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Hexagonal Constellations for
Adaptive Physical-Layer Network Coding 2-Way Relaying

Miroslav Hekrdla and Jan Sykora

Abstract—We focus on a constellation design for adaptive
physical-layer network coding strategy in a wireless 2-way relay
channel. It is well known that 4QAM constellations require
extended-cardinality network coding adaptation to avoid all
singular channel parameters at the Multiple-Access (MA) stage.
The cardinality extension is undesirable since it introduces
redundancy decreasing the data rates at the broadcast stage.
In this paper, we target a design of constellations avoiding all
the singularities without the cardinality extension. We show that
such a constellation is 4-ary constellation taken from hexagonal
lattice (4HEX) which keeps comparable error performance at the
MA stage as 4QAM, however without the cardinality extension.
The similar properties has been found also by unconventional
3HEX and 7HEX constellations.

Index Terms—Physical-layer network coding, constellation de-
sign, wireless two-way relaying.

I. INTRODUCTION

PHYSICAL-LAYER Network Coding (PLNC) has re-
ceived much attention in the research community, see [1]

and its references. It offers theoretically the highest achievable
throughput in a wireless 2-Way Relay Channel (2-WRC)
assuming perfect Channel State Information (CSI) at all the
nodes [2]. Considering more practical situation with CSI at
the receivers, PLNC performance emerges a new type of
fading phenomenon. This fading appears when a ratio of
channel coefficients equals to certain critical values (denoted
as singularities) and typical constellations are used by the
terminals. The singularities force a minimal distance of net-
work coding relay decoding to 0, regardless of magnitudes
of the channel coefficients. Even if the channel parameters
are Rayleigh/Rice distributed, the average performance is
remarkably degraded by the presence of the singularities. The
authors in [3] propose an adaptive PLNC strategy eliminat-
ing this performance degradation. It adapts network coding
function according to the actual channel parameter ratio so
as to maximize the minimal distance (it is equivalent to
avoiding all the singularities). The authors in [4] designed
multi-dimensional constellations which avoid the singularities
even without network coding adaptation, however its spectral
efficiency seems to be upper-limited by 1 bit-per-complex-
dimension. The existence of singularities for constellations
with higher spectral efficiency is without the adaptation ap-
parently inevitable. Paper [5] presents a simplified search for
network coding functions based on theory of Latin squares.
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Fig. 1. Multiple-access stage of PLNC in a 2-WRC using adaptive network
coding Nadapt (hB/hA) and 4ary hexagonal constellations.

Both [3] and [5] conclude that 4QAM requires extended-
cardinality network coding adaptation to avoid all the singu-
larities. The cardinality extension is undesirable since it intro-
duces redundancy decreasing the data rates at the BroadCast
(BC) stage.

In this letter, we target a constellation design for adaptive
PLNC avoiding the singularities without the cardinality ex-
tension. Based on results from [6], we show that singularities
of 4QAM with absolute value 1 which are mutually rotated
by 90 ◦ can be avoided by minimum-cardinality network
coding functions. This is due to 90 ◦ rotational symmetry of
rectangular lattice and 4QAM constellation-shape. Therefore,
we analyse constellations taken from hexagonal lattice with
60 ◦ rotation symmetry which may avoid more singularities
than rectangular lattice-constellations. As a contribution, we
present a 4-ary hexagonal constellation (4HEX), illustrated in
Fig. 1, which avoid all the singularities without the cardinality
extension and with comparable performance at the Multiple
Access (MA) stage as 4QAM. The similar properties has been
found also by unconventional 3HEX and 7HEX constellations.

