process for- 
mulation exists and derive a straightforward mech- 
anism for converting the robust estimation problem 
to  the outlier-process problem. The resulting formu- 
lation, with explicit outlier processes, is more gen- 
eral than the original robust estimation problem. For 
example, since the outlier processes are explicit we 
can formulate constraints on their spatial organization. 
Moreover, the deterministic continuation methods used 
for minimizing the robust formulation (eg. determinis- 
tic annealing [5] or Graduated Non-Convexity [4]) can 
be directly applied to the explicit outlier processes for- 
mulation with spatial organization constraints. 

The remainder of the paper reviews previous work 
on line processes and robust statistics and shows how 
to  convert between the two formulations. Examples 
illustrate the use of outlier processes and the conversion 
of a robust estimation problem into an optimization 
problem with an  explicit analog outlier process. 

2 Previous Work 
Geman and Geman [9] introduced the notion of a bi- 
nary “line process” for modeling spatial discontinuities 
in image brightness and formulated constraints on the 
local spatial organization of discontinuities. Unfortu- 
nately, the introduction of line processes results in a 
non-convex optimization problem. 

Blake and Zisserman [4] showed that binary line pro- 
cesses can be eliminated from an optimization problem 
when no spatial constraints are imposed on the discon- 
tinuities. The result is an objective function containing 
an energy functional, or “weak constraint”, which en- 
forces spatial smoothness as long as neighboring points 
are “similar enough”. 
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The weak constraint approach still requires minimiz- 
ing a non-convex objective function, but Blake and 
Zisserman showed that their energy functional could 
be generalized by the introduction of a “control pa- 
rameter” which can be used to  adjust the “shape” of 
the function. Using this parameter, they devised a 
continuation method called Graduated Non-Convexity 
(GNC). 

Separately, the field of robust statistics [lo] has de- 
veloped methods to address the fact that  the paramet- 
ric models of classical statistics are often approxima- 
tions of the phenomena being modeled. In particular, 
the field addresses how to handle outliers, or gross er- 
rors, that d o  not conform to  the statistical assump- 
tions. 

Robust estimators, like line processes, have been 
used to account for spatial discontinuities in early vi- 
sion problems [2, 121. But, while line-process formula- 
tions typically are concerned with violations of the spa- 
tial smoothness assumption, measurements (of depth, 
optical flow, etc.) may also contain outliers. Black and 
Anandan [3] use robust estimation to  account for both 
spatial discontinuities and measurement errors in the 
recovery of dense optical flow fields. Similarly, Geiger 
and Pereira [6] add a “sparse process” on image mea- 
surements in the context of image compression. Geiger 
and Yuille [7] show that mean-field techniques [5] can 
be used to  integrate out both sparse and line processes. 

Eliminating the line processes by minimizing over 
them [4] or integrating them out [5] produces an ob- 
jective function with an energy functional which is sim- 
ilar to the redescending estimators [lo] used in robust 
statistics. A number of authors have noted this sim- 
ilarity (2, 3, 6, 7, 81. The connection becomes clearer 
when we consider analog line processes with general 
penalty functions. Geman and Reynolds [8] show that 
minimizing over the analog processes produces partic- 
ular estimators and they also specify conditions on an 
estimator that  must be satisfied if it is to have an equiv- 
alent line-process formulation. We provide a construc- 
tive proof of these conditions in [l] and, in this paper, 
make explicit the mechanism for recovering the analog 
process and extend their results to include a measure- 
ment process. 

Finally, Rangarajan and Chellappa [ll] show how an 
analog line process can be recovered for a general class 
of estimators, but do not address the robustness of the 
data term or connect the approach to  robust estima- 
tion. Black [2] introduces analog “outlier processed’ 
and exploits the results of Rangarajan and Chellappa 
[ll] to convert between robust estimation problems and 
outlier process formulations. 

3 Line Processes 
To introduce the idea of binary line processes we will 
consider a simple example of reconstructing a smooth 
surface U from noisy depth data d. Assume that the 
data is an n x n image of sites S, and each site (or 
pixel), s E S, has a set of neighbors t E Q,. For a first- 
order neighborhood system, B,, these are just the sites 
to the North, South, East, and West of site s. We also 
define a dual n x n lattice, SL = ( 8 ,  t), of all nearest 
neighbor pairs ( s , t )  in S. This lattice is coupled to  
the original in such a way that the best interpretation 
of the data will be one in which the data  is piecewise 
smooth. An analog line process E SL takes on 
values 0 5 la,* 5 C, for some positive constant C (for 
the remainder of the paper we take C = 1). The line 
process indicates the presence ( I , , t  -+ 0) or absence 
(le,* -+ 1) of a discontinuity between neighboring sites 
s and t .  We also define a penalty 0 5 Q ( Z , , t )  5 1 which 
is paid for introducing a discontinuity. The penalty 
function goes to 1 as 1,s tends to  0 and * ( l a , * )  + 0 
when there is no discontinuity ( I , , t  --+ 1). For these 
experiments we take 

