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Abstract

In fingerprint recognition, interoperability is the ability
of a system to work with a diverse set of fingerprint devices.
Variations induced by fingerprint sensors include image res-
olution, scanning area, gray levels, etc. Such variations
can impact (i) the quality of the extracted features, and (ii)
cross-device matching performance. This is true even when
dealing with fingerprint sensors of the same sensing tech-
nology (e.g. optical). Previous research did not provide a
model to accommodate sensor distortions to increase cross-
device matching performance. In this paper, we propose a
method that increases interoperability in systems which de-
ploy optical fingerprint sensors. We design and evaluate a
set of characteristics suitable for measuring differences in
fingerprint image acquisition. Further, we propose a clas-
sification scheme, which combines the defined features with
match scores. The classification performance is evaluated
on a set of fingerprints acquired using four different optical
devices and scanned rolled ink prints, from approximately
500 subjects. Experimental results confirm the significant
impact of low interoperability on match rates and show that
the proposed approach is able to reduce cross-device match
error rates by a significant margin.

1. Introduction

Fingerprints can be acquired through different sensing
technologies. Among those, optical devices are the most
commonly used [8]. The ease of use and low error rates
are the main factors that contribute to their success. How-
ever, optical technology still presents some challenges. Per-
formance of a fingerprint matcher is affected by variations
introduced when acquiring fingerprint images from differ-
ent devices (see Fig. 1). The ability of a biometric system
to handle these variations is referred to as interoperability.
The need for interoperability is accentuated by the compet-
itive fingerprint sensor market, characterized by many ven-

Figure 1. Fingerprint images pertaining to the same subject cap-
tured using different optical devices.

dors1. In optical sensors, the finger is placed on the surface
of a transparent prism, typically illuminated from the left
side. The light entering the prism is reflected in the val-
leys and absorbed at the ridges of a fingerprint. Some of
the main factors that affect the performance of fingerprint
sensing devices are (i) arrangements of sensing elements,
(ii) sensor resolution, (iii) scanning area, and (iv) ability of
users to properly interact with different sensors, i.e., how
users position their fingerprints on the sensor surface. Char-
acteristics of different devices from the same model/vendor
can vary (e.g., each prism may distort differently). A realis-
tic operational example is the US VISIT program, deployed
at US international airports. There is no guarantee that the
same device used for fingerprint acquisition will be used for
verification as well [21]. Recently, an interoperability prob-
lem was observed in Automated Teller Machines (ATM)
[13].

Biometric system should be able to handle variations in
the biometric data due to the deployment of different cap-
ture devices [23]. The matching process accommodates di-
verse fingerprint images and discriminates genuine and im-

1http://pdf.marketpublishers.com/gia/fingerprintbiometrics gia.pdf



postor presentations. However, performance variations are
common. To the best of our knowledge, while previous re-
search considered the problem of designing models for cor-
recting the distortion from fingerprint deformation [3] [20],
modeling sensor distortions to increase cross-device match-
ing performance is a challenging area of research. The key
question is: How well can we match fingerprints captured
by different devices?

In this paper, we propose a methodology that increases
interoperability in fingerprint recognition systems. First,
we select a set of features to measure differences in fin-
gerprint images captured using different devices; next, we
design a fusion scheme that combines the defined features
with match scores in order to improve the discrimination be-
tween genuine and impostor scores in cross-device match-
ing. The approach is evaluated using a data set from 500
users, collected using four optical-based fingerprint sensors
as well as ink rolled prints (baseline) at West Virginia Uni-
versity. The rest of the paper is organized as follows. In Sec-
tion 2, we describe the state-of-the-art in the fingerprint in-
teroperability accommodation strategies. Section 3 presents
the proposed approach. Section 4 discusses the evaluation
procedure and experimental results. Section 5 draws con-
clusions and future research directions.

2. Related Work
Recent work points out the importance of investigat-

ing the impact of diverse fingerprints capture platforms on
match error rates. Poh et al. designed a Bayesian Belief
Network (BBN) to estimate the posterior probability of the
device d given quality q, referred to as p(d|q) [17] [18].
During testing, the device is unknown and it is identified
based on the quality measures extracted from the images.
Clustering is applied to each device to explain hidden qual-
ity factors. However, limited information about data clus-
tering leaves the impression that cluster content represents
the specific pairs of samples used in the study. Quality in-
dices used for experiments included energy concentration
in the frequency domain and the spatial coherence in local
regions [3].