II. SYSTEM MODEL

A. Signal Space Model and Used Notation

Let both terminals A and B use the same constellation
(including the same constellation-indexing) AA = AB = A
which is assumed to be linear (A ⊆ C) and taken from a
common lattice. The notation from the perspective of terminal
A is following. Baseband signal points in the constellation
space sA forming the alphabet A = {s(i)A }M−1

i=0 are assumed to
be normalised to the unit mean symbol energy, where M is a
constellation cardinality M = |A |. Upper-indices �(i) are used
when a concrete value of the variable is to be stressed. We
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define constellation mapper M :ZM →A such that the alpha-
bet indices directly correspond to data symbols M (dA)= s(dA)

A ,
where data symbols are dA ∈ZM and ZM = {0,1, . . . ,(M−1)}
denotes the set of non-negative integers lower than M. Us-
ing lattice-generator matrix G, we unambiguously describe
constellation signals by lattice-coordinate vectors a as s(i)A =
Ga(i)−m, ∀i ∈ ZM, where m = 1/M ∑M

i=1 Ga(i) ensures that A
has a zero-mean. Vector a = [a0,a1]

T ∈S ⊆Z2 is taken from
a set of lattice coordinates S (determining the constellation
shape), where Z = {. . . ,−1,0,1, . . .} denotes the ring of
integers. Generator matrices of rectangular Z2 and hexagonal
A2 lattice are GZ2 = [1, j] and GA2 = [1,1/2+ j

√
3/2]. One-to-

one indexing mapper between constellation-indices and lattice-
coordinates is defined as I : ZM �→ S , I (dA) = a(dA).

B. 2-Way Relay Channel and Model Assumptions

A 2-WRC consists of two terminals A and B bi-directionally
communicating via a supporting relay R in a half-duplex
manner (each node cannot send and receive at the same
time). We assume an idealised time-synchronised scenario and
Rayleigh/Rice flat fading with CSI at the receivers. We analyse
an uncoded per-symbol PLNC relaying and we expect similar
performance trends as with concatenated channel coding,
see [7], [8] for more details about such a receiver processing.

C. Adaptive Physical-Layer Network Coding in the 2-WRC

PLNC 2-way relaying consists of a MA stage and a BC
stage. At the first MA stage, both terminals transmit simulta-
neously to the relay which receives a signal superposition

x = hAsA + hBsB +w = u+w, (1)

where u ∈ AA+B denotes a superimposed signal u(dA,dB) =

hAs(dA)
A + hBs(dB)

B , where w is a complex AWGN noise with
variance 2N0 and hA,hB are fading channel coefficients. The
relay decodes a network coded data symbol dAB as d̂AB =
argmaxdAB p(x|dAB), where likelihood function is

p(x|dAB) =
1
M ∑

N (dA,dB)=dAB

1
2πN0

e
−

∣∣∣x−u(dA,dB)
∣∣∣2

2N0 . (2)

The summation in (2) runs over all [dA,dB] ∈ Z2
M such that

N (dA,dB) = dAB. The network coding function N fulfils an
exclusive law of network coding [3]

N (dA,dB) 	= N (d′
A,dB), dA 	= d′

A,
N (dA,dB) 	= N (dA,d′

B), dB 	= d′
B

(3)

in order to ensure decodability at the destinations when one of
the terminal data symbols is provided. We denote cardinality
of network coded symbols as MAB (dAB ∈ZMAB ). It is generally
MAB ≥ M, when MAB = M (resp. MAB > M), we denote such
N as a minimum- (resp. extended-) cardinality one. Maximal
capacity gain due to the network coding-based information
compression is achieved when cardinality MAB is minimal.
Function N is uniquely specified by its Latin square [5] which
we denote as a matrix N, where N (dA,dB) = [N]dA,dB

. We
use modulo-sum NMOD(dA,dB) = (dA + dB)modM and bit-wise

XOR NXOR(dA,dB) = dA⊕dB minimum-cardinality functions
which possess the following 4-ary Latin squares

NXOR =

⎡
⎢⎢⎣

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

⎤
⎥⎥⎦ , NMOD =

⎡
⎢⎢⎣

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

⎤
⎥⎥⎦ . (4)

In the adaptive PLNC strategy [3], the relay adaptively
selects network coding function Nadapt according to instan-
taneous CSI (channel ratio hB/hA) in order to maximize the
minimal distance of the relay processing. It can be shown that
the minimal distance is maximized if all so-called singular
channel parameters are avoided [5].