* ( z )  = z - 1 - logz, 

which is derived from the Lorentzian estimator [?I. 
minimize the objective function E(u, d, 1): 

To recover the surface U and the line processes 1 we 

The first term ensures that the recovered surface is 
faithful to the data, while the second term encodes our 
prior assumption about piecewise smooth nature of the 
surface. When no discontinuity is present -+ 1), 
the smoothness term has the original least-squares 
form and no penalty is paid, but when a discontinuity 
is introduced (Is,* -+ 0) the penalty term *(id,*) dom- 
inates. Minimizing this new objective function with 
respect to U and 1 gives a piecewise smooth surface 
with breaks where the spatial gradient is too large. 

4 Robust Statistics 
As identified by Hampel et al. (10, page 111 the main 
goals of robust statistics are: “( i) To describe the struc- 
ture best fitting the bulk of the data, ( i i )  To identify 
deviating data points (outliers) or deviating substruc- 
tures for further treatment, if desired.” 

Least-squares estimation is notoriously sensitive to 
outliers; the problem being that outliers contribute 
“too much” to the overall solution. Outlying points 
are assigned a high weight by the quadratic estimator 
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Figure 1: Quadratic estimator ( a )  and +function ( b ) .  

a b 

Figure 2: Lorentzian Estimator. (a) Estimator, ( b )  
$-function. 

(see Figure l a ) .  To analyze the behavior of an estima- 
tor, we take the approach of Hampel et al. [lo] based 
on influence functions. The influence function char- 
acterizes the bias that a particular measurement has 
on the solution and is proportional to the derivative, 
$, of the estimator [ l o ] .  Consider, for example, the 
quadratic estimator: 

p ( 2 )  = 5 2 ,  $(2) = 22. (2) 
For least-squares estimation, the influence of outliers 
increases linearly and without bound (Figure 1 b ) .  

To increase robustness, an estimator must be more 
forgiving about outlying measurements. We will con- 
sider redescending estimators [lo] for which the influ- 
ence of outliers tends to zero.3 One such estimator is 
the Lorentzian: 

1 2 2  2x 
p(x,  a) = log (1 + 5 (,-) ) , +(i, a) = ~ 202 + 5 2  . 
The estimator is plotted along with its +-function in 
Figure 2. Examination of the +functions reveals that  
the estimator has a saturating property; that is, the 
influence of outliers tends to zero. The remainder of 
the paper will examine the relationship between these 
redescending estimators and outlier processes. 

We now apply robust estimation to the least-squares 
formulation of the surface recovery problem: 

3Hampel e t  al. chose a more conservative definition of re- 
descending estimators that requires $(z) = 0, 121 2 r for some 
positive r. 

Both the data and spatial smoothness assumptions 
may be violated causing gross errors in (U. - d b )  and 
(U, - ut) respectively. Our approach is to replace the 
quadratic estimator with robust estimators p o  and ps 
for the data and spatial terms. This gives the following 
objective function E(u, d): 

Z [ P D ( U s  - d s 7 a D )  + PS(& -‘%,OS)], (3) 
s E S  t€4. 

where the scale parameters a* may or may not be 
present depending on the estimator. As with the line- 
process approaches the objective function may be non- 
convex depending on the choice of estimator. 

5 Unifying, Robust Estimation and 
Outlier Processes 

This section unifies the robust estimation approaches 
and traditional line-process approaches. First we in- 
troduce the notion of an outlier process which is a gen- 
eralization of the line process. We then show how these 
binary or analog outlier processes can be eliminated in 
the same way that line processes are eliminated and 
how this results in a robust estimation problem. The 
connection is made complete by deriving a mechanism 
for converting robust estimators into outlier processes. 

5.1 Outlier Processes 
The line-process formulation of the surface recovery 
problem (Eqn. 1) accounts for violations of the spatial 
smoothness term, but does not account for violations 
of the data term. In many situations the data term, 
like the spatial term, is only an approximate model of 
the data process. This prompts us to generalize the no- 
tion of a “line process” to that of an “outlier process” 
that can be applied to both data and spatial terms. 
The motivation behind such a generalization is to for- 
mulate a process that performs outlier rejection in the 
same spirit as the robust estimators do. The recovery 
problem is then reformulated as the minimization of 
E(u, d, 1, m) using outlier processes as follows: 

 US - &)2 ms + * D ( m s ) ]  $. 
s E S  

[(us - L , t  + @s(L,t)Il, (4) 
tEQ. 

where we have simply introduced a measurement pro- 
cess ms and a new penalty term @ D  for rejecting the 
measurement. This process allows us to  ignore erro- 
neous information from the data term. 