Jain and Ross considered the interoperability issue as
one related to the variability introduced in the feature set
when using different sensor technologies (e.g. optical vs.
capacitive) [21]. When matching images acquired by Dig-
ital Biometrics and Veridicom sensors, they reported an
Equal Error Rate (EER) of 23.13%, compared to an EER
of 6.14% and 10.39% when using only Digital Biometrics
and Veridicom, respectively. Sensors used in this paper are
newer and they capture significantly higher quality finger-
prints than those used in [21]. Ross and Nadgir subse-
quently proposed a compensation model which computes
the relative distortion between images acquired using dif-
ferent devices [15]. The model is based on a thin-plate

spline whose parameters rely on control points manually
selected in order to cover representative areas where dis-
tortions can occur in the fingerprint image. Their method
is, therefore, not completely automated. Campbell and
Madden conducted a study to understand the causes of the
lack of interoperability by analyzing both native (enroll-
ment and verification using the same device) and non-native
(enrollment and verification using different devices) False
Match (FM) and False Non-Match Rates (FNMR). They
used 60, 902 fingerprint images over 10 products for the
evaluation. Their main goal was to test which products
could work together at levels of 1% FAR and 1% FRR. Re-
sults demonstrated that only 2 products out of 10 were able
to interoperate at the specified levels [2].

Recently, Lugini et al. analyzed the problem from
a statistic perspective in order to measure the degree of
change in match scores when devices used for enrollment
and verification are different [11]. Results of the Kendall’s
rank correlation test pointed out that there is a statisti-
cally significant difference between sensor pairs and that the
change is not symmetric when inverting the two devices.
Modi et al. observed that optical touch sensors typically
present a better image quality across sensors and that sim-
ilarity of minutiae counts are not related to a specific ac-
quisition technology or interaction type. However, higher
minutiae count and quality measures did not have an impact
on False Non Match Rates (FNMR).

An interesting study was performed by Kukula et al.
who investigated the effects of force levels on matching er-
ror rates, minutiae count and image quality in order to as-
sess differences between optical and capacitive sensors [9].
Their results report a significant difference in image quality
based on force levels and sensor technologies. They showed
that increasing the amount of force applied to the optical
sensor surface causes an increase in image quality. This is
important when instructing individuals on how to interact
with the optical devices.

3. The Proposed Approach
Fingerprint sensors aim to obtain a good quality image of

the ridge pattern. The quality of a fingerprint image depends
on sensor characteristics and the condition of the finger sur-
face [19]. In fact, inherent characteristics of the fingerprint
(e.g., the absence of or poorly defined ridges), fingerprint
conditions (e.g., wet, dry), poor contact of the finger with
the sensor, presence of noise, latent images (e.g., traces
from the previous user), ergonomics of the device (e.g., easy
of use, alignment) and pressure of the finger during capture
are the main factors impacting the quality [14].

This study starts by examining whether fingerprint im-
ages captured with different devices exhibit similarity in
image quality characteristics, minutiae count, grey-level in-
tensity distribution, etc. The research question we pose is



not only whether such differences in fingerprint images im-
pact the matching performance, but whether they can help
us discern the devices used in their capture. If the answer
to the later question is yes, then we can use these quality
measures to assess whether a match score between two fin-
gerprints represents a genuine or an impostor comparison.
The architecture of the proposed approach is described in
Fig. 2. A set of suitable features is defined and combined
with the match score created by a typical biometric matcher.
Used features are described below.

Figure 2. Architecture of the proposed approach. The interoper-
ability analysis is performed in parallel to the typical biometric
matching operation. Extracted features are concatenated with the
match score to train a pattern classifier.

