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Abstract—The central goal of compressive sensing is to re-
construct a signal that is sparse or compressible in some basis
using very few measurements. However reconstruction is often
not the ultimate goal and it is of considerable interest to be
able to deduce attributes of the signal from the measurements
without explicitly reconstructing the full signal. This paper solves
the blind source separation problem not in the high dimensional
data domain, but in the low dimensional measurement domain. It
develops a Bayesian inference framework that integrates hidden
Markov models for sources with compressive measurement.
Posterior probabilities are calculated using a Markov Chain
Monte Carlo (MCMC) algorithm. Simulation results are provided
for one-dimensional signals and for two-dimensional images,
where hidden Markov tree models of the wavelet coefficients
are considered. The integrated Bayesian framework is shown
to outperform standard approaches where the mixtures are
separated in the data domain.

I. INTRODUCTION

Compressive sensing (CS) is a new approach to data ac-

quisition first proposed by Candés, Romberg and Tao [1] and

Donoho [2]. It has the potential to greatly reduce the number of

samples required by the Shannon/Nyquist sampling theorem

for signals that are sparse or compressable with respect to

some basis. This is a very attractive feature for applications

where the cost of data acquisition is very high.

Compressive sensing is a natural fit to Blind Source Sepa-

ration (BSS) where the aim is to separate a mixture of sources

with little knowledge of the source signals or the mixing

process. The source signals are assumed to be independent

of or uncorrelated with each other. Many important problems

in speech recognition, network anomaly detection, and med-

ical signal processing can be viewed as BSS problems. The

standard approach is Independent Component Analysis (ICA)

which lacks resilience to noise and fails to take advantage

of source correlation. A more recent approach [3] to BSS of

images employs Bayesian methods in combination with hidden

Markov Tree Models (HMT) in the wavelet domain.

This paper transfers the Bayesian framework for source sep-

aration to the compressive measurement domain. We consider

the blind source separation problem directly from the com-

pressed mixtures obtained from compressive sensing measure-

ments, instead of recovering the mixtures in the data domain at

first. We propose a unified Bayesian inference framework for

the problem and the hidden Markov tree models of the wavelet

coefficients are considered. We also propose a Markov chain

Monte Carlo algorithm in order to calculate the posterior prob-

ability and recover the separated sources in the data domain.

We provide simulations for both one-dimensional signals and

two-dimensional images. Our proposed algorithm provides

effective recoveries of original signals and experimental results

show that our unified Bayesian inference method outperforms

the separate procedure, which firstly recovers the mixtures in

the data domain and secondly separates sources in the data

domain.

The following of this paper is organized as follows: Section

II formulates the problem after a brief review of compressive

sensing and blind source separation. Section III describes

the integrated Bayesian framework, and in particular MCMC

inference using the Gibbs sampler. Section IV presents simu-

lation results. This paper concludes in Section V.

II. COMPRESSIVE SENSING AND BLIND SOURCE

SEPARATION

A. Background on Compressive Sensing

Let s ∈ R
N be a signal and let the matrix Ψ =

[ψ1, ψ2, . . . , ψN ] be a basis in R
N×N such that s can be

expressed as s = Ψθ. We say that s is K-sparse if ||θ||�0 = K.

The signal s is not measured directly; rather we measure

linear projections x = Πs = ΠΨθ = Φθ using an M × N
matrix Π, where the number of projections M � N . The

matrix Φ = ΠΨ is rank deficient so we are starting from a

heavily underdetermined linear system. When the signal s is

sparse, we are interested in finding the sparsest solution to the

underdetermined problem, i.e.

θ̂ = arg min
θ

||θ||�0 subject to x = Φθ. (1)

This problem is NP-hard and computationally intractable.

Surprisingly, it is shown that If however the matrix Φ acts

as an isometry on K-sparse vectors (this is the Restricted

Isometry Property or RIP introduced in [4]) then we can use

M = O(K log(N/K)) measurements and perform the �1
minimization by linear programming

θ̂ = arg min
θ

||θ||�1 subject to x = Φθ. (2)

This can be accomplished by Basis Pursuit (BP) [5], and given

RIP, the solution to (2) coincides with the solution to (1). Other

efficient algorithms are also proved to give equivalent solutions

to equation (1) with high probability such as orthogonal match-

ing pursuit (OMP) [6] and LASSO [7]. Recently bayesian

recovery algorithms based on probabilistic inference are also

proposed in [8]. These algorithms are especially powerful

when considering the tree-structure inherited in the wavelet

coefficients.
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B. Background on Blind Source Separation

In blind source separation, the task is to recover T unob-

served sources S = [s1, · · · , sT ] with si ∈ R
N via obser-

vations of L linear combinations of these sources, possibly

corrupted by input of noise. We denote the obervations by

X = [x1, · · · ,xL] where xi ∈ R
N . The model can be

represented by the following equation

X = SA + ε (3)

where A ∈ R
T×L is the mixing matrix, and ε is the

corresponding noise.