5.2 

The outlier-process formulation leads to a joint estima- 
tion problem where one not only has to estimate U but 

From Outlier Processes to Robust 
Estimation 



also the outlier processes 1 and m. In the case of the 
simple binary line-process formulation, Blake and Zis- 
serman [4] show that the line variables can be removed 
from the equation by first minimizing over them. They 
obtain a new objective function that is solely a func- 
tion of U. Exactly the same treatment can be applied 
to the general analog outlier-process version. 

Since the measurement term does not depend on 1 
and the smoothness term does not depend on m we 
can write the optimization problem as 

r r  1 

r 1 1  

We can now minimize with respect to each process sep- 
arately; that is for each term we compute: 

where z is the outlier process. Finally, we can rewrite 
the minimization problem as 

r 1 

Geiger and Yuille [7] propose a similar formulation 
with a binary (as opposed to analog) process for the 
data and spatial terms and, using mean-field theory 
techniques, they integrate out the binary processes giv- 
ing a robust estimation problem with the mean-field 
function as the robust estimator. 

5.3 

Finally, to close the loop, we must take an objective 
function written in terms of robust estimators and de- 
rive a new objective function which is written in terms 
of analog outlier processes. Consider a simple robust 
objective function 

From Robust Estimators to Outlier 
Processes 

E ( z )  = P(Z)  ( 8 )  

defined in terms of some "error" z, where z, for exam- 
ple, might be the spatial gradient U, - ut or the data 
error us - d,. We want to construct a new objective 
function: 

E(z ,  2) = x 2 z  + 9 ( z )  (9) 

where 0 5 z 5 1 is an outlier process, and !P is a 
"penalty function", such that the minimum of E(z ,  z )  
with respect to z is the same as E(z ) .  

Define 4(w) = p ( G )  where w is possibly scaled 
by a parameter r in p. 

Compute the first and second partial derivatives 
(4'(w) and 4"(w)) of q5 with respect to w. 

If limw+o #(w) = 1, and 
limw+oo 4'(w) = 0, and 
4"(w> < 0, 

then proceed, otherwise stop: p does not have a 
simple outlier process formulation. 

Define the outlier process z = 4'(w). 

Solve z = 4'(w) for w giving w = (+')-l(z). 

Define: 

9 ( z )  = 4(w) - zw = q5((+')-l(z)) - z (&)- l ( z ) .  

The new objective function is: 

E(z ,  2) = rx2z + * ( z )  

Figure 3: A simple mechanism for recovering the out- 
lier process from a robust estimator. 

The reader is referred to [l] for a derivation of * ( z )  
which is a simplification of the approach of Rangarajan 
and Chellappa [ll]. The result is the same as that of 
Geman and Reynolds [8] but the derivation provides 
a constructive proof of the result. The results of the 
derivation are summarized in Figure 3 which provides 
a straightforward mechanism for converting robust for- 
mulations to outlier process formulations. A catalog of 
common estimators and their outlier processes is pro- 
vided in [l]. 

Example: To illustrate the mechanism we consider 
the robust surface reconstruction example: 

sES t€G,  

where UD and us are constant scale parameters and 
where p is the Lorentzian estimator: 

p(2,cT) = log ( 1 + - :: 02) - . (11) 

The first step is to define d(w) = log(1 + w). We 
then compute the first and second partial derivatives 
w.r.t. w: 

1 $"(w) = -____ 
l+w' (1 + w)2. 

1 
+'(w) = - 
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Figure 4: Lorentzian outlier process. (a) Penalty func- 
tion. (b)  Infimum of E(z,  z, a). 

We observe that these satisfy the conditions in Step 3 
of the mechanism and we can define z = ~’(zu). Solving 
for w gives: 

20 = (+’)--1(z) = 1/z - 1. 

Given z and w we can write the penalty function as 

* ( z )  = -1 + 2: + log(l/z) = z - 1 - logz. 

The penalty function is plotted in Figure 4a. The 
outlier-process formulation for the Lorentzian is then: 

1 x 2  E(x ,  z, o) == - (-) z + Q ( z ) .  
2 u  

The infimum of this family of quadratics is the 
Lorentzian estimator which is shown in bold in Fig- 
ure 4b. The figure also shows (Eqn. 12) plotted (in 
gray) for various values of z.  