Image Quality measures the degree of usefulness of a bio-
metric sample for automated recognition. The quality of
captured biometric data directly impacts the effectiveness
of the matching process. Gother and Tabassi discussed the
concept of predicting error rates based on quality values [7],
as an indicator of matchability.
Minutiae Count represents the number of minutiae ex-
tracted from an image. A minutiae-based matcher might
not be accurate if only a few minutiae points can be ex-
tracted from the image [5]. Minutia count may vary based
on human-sensor interaction [9].
Alignment relates two impressions of a finger. They may
be different depending upon the placement of the finger
on the sensor. The alignment process geometrically trans-
forms two sets of minutiae points to the same coordinate
system. Each minutiae is represented as a triplet m = [x,y,θ]
that indicates minutiae location co-ordinates and angle [16]
[22]. Different methods can be used to align two finger-
prints: Generalized Hough Transform, local descriptors, en-
ergy minimization, etc. The algorithm used in this work is
the descriptor-based Hough Transform which takes as input
two sets of minutiae mg and mp extracted from the gallery
and probe images respectively. Transformation parameters
are computed as described in Algorithm 1. In intra-device
matching, generally a rigid transformation is sufficient to
align fingerprints. Additional problems, such as non-linear

deformations, may arise in fingerprint alignment that stems
from cross-device acquisition scenarios.

Algorithm 1: Generalized Hough Transform
Input: Two minutiae sets
mg = (xg

i , y
g
i ,Θ

g
i )

M
i=1, and mp = (xp

j , y
p
j ,Θ

p
j )

N
j=1

Output: Transformation parameters ∆x, ∆y, ∆Θ.

for i = 1 to M do
for j = 1 to N do

∆Θ = Θg
i −Θp

j

∆x = xg
i − xp

j cos(∆Θ)− yp
j sin(∆Θ)

∆y = yg
i + xp

jsin(∆Θ)− yp
j cos(∆Θ)

A[∆Θ][∆x][∆y] = A[∆Θ][∆x][∆y] + 1
end for

end for
return location of peak in A

Gradient. First-order derivatives of a fingerprint image
allow for studying the direction of maximum rate of change
in grey-level profiles. The derivative is zero in the constant
black and white regions. The gradient of the image is de-
fined as follows:

∇f =

[
Gx

Gy

]
, (1)

where magnitude of this vector is given by

∇f = [G2
x +G2

x]
1/2. (2)

The magnitude of the gradient gives the maximum rate of
increase of the grey levels per unit distance in the direction
of ∇f. Gx corresponds to ∂f

∂x , the differences in x (horizon-
tal) direction. Gy corresponds to ∂f

∂y , the differences in y
(vertical) direction [6].
Coherence of Direction. The spatial coherence in local re-
gions indicates whether gradients are pointing consistently
in the same direction [10]. If they are all parallel to each
other, the coherence is 1 while if they are equally distributed
over all directions, the coherence is 0. We first estimate the
fingerprint ridge orientation field based the gradient of the
image computed using Gaussian filters. The local ridge ori-
entation at each point is estimated by finding the principal
axes of variation in the image gradients.
Intensity-based statistics. Statistical parameters can be ob-
tained directly from the histogram of the image. First order
statistics measure the likelihood of observing a gray value
at a randomly-chosen location in the image. In fact, each
H(ni) can be viewed as an estimate of the probability of
occurrence of gray level ni. Differences in image statistics
can be detected from the histogram of pixel intensities. Let
n denote a discrete random variable representing discrete
gray levels in the range [0, N-1], and let H(ni) indicate the
normalized histogram component for the ith value of n, the



first order statistical properties considered in this study are
defined as follows:

m =
1

N

N−1∑
i=0

(ni)H(ni), (3)

where m is the mean value of r (its average gray level)

σ2 =
N−1∑
i=0

(ni − µ)2H(ni). (4)

Mean, standard deviation and variance are measured over
an entire segmented image.
Pattern Noise. During the image capture, different sources
of noise are introduced at various stages [1] [12]. One com-
ponent of noise is random and it is referred to as photonic
noise, one is deterministic and it is referred to as pattern
noise. The pattern noise is present in every image acquired
by the sensor and it corresponds to a systematic distortion.
The dominant part of pattern noise is the Photo-Response
Non-Uniformity noise (PRNU) which is caused by diver-
sity in sensitivity of pixels to the light. The image exhibits
changes in intensity between pixels even if it is acquired un-
der good illumination conditions. Light refraction on opti-
cal surfaces and zoom settings also contribute to the PRNU.
First, the algorithm computes an approximation of the sen-
sor reference pattern, then it computes the correlation be-
tween this pattern and the noise of the image as follows:

ρ = corr(n,r) =
(n − µn)(r − µr)

||n − µn|| ||r − µr||
, (5)

where n is the residual noise of an image, and r is the sen-
sor reference pattern obtained as an average of the residual
noise of all the images in the dataset. The information of
interest, for the purpose of this study, is the correlation be-
tween the fingerprint image and the reference pattern of its
acquisition device, indicated as PRNU feature.