Definition 1. A singular channel parameter α = hB/hA, where
hA,hB 	= 0 is such a channel ratio for which

s(dA)
A +αs(dB)

B = s
(d′A)
A +αs

(d′B)
B , [dA,dB] 	= [d′

A,d
′
B]. (5)

Definition 2. A function N avoids a singularity α when (5)
holds and N (dA,dB) = N (d′

A,d
′
B) and thus situation (5) is

not a source of errors in the network coded data decoding.

At the second BC stage, the relay broadcasts network
coded data symbol dAB and the final destinations subsequently
perform successful detection exploiting knowledge of its own
data symbols and network coding function invertibility (3).

III. ANALYSIS OF 4QAM SINGULARITIES

We analyse the singularities of 4QAM with a help of
Proposition 3 originally introduced in [6].

Proposition 3. Assume a superposition of two constellations
taken from a common lattice. If both constellation-indices
form a modulo-arithmetic progression along each lattice
dimension (inverse indexing mapper I −1 is modulo-affine
(denoted as Affine Indexing (AI)), then all equal superimposed-
constellation points correspond to an identical modulo-sum
data symbol.

Proof: Two superimposed-constellation points taken from
a common lattice which correspond to distinct data pairs

s(dA)
A + s(dB)

B = s
(d′A)
A + s

(d′B)
B , [dA,dB] 	= [d′

A,d
′
B] are equal when

G(a+b)− 2m = G(a′+b′)− 2m and so when

a+b = a′+b′ (6)

where a = I (dA),b = I (dB),a′ = I (d′
A),b

′ = I (d′
B). Let

the precondition I −1 to be modulo-affine is fulfilled, so
I −1(a) =

(
cT a+ z

)
modM , where ci ∈ Z denotes a common

increment of modulo-arithmetic progression in the ith dimen-
sion and z∈ZM is an arbitrary constant. The modulo-sum data
symbol is then

dAB = (dA + dB)modM =
(
cT (a+b)+ 2z

)
modM . (7)

By the same manipulations, we obtain d′
AB =(

cT (a′+b′)+ 2z
)

modM . Clearly, when superimposed-
constellation points are equal ((6) holds), then dAB = d′

AB
which proves the claim.

Proposition 3 shows that singularity α = 1 (hA = hB = 1)
can be avoided by minimum-cardinality modulo-sum function
NMOD providing AI indexed constellations. 4QAM can be
indexed by AI with c = [1,2]T as found in [6].
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Fig. 2. The column permutation (that re-index AB to be jointly AI with
indexing AA) of modulo-sum function avoids singularity α = e jπ/2.

Definition 4. A vector permutation Pp which maps vector
n =[0,1, . . .(M − 1)] on a vector p = [p0, p1, . . . p(M−1)] is
denoted as Pp [n] = p. In a similar way, we define a column
matrix permutation as Pp[N] = [N�p0 ,N�p1 , . . .N�p(M−1)

] where
N�i denotes the ith column of matrix N. We describe a
row permutation as PpT [N] = Pp[NT ]T and an exponent of
permutation as P2

p [N] = Pp [Pp[N]] where P0 is an identity.

Lemma 5. Let network coding function N with Latin square
N avoid a singularity α using constellations AA,AB. If we
re-index constellation AB (resp. AA) according to some per-
mutation Pp, then the singularity α is avoided by the network
coding function with Latin square Pp[N] (resp. PpT [N]).

Lemma 5 is rather obvious and instead of the proof we
rather clearly demonstrate the principle on the example in
Fig. 2. Here, the channel parameters hA = 1 and hB = e jπ/2

(α = e jπ/2) cause 90 ◦ rotation of the constellation AB. The
rotation effectively means only constellation re-indexing due
to the symmetry of rectangular lattice and 4QAM constellation
shape. Now, if we find some new indices (denoted by blue
colour in Fig. 2) forming AI jointly with indexing of AA,
then the singularity is avoided by modulo-sum function. There
always exists a permutation which maps old indices to the new
AI indices Pp and according to Lemma 5 the avoiding sin-
gularity network coding function has Latin square Pp[NMOD].
Similar example is depicted in Fig. 1 for α = e jπ/3.

Lemma 6. If network coding function N avoids a singularity
α , α 	= 0, then the same N avoids also 1/α.