We can now write the surface recovery problem 
using the Lorentzian outlier process. We minimize 
E(u, m, 1, ~ D T  os): 

where @ is the penahy function defined above. 

6 Exploiting the Relationship 
The recovery of the analog outlier process allows the 
formulation of prior assumptions on the spatial organi- 
zation of outliers without sacrificing the deterministic 
continuation methods like GNC. 

6.1 Adding Spatial Interactions 
One motivation for recovering the outlier process is 
that it allows us to incorporate into the objective func- 
tion prior assumptions on the nature of discontinuities. 
We generalize standard spatial coherence constraints to 
the case of analog spatial outlier processes. 

Figure 5: Cliques (up to rotation) for spatial con- 
straints. 

We consider two kinds of interaction terms; hystere- 
sis which assists in the formation of unbroken contours 
and non-maximum suppression which inhibits multiple 
responses to a single edge present in the data. We de- 
fine a new term Ez(1) which encodes our prior assump- 
tions about the organization of spatial discontinuities: 

€1 c ( L , t L , ” )  - €2 (Is,tIt,u), (14) 
C h y s l  Caum 

where the cliques are defined in Figure 5. The pa- 
rameters €1 and e2 assume values in the interval [0, l]. 
We now minimize the objective function E(u,  d, m, 1) 
which contains the data term ED and spatial smooth- 
ness term Es  as before with the new spatial interaction 
term: 

where the A, control the relative importance of the 
various terms. 

6.2 Continuation Methods 
Continuation methods provide one popular class of ap- 
proaches for minimizing non-convex functions such as 
the robust formulation described above. The idea is 
to choose an estimator which has a control parameter 
that can be used to  change the shape of the estima- 
tor. This parameter is exploited to construct a convex 
approximation to  the objective function which can be 
readily minimized. The minimum is then tracked as 
the control parameter is adjusted so that the objective 
function increasingly approximates the original non- 
convex estimation problem. 

We can recover an analog outlier process for this type 
of estimator and the penalty function in the outlier- 
process formulation retains the control parameter of 
the original estimator. This allows us to apply contin- 
uation methods to the explicit outlier-process formu- 
lations, and to d o  so even in the presence of spatial 
interactions. 

By deriving penalty functions with continuation pa- 
rameters we can apply standard continuation methods 
to problems that involve spatial interaction of outlier 
processes. By adjusting the control parameter we can 
begin minimizing an objective function that gives high 
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Figure 6: Random Noise Example. a) First random 
noise image in the sequence. b)  True horizontal motion 
(black = -1 pixel, white = 1 pixel, gray = 0 pixels). 
c) True vertical motion. 

penalties for introducing outliers. This will mean that 
initially, no outliers will be introduced. Then by ad- 
justing the control parameter, outliers begin to  appear 
and interact. 

7 Outlier Processes: Experimental 

The first experiment shows how a robust treatment can 
improve optical flow estimates by accounting for gross 
measurement errors as well as spatial discontinuities. 
The second experiment shows how to take a robust 
estimation problem, recover an  explicit outlier process, 
and then add constraints on the spatial organization of 
the outliers. 

7.1 Optical Flow 
Depth discontinuities in the scene, or the independent 
motion of objects, gives rise to optical flow fields that 
are piecewise smooth. While line processes and weak- 
continuity methods have been used to preserve flow dis- 
continuities (eg. [3, 12]), less attention has- been paid 
to  violations of the brightness constancy assumption: 

Results 

I(z, y, t )  = I ( s  + ~ 6 t ,  y + vbt, t + bt),  (16) 

where I(z, y, t )  is the image brightness at a point (2, y) 
a t  time t, (U, v )  is the horizontal and vertical image ve- 
locity at a point, and 6t  is small. The assumption is 
violated in cases of transparency, shadows, reflections, 
and motion discontinuities. In these cases, erroneous 
measurements can be treated as outliers. Black and 
Anandan [3] formulate the optical flow problem its ro- 
bust estimation to account for measurement and spa- 
tial outliers: 

E(u) = C [ P ( ( I Z U S  + I& + I t ) , m )  

S E S  

+ c P(llUS - u?aII,as)l, (17) 
nE4. 

where p is the Lorentzian estimator. 
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Figure 7: Effect of robust data term, (10% uniform 
noise). a) Least-squares (quadratic) solution. b) 
Quadratic data term and robust smoothness term. c) 
Fully robust formulation. 