4. Experimental Results
4.1. Data set

The data set used in this study consists of fingerprints
from 494 users. Fingerprints were collected from each par-
ticipant using multiple devices, all based on optical sensors.
Details are provided in Table 1, at the top of next page. The
order in which the devices were used for capturing finger-
prints was the same for all participants. Participants pro-
vided information on age (53% varying between 20 and 29
years old) and ethnicity (57.2% of the participants are Cau-
casian). Fingerprints were acquired using four live-scan de-
vices and ink-based ten-print cards (D4). Ten-print cards
were scanned at resolutions of 500 dpi using a flat-bed scan-
ner, to match the resolution of optical scanners. Ink-based

Table 2. Matching scenarios table.
Matching Subjects Devices Match
Scenarios Scores

Intra-device 494 4a Gen: 1,976
494 5 Imp: 120,855

Cross-device 494 5 Gen: 9,880
494 5 Imp: 483,420

aIn intra-device scenario, genuine scores for Ten Print cards are miss-
ing since we only have one set of ink-based prints.

fingerprints were acquired at the end, not to affect the qual-
ity of live-scans. For each live-scan device, users provided
two sets of fingerprints, in sequence, each consisting of:
rolled individual fingers on both hands, left slap, right slap,
and thumbs slap. Only one ink-based ten prints card was
collected from each user. Fingerprints were collected with-
out controlling the quality in acquisition, i.e., no fingerprint
images were rejected and recaptured at that stage.

Match scores between all image pairs were generated
using the Identix BioEngine Software Development Kit.
The creation of match scores for this data set leads to four
matching scenarios: i) intra-device genuine matching, for
genuine match scores between fingerprints acquired using
the same device for gallery and probe, ii) intra-device im-
postor matching, for impostor match scores between finger-
prints acquired by the same device for gallery and probe im-
ages, iii) cross-device genuine matching, for genuine match
scores between gallery and probe fingerprints acquired by
different devices, and iv) cross-device impostor matching,
for impostor match scores between fingerprints acquired by
two different devices. Details about the matching scenarios
are provided in Table 2. Impostor match scores were gen-
erated by dividing users in groups of 100 and matching the
fingerprints within the same group. Although the data set
contained the prints from all fingers, for this study we lim-
ited the matching to the point fingers from the right hand
only.

We depict the verification performance of the fingerprint
recognition system in the Detection Error Tradeoff (DET)
curve, shown in Fig. 3. DET curves are obtained for both
intra-device and cross-device matching scenarios.

We further analyzed the data set using the NIST Fin-
gerprint Image Software (NFIS) 2. The NFIQ function was
used to evaluate fingerprint quality. NFIQ scores vary be-
tween 1 and 5, with 1 being the highest quality and 5 the
lowest. We used MINDTCT function to count the number
of minutiae present in each fingerprint image. Additional
quality measures were obtained using the IQF software, de-
veloped by MITRE3. This quality factor (Q) ranges from 0

2http://www.nist.gov/itl/iad/ig/nbis.cfm
3http://www.mitre.org/tech/mtf/



Table 1. Characteristics of the Live-scan devices used for the fingerprint acquisition carried out in this study.
Manufacturer Model Resolution (dpi) Image size (pixels) Capture area (mm)

D0 Cross Match Guardian R2 500 800 x 750 81 x 76
D1 i3 digID Mini 500 752 x 750 81 x 76
D2 L1 Identity Solutions TouchPrint 5300 500 800 x 750 81 x 76
D3 Cross Match Seek II 500 800 x 750 40.6 x 38.1
D4 Ten Print Scans - 500 800 x 715 -

Figure 3. Verification performance of the fingerprint recognition
system: DET curves for both intra- and cross-device scenarios.

to 100, with 0 being the lowest and 100 being the highest
quality.