Let Ψ = [ψ1, ψ2, . . . , ψN ] be a wavelet basis for R
N . We

apply the wavelet transform at both sides of equation (3). In

the wavelet domain, BSS becomes

Θ̃ = ΘA + Θε (4)

where X = ΨΘ̃ = Ψ[θ̃1, · · · , θ̃T ], S = ΨΘ = Ψ[θ1, · · · , θT ],
ε = ΨΘε.

C. Problem Formulation: Compressive Blind Source Separa-
tion

In this paper, we assume the mixtures of signals are ob-

served via compressed measurements V, possibly with noise

N, i.e.

V = ΠX + N = ΦΘA + N, (5)

where V ∈ R
M×L and the kth column of the additive

noise N follows the Gaussian distribution N (0, (αN
k )−1I). We

are interested in recovering the source signals in S directly

from the compressed measurements V, in particular, deriving

maximum a posterior probabilistic inference. The key is to

infer the mixing process and wavelet coefficients jointly from

the compressed measurements.

III. COMPRESSIVE BLIND SOURCE SEPARATION

With the problem formulation in equation (5), our proposed

method is to maximize the following posterior:

p(Θ,A,N|V,Φ) ∝ p(V|Φ,Θ,A, αN)π(N|αN)
·π(A|αA)π(Θ|αΘ) (6)

and we denote α = [αN, αA, αΘ] as the set of the hyperpa-

rameters.

A. Wavelet Hidden Markov Tree Model

Let all source signals be decomposed into S scales in

wavelet demain and each source fits into a different HMT

model. The hidden Markov tree (HMT) [9] is a graphical

model where the inner dependencies between the wavelet

transform coefficients are explored explicitly. Fig. 1 illustrates

a hidden Markov tree where each parent state has two children

states. Each white node represents an unobserved hidden state

and each black node represents an observed wavelet coeffi-

cient. The hidden Markov tree model captures the following

properties.

• Persistence: If the parent node has a large/small coef-

ficient, it is of higher probability that the child node

also has a large/small coefficient, and vice versa. If a

particular wavelet coefficient is large/small, then adjacent

coefficients are also very likely to be large/small. In

our context, we only take into account the dependency

between the parent and child nodes.

• Mixed Gaussian Model: We denote cs,i as the ith hidden

state at wavelet decomposition scale s; it has two possible

state values, cs,i ∈ {S,L} and its associated wavelet

coefficient θs,i is subject to the following distribution,

θs,i ∼ (1 − πs,i)δ0 + πs,i N (0, (αs)−1) (7)

where N (·) denotes Gaussian distribution and αs is the

precision parameter (variance σ2 = (αs)−1) on the

wavelet decomposition scale s.

Fig. 1. Hidden Markov Tree as a Graphical Model

One way of training and maximizing likelihood estimation

in the HMT is via the EM algorithm in HMT [9], [10].

Instead, we will use Gibbs sampling Markov chain Monte

Carlo inference in this paper.

B. Prior Distributions

1) Noise Variance Prior Distribution: As shown in equa-

tion (5), the additive noise N follows Gaussian distribution

with zero mean and precision αN = {αN
k }N

k=1. The noise

precision αN
k is assigned as Gamma distribution

αN
k ∼ Gamma(a0, b0). (8)

The measured linear projections V follows conditional

Gaussian as

Vk|Φ,Θ,A, αN
k ∼ N (ΦΘAk, (αN

k )−1I) (9)

where Vk is the kth column of V and Ak is the kth column

of A.

2) Mixing Matrix Prior Distribution: The prior distribution

of mixing matrix A is indeed determined by the mixing

process. We consider that each entry of the mixing matrix

A follows Gaussian distribution as ai,j ∼ N (μi,j , α
−1
i,j ). The

hyperparameter set hence is αA = {μi,j , αi,j}1≤i≤T,1≤j≤L.

3) Prior Distributions of Wavelet Coefficients: According

to the hidden Markov tree model, the prior distributions of

wavelet coefficients are assigned as mixed Gaussian with
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precision having gamma priors.