Here we briefly summarize some illustrative exper- 
iments with synthetic images (see [2, 31 for details). 
Consider the randomly textured image sequence shown 
in Figure 6 in which the right half of the image is trans- 
lating one pixel to the left. The second image in the 
sequence has been corrupted with 10% uniform random 
noise. We compare the performance of three common 
approaches: a least-squares formulation, a version with 
a quadratic measurement term and robust smoothness 
term, and the robust formulation. 

The results are illustrated in Figure 7. The left col- 
umn shows the horizontal motion and the right column 
shows the vertical motion recovered by each of the ap- 
proaches. Figure 7a shows the noisy, but smooth, re- 
sults obtained by least-squares. In Figures 7b the intro- 
duction of a line process results in a piecewise smooth 
field, but the gross errors in the data produce spurious 
motion discontinuities. Figure 7c shows the improve- 
ment realized when outliers are rejected in both the 
measurement and spatial smoothness terms. Figure 8 
shows where the spatial and measurement errors were 
treated as outliers. 
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Figure 8: Outliers in the smoothness and data terms. 
a) Spatial discontinuities. b) Data outliers. 

7.2 Image Reconstruction 
We now turn the problem of fitting a piecewise smooth 
brightness model U, to  image data d, where we ac- 
count for spatial discontinuities in brightness as well 
as measurement discontinuities due to texture or noise. 
For illustration we consider the image in Figure 9 b  
which is obtained by degrading Figure 9a with additive 
white Gaussian noise (variance=175). 

Robust Regularisation: In the robust formula- 
tion (Eqn. 3) outlying spatial and data measurements 
are rejected using a robust estimator which is taken 
to  be the Lorentzian (Eqn. 11) for these experiments. 
The function was minimized using simultaneous over- 
relaxation (SOR) [4] with a two step continuation 
method and the parameters were as follows: XD = 

= 1.0, a ~ ( l )  = 75.0 ao(2)  = 35.0, os(1) = 30.0, 
us(2) = 4.5, and 30 iterations were used at each step 
in the continuation method. 

Column ( c )  in Figure 9 shows the results of the opti- 
mization. The top figure shows the recovered piecewise 
smooth brightness model. The middle figure shows 
that a large number of the noisy data points that were 
treated as outliers and rejected. The bottom figure 
illustrates the spatial outliers corresponding to bright- 
ness changes in the recovered image. 

Recovered Outlier Process: In the next experi- 
ment we used the mechanism in Section 5.3 to recover 
the outlier-process formulation of the Lorentzian esti- 
mator (Eqn. 11). We then minimize Eqn. 13 by alter- 
natively solving for the outlier processes in closed form 
and then minimizing with respect to U, using SOR. 
The parameters are exactly the same as before; in par- 
ticular we use exactly the same continuation method 
with the explicit outlier-process formulation as was 
used in the robust formulation. 

The results are shown in Figure 9 Column (4. No- 
tice that the reconstructed image, the data outliers, 
and the spatial outliers are nearly identical to the ro- 
bust formulation as expected. Small differences can 
be expected due to  the slightly different optimization 

techniques. 
Introducing Spatial Coherence Constraints: 

Now that  we have an explicit spatial outlier process we 
can introduce spatial constraints (Eqn. 14). We now 
minimize (Eqn. 15) in exactly the same way as in the 
case without spatial constraints, with all the parame- 
ters the same and, in particultar, Xr  = As = AD = 1.0. 
The results in Figure 9 Column (e) show that the in- 
troduction of the spatial coherence constraints result 
in more extended and completed contours and fewer 
“thick” edges. 

8 Conclusion 
This paper haa shown that the unifying concept under- 
lying the lineprocess and robust-statistical approaches 
is the notion of outlier rejection. The generalization of 
line processes to  outlier processes makes the connec- 
tion to  robust statistics clear. Moreover, the elimina- 
tion of the outlier processes by minimization (eg. Blake 
and Zisserman) or by integration (eg. Mean-Field ap- 
proaches) provides the connection to robust estimation 
approaches based on influence functions [lo]. 

The real power in this connection lies in the ability 
to go in the other direction; that is, to recover an out- 
lier process from a robust estimation problem. What 
this permits is the straightforward extension of results 
from robust statistics to problems in vision. In partic- 
ular, by recovering an analog outlier process we can en- 
force constraints on spatial continuity which are crucial 
for many problems. Moreover, we can continue to use 
the continuation methods developed for solving non- 
convex optimization problems to  solve the robust for- 
mulations with explicit outlier processes. Finally, the 
connection between robust statistics and line- processes 
techniques provides a physical interpretation for the 
former and a host of new outlier processes with known 
outlier rejection properties for the latter. 
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