Proof: We obtain the claim simply, when we multiply
both sides of (5) by 1/α on condition that sA,sB are from the
same alphabet A .

Let summarize analysis of 4QAM singularities. According
to Lemma 5 and 6, once we avoid singularities with angle in
the range [0,90 ◦] and with |α| ≤ 1, then we avoid all of them.
Particularly, they are {1, (1+j)/2} . According to Proposition 3,
we avoid singularity 1 by minimum-cardinality modulo-sum
function or according to [3] by bit-wise XOR. Unfortunately,
works [3], [5] show that avoidance of singularity (1+j)/2

requires necessarily extended-cardinality Latin square

N2 =

⎡
⎢⎢⎣

0 1 2 3
2 3 1 4
3 0 4 2
4 2 0 1

⎤
⎥⎥⎦ . (8)

To verify that all singularities have been successfully avoided,
we numerically evaluate parametric minimal distance

Δ2
min (α) = min

Nadapt(dA,dB) 	=Nadapt(d′A,d
′
B)

∥∥∥Δs
(dA,d

′
A)

A +αΔs
(dB,d′B)
B

∥∥∥2
,
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Fig. 3. Parametric minimal distance Δ2
min (α) and adaptive network coding

function Nadapt(α) of 4QAM constellation.

where Δs
(dA,d

′
A)

A = s(dA)
A − sA

(d′A), Δs
(dB,d′B)
B = s(dB)

B − s
(d′B)
B . All

singularities are avoided when the minimal distance is non-
zero for all non-zero α .

Figure 3 shows that adaptive PLNC using 4QAM avoids all
singularities when the relay adaptively selects Ni according
to adaptive network coding function Nadapt(α) where N2 is
defined by (8) and

N0 = NXOR, N1 = P[1,3,0,2][N0], N3 = P[1,3,0,2][N2],

N4 = P2
[1,3,0,2][N2], N5 = P3

[1,3,0,2][N2],

where permutation P[1,3,0,2] corresponds to 90 ◦ reindexing of
AB as shown in Fig. 2.

IV. PROPOSED HEXAGONAL CONSTELLATIONS

We have found that all unit-length singularities |α| = 1
of 4QAM can be avoided by minimum-cardinality network
coding functions. Particularly, there are four unit-length sin-
gularities

{
e j2πk/4

}3
k=0 due to the 90 ◦ symmetry of rectangular

lattice. This motivates us to consider constellations taken from
hexagonal lattice since there are possibly six unit-length sin-
gularities

{
e j2πk/6

}5
k=0 due to its 60 ◦ symmetry. The number

of singularities is limited and depends only on the alphabet
cardinality so we may hope that if we avoid more singularities
by minimum-cardinality functions we could conceivably avoid
all of them. As we will confirm in the case of 3, 4 and 7HEX
constellations.

A. 4HEX Constellation and Modulo-Sum Based Adaptation

Let us assume 4-ary hexagonal constellation (4HEX)

A4HEX =
√

2/4

{
−3− j

√
3,1− j

√
3,−1+ j

√
3,3+ j

√
3
}
,

depicted in Fig. 1. The shape of 4HEX is symmetric to 180 ◦
rotation. Therefore we suffice to analyse singularities with
angle in the range [0,180 ◦] and with |α| ≤ 1. They are{

1,e jπ/3,e j2π/3,
√

3/3 e jπ/6, j
√

3/3,
√

3/3 e j5π/6
}
. We avoid unit-

length singularities
{

1,e jπ/3,e j2π/3
}

by the same procedure
as in the case of 4QAM:

Procedure: For a given singularity, we search for such a
new indexing of hAAA and hBAB that would be jointly AI
and then the permutation (which maps old indices to the new
indices) of modulo-sum function avoid this singularity.