4.2. Procedure

In the proposed methodology, a fusion scheme incorpo-
rates device-specific characteristics, quality measures with
match scores. The features presented in the previous sec-
tion were used to train a pattern classifier to discriminate
genuine from impostor users. The feature vector includes
the following measures:

• Characteristics extracted from each single image:
MITRE and NFIQ quality measures, contrast, average
gray-level, minutiae count, PRNU, first order statistics,
gradient, device ID and mean of the orientation coher-
ence matrix;

• Characteristics extracted from pairs of images: align-
ment (∆x, ∆y, ∆Θ) and match score.

Depending upon the degree of interoperability between dif-
ferent devices, the selected measures can exhibit more or
less discriminative power. High discriminative power for
a feature indicates that it is able to capture variations due

to device diversity. We implemented tree-based classifica-
tion schemes, i.e., a Decision Tree and a Random Forest [4],
where no assumption is made about the input variables. Ad-
ditionally, we implemented a Naive Bayes classifier where
input variables are assumed to be independent. In order to
avoid overfitting, classifiers were trained through a 10-fold
cross validation procedure; since the Random Forest exhib-
ited the lowest error rates we also experimented with train-
ing it using a subset of 25% of available match scores (cross
validation), where the training set was randomly selected at
each experimental instance. The features were implemented
using the Matlab Version R2012a software. For the classi-
fiers, we used Weka 3.6.

4.3. Results

As expected, we found that genuine match scores were
generally higher when fingerprints where captured using the
same device, compared to the case where they were cap-
tured using different devices. Fig. 4 (a) shows intra-device
match scores for the device D0 (CrossMatch Guardian R2),
while Fig. 4 (b) shows the cross-device scenario for the
device D0 (CrossMatch Guardian R2) and the device D1
(i3 digID Mini). The overlap between genuine and impos-
tor match scores increases substantially when capture de-
vices are different. The mean match score and the range
of match scores are lower in the cross-device matching sce-
nario. Score distributions representing other devices reflect
similar patterns. A few more observations regarding the
trends of other features follow.

NFIQ quality distributions vary across devices (see Fig.
5). Device D0 (CrossMatch Guardian R2) offers the high-
est number of best quality samples, while device D4 (Ten
Print) presents the highest number of low quality samples
(Q ≥ 3). Fig. 6 shows box plot graphs of minutiae counts
considering both low and high quality images. We can
observe that the lowest number of minutiae points is ob-
tained with device D1 (i3 digID Mini). Although device D0
(CrossMatch Guardian R2) exhibits the lowest error rates
in the intra-device scenario (see Fig. 3), it does not of-
fer the highest number of minutia points, contrary to what
one would expect. Lower minutiae count may be the conse-
quence of the lack of user habituation given that D0 (Cross-
Match Guardian R2) was the first device used during the
data acquisition.



(a)

(b)
Figure 4. (a) Histogram of the match scores when both gallery and
probe images are obtained using the same device D0 (CrossMatch
Guardian R2); (b) Histogram of the match scores when the gallery
is obtained using the device D0 (CrossMatch Guardian R2) while
the probe image is obtained using the device D1 (i3 digID Mini).

Figure 5. Distribution of NFIQ quality measures for each device
analyzed in this study.

Deformations present when considering two fingerprint
images acquired using different devices were non-linear.
The rotation angle across pairs of minutiae was not uniform.

Figure 6. Boxplots of minutiae counts for each device under study
in which all the images (of low and high quality) are considered.

Therefore a rigid transformation as computed by Algorithm
1 was not sufficient to align minutiae extracted from the
probe and those extracted from the gallery.