Surprisingly, there does not exist an indexing that would
be jointly AI for

{√
3/3 e jπ/6, j

√
3/3,

√
3/3 e j5π/6

}
. But a more

detailed analysis shows that two super-imposed points which
fall to the same position are composed of signal points taken
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Fig. 4. Singularity α = j
√

3/3 is avoided by modulo-sum network coding
function if all indices in the critical lattice-dimension (emphasized) are
indexed by affine-indexing (here with coefficient c = 3).
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Fig. 5. Parametric minimal distance Δ2
min (α), adaptive network coding based

on modulo-sum N MOD
adapt (α) and bit-wise XOR N XOR

adapt (α) for 4HEX.

from a single lattice dimension. Thus, if constellation-indices
are jointly AI in this critical dimension, then the singularity
is also avoided by permuted modulo-sum as shown in Fig. 4
for α = j

√
3/3. All singularities of 4HEX can be avoided

by minimum-cardinality adaptive N MOD
adapt (α) based on the

following modulo-sum functions

N0 = NMOD, N1 = P[3,1,0,2][N0], N2 = P[0,2,1,3]T [P[2,1,0,3][N0]],

N3 = P[3,2,1,0][N0], N4 = P[3,2,1,0][N1], N5 = P[3,2,1,0][N2].

B. 4HEX Constellation and XOR Based Adaptation

There is a numerically manageable number of 4ary
minimum-cardinality Latin squares. By brute-force search,
we have found that bit-wise XOR based network coding
adaptation N XOR

adapt (α) requires adaptation to only 3 functions
(N MOD

adapt (α) requires 6) Ni = Pi
[0,2,3,1][NXOR], i ∈ Z3 as shown

in Fig. 5. In addition, any permuted XOR Latin square can be
described as a linear operation which enables simpler channel
coding concatenation approach [8].

C. 3-ary and 7-ary Hexagonal Constellations

Let us consider A3HEX =
{

e−j5π/6,e−jπ/6, j
}

and
A7HEX =

√
7/6

{
e−j2π/3,e−jπ/3,−1,0,1,e j2π/3,e jπ/3

}
constellations with 60◦ rotationally symmetric shapes.
The singularities with angle in the range [0,60 ◦] and
|α| ≤ 1 are {1} and

{
1/2,1,1/

√
3 e jπ/6,2/

√
3 e jπ/6

}
,

respectively. Following the same procedure as for
4HEX, we found that the singularities are avoided by
minimum-cardinality modulo-sum network coding adaptation
depicted in Fig. 6 where Ni = Pi

[0,2,1][NMOD], i ∈ Z2 and
Ni = Pi

[1,4,0,3,6,2,5][NMOD], i ∈ Z6, respectively. Note, that
bitwise XOR function is not a minimum-cardinality one any
more for odd alphabet cardinality M. Unfortunately, we have
not found similar properties by 8HEX constellation which
has a more practical power of 2 cardinality.
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Fig. 6. Parametric minimal distance Δ2
min (α) and adaptive network coding

function Nadapt(α) of 3HEX and 7HEX constellations.

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

Mean Es/N0 [dB]

S
ym

bo
l e

rr
or

 r
at

e

 

 
4QAM, AWGN
4QAM, non−adapt. bit XOR, Rice KdB=10
4QAM, min. card. adapt., Rice KdB=10
4QAM, extend. card. adapt., Rice KdB=10
4HEX, AWGN
4HEX,  non−adapt. bit XOR, Rice KdB=10
4HEX, min. card. adapt., Rice KdB=10

Fig. 7. Network coded symbol error rate at the MA stage of adaptive PLNC
in Rician K = 10dB channel using 4QAM and 4HEX constellations.

V. PERFORMANCE EVALUATION

Performance of uncoded network coded symbol decoding
at the MA stage is depicted in Fig. 7. We conclude that the
performance of minimum-cardinality network coding adapta-
tion using 4HEX is considerably better than the minimum-
cardinality adaptation using 4QAM (because the singularity
(1+j)/2 cannot be avoided.) and it is comparable to extended-
cardinality adaptation using 4QAM.

VI. CONCLUSION

We present 3, 4, and 7HEX constellations which avoid
all singularities in adaptive physical-layer network coding 2-
way relaying without the network coding cardinality extension
which increases redundancy at the BC stage (as in the case of
4QAM). Proposed 4HEX clearly outperforms 4QAM in the
considered scenario. Our approach is potentially applicable to
constellations taken from general lattice.
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