Fig. 7 (a) and (b) show mean and standard deviation
of grey level values. Mean separates Cross Match devices
(D0 and D3) from the other manufacturers; they have a bet-
ter ridge/valleys contrast. Standard deviation clearly dis-
tinguishes Ten Prints cards from images captured using the
four optical devices. This may be due to the low robustness
of inked fingerprints to variability in user interaction. Ob-
served values of the gradient confirm that the highest values
of the variation in grey levels are obtained by Cross Match
devices (D0 and D3) (see Fig. 7 (c)). Fig. 8 indicates that
the pattern noise introduced by device D2 (L1 TouchPrint)
appears more systematic compared to the other devices. In
other words, the images acquired by D2 exhibit the maxi-
mum correlation with the pattern noise reference of the de-
vice.

The previous observations indicate that the differences
between optical fingerprint devices are many. Precisely de-
scribing the impacts such differences may have to match
scores in intra-device matching scenarios is not a simple
task. For this reason, we decided to rely on a machine learn-
ing approach to alleviate the impact of such complex differ-
ences to matching accuracy.

Tables 3 and 4 report the error rates for cross-device
matching scenario. All device pairs are included in the clas-
sification experiment, whose results are shown in Table 3.
Table 4 shows the biometric match error rates without any
accommodation for intra-device comparisons. The values
of False Match Rates (FMR) and False Non-Match Rates
(FNMR) in 4 were selected to be approximately the same as
the corresponding performance points in Table 3, for a fair



(a) (b) (c)
Figure 7. First order statistics: (a) mean of the grey level of the fingerprint image; (b) standard deviation of the grey level of the fingerprint
image. First derivatives: (c) gradient of the image.

Figure 8. Correlation value with the Pattern Noise reference.

comparison. The results indicate that in cross-device match-
ing scenarios the proposed classification method based on
a random forest with 25 trees, the FMR improves from
1.982% to 0.005% at the FNMR of 3.741%. For a fixed
FMR of 0.005%, the classification model improves FNMR
from approximately 6.7% down to 3.74%. These results
reflect the experiment in which not more than 25% of the
fingerprint pairs were used for training and the remaining
pairs for testing, an approach much more realistic than that
in which 90% of the data set is used for training. Further
improvement, although not significant, can be obtained by
increasing the number of trees in the random forest. We also
note that Naive Bayes does not perform the classification
task well. The likely reason is the high degree of correla-
tion between the features, which are assumed independent
by Naive Bayes algorithm.

5. Conclusions
A repeated observation in biometric literature has been

that the error rates of commercial fingerprint matchers in-
crease when the images are captured by different devices.

Table 3. Comparison between different classification approaches
used for modeling the scenario in which both devices used for en-
rollment and verification are unknown.

Performance with the Proposed Method
Classifier Training FMR FNMR
Decision 10-Fold CV 0.013% 2.470%

Tree
Naive 10-Fold CV 0.135% 6.100%
Bayes

Random 10-Fold CV
Forest 10 Trees 0.006% 3.279%

Random 25% Training CV
Forest 10 Trees 0.006% 3.927%

25 Trees 0.005% 3.741%
50 Trees 0.005% 3.722%

Table 4. Performance obtained with no classification at two oper-
ating points where FMR and FNMR are comparable with those
obtained with the proposed approach.

Performance with no
Classification

FMR FNMR
0.005% 6.696%
1.982% 3.741%

The goal of the paper was to improve cross-device fin-
gerprint verification performance. We extracted quality-
and intensity-based characteristics of fingerprint images ac-
quired using four different commercial optical devices and
scanned ink rolled prints. They were subsequently used as
features and combined with match scores via a classifier-
based fusion scheme. The model was developed for both
intra-device and cross-device matching for all device pairs.
Experiments were carried out using a data set pertaining to
approximately 500 subjects collected at West Virginia Uni-



versity. Results show that the proposed approach is able
to reduce the cross-device match error rates by several or-
ders of magnitude for a fixed false non-match rate of 3.7%.
However, the precise performance gains depend on the spe-
cific matcher used.

We plan to extend our experiments using additional data
sets, different matchers and by involving scenarios in which
the device used for testing the enhancement scheme is un-
known. We will be considering additional quality measures
and image properties as well as different fusion and clas-
sification schemes. Further, we plan to model the device
influence on image quality and the influence of image qual-
ity on match scores by designing suitable graphical models.
Finally, we would like to use the proposed method to en-
hance the interoperability of fingerprint liveness detection
algorithms across different devices.
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