θs,i ∼ (1 − πs,i)δ0 + πs,iN (0, (αs)−1),

with πs,i =

⎧
⎨

⎩

πr, if s = 1,
πs0, if 2 ≤ s ≤ S, θp(s,i) = 0,
πs1, if 2 ≤ s ≤ S, θp(s,i) �= 0,

αs ∼ Gamma(c0, d0), πr ∼ Beta(er
0, f

r
0 ),

πs0 ∼ Beta(es0
0 , f

s0
0 ), πs1 ∼ Beta(es1

0 , f
s1
0 ),

(10)

where θp(s,i) denotes the coefficient for the parent node

of node θs,i. If the parent coefficient is zero, the children

coefficients are more likely to be zero due to the persistence

property, therefore we assign a relatively small πs0, otherwise

we assign a relative large πs1. For the root node, no preference

is given to πr. Each source is assigned a different set of

hyperparameters. The overall parameter set concerning the

wavelet coefficients is denoted by αΘ.

C. Markov Chain Monte Carlo Inference
In this subsection, we illustrate posterior computations

through Markov chain Monte Carlo inference by Gibbs sam-

pling. The Gibbs sampler approximates true posterior distribu-

tions by sequentially sampling from conditional distributions

of the rest parameters and unknown variables. For the posterior

specified in equation (6), the Gibbs sampler samples from the

following conditional distributions at iteration t,

θs,i
k (t) ∼ p(θs,i

k |V,Φ,A(t− 1), αN
k (t− 1),

αs
k(t− 1), πs,i

k (t− 1)),

A(t) ∼ p(A|V,Φ,A(t− 1),Θ(t− 1)),

αN
k (t) ∼ p(αN

k |Vk,Φ,Ak(t− 1),Θ(t− 1)),

αs
k(t) ∼ p(αs

k|θs,i
k (t− 1)),

πs,i
k (t) ∼ p(πs,i

k |θs,i
k (t− 1)),

(11)

where {θs,i
k (t)} is the set of wavelet coefficients associated

with the kth source in the tth iteration. Note that, for each

source, the wavelet coefficients are different and they need

to be inferred separately in a similar fashion. The posterior

distributions are specified as follows. Most of them follow are

fairly easy to derive since they all come from the prior and

the likelihood distribution are conjugate.
1) Conditional Distributions of Wavelet Coefficients: The

conditional distribution of the wavelet coefficient θs,i
k for the

kth source is specified as

p(θs,i
k |−) = (1 − π̃s,i

k )δ0 + π̃s,i
k N (μ̃s,i

k , (α̃s
k)−1). (12)

We assume θs,i
k is the jth entry of the N -dimensional vector

θk, denoted by θj
k = θs,i

k , then

α̃s
k = αs

k + αN
k φ

T
j φj ,

μ̃s,i
k = (α̃s

k)−1αN
k φ

T
j Ṽj

k,

π̃s,i
k

1 − π̃s,i
k

=
πs,i

k

1 − πs,i
k

N (0|(αs
k)−1)

N (μ̃s,i
k |(α̃s

k)−1)
,

where φj is the jth column of Φ and Ṽj
k = Vk −

∑
p�=j φpθ

p
k.

2) Conditional Distribution of Coefficients hyperparam-
eters: The conditional distribution of hyperparameters for

wavelet coefficients are specified as

• p(αs
k|−) =

Gamma(c0 + 1
2

∑Ms

i=1 1{θs,i
k �=0}, d0 + 1

2

∑Ms

i=1(θ
s,i
k )2),

• p(πr
k|−) =

Beta(er
0+ 1

2

∑Ms

i=1 1{θs,i
k �=0}, f

r
0 + 1

2

∑Ms

i=1 1{θs,i
k =0}), s =

1,
• p(πs0

k |−) = Beta(es0
0 + 1

2

∑Ms

i=1 1{θs,i
k �=0, θp(s,i)(k)=0},

fs0
0 + 1

2

∑Ms

i=1 1{θs,i
k =0, θ

p(s,i)
k =0}), s �= 1,

• p(πs1
k |−) = Beta(es1

0 + 1
2

∑Ms

i=1 1{θs,i
k �=0, θp(s,i)(k) �=0},

fs1
0 + 1

2

∑Ms

i=1 1{θs,i
k =0, θ

p(s,i)
k �=0}), s �= 1.

3) Conditional Distribution of Noise Variance: The condi-

tional distribution of the noise precision αN
k is

p(αN
k |−) =

Gamma(a0 + M
2 , b0 + 1

2 (Vk − ΦΘAk)T (Vk − ΦΘAk)).
(13)

4) Conditional Distribution of Mixing Matrix: The condi-

tional distribution of ai,j is

p(ai,j |−) = N (μ̃i,j , α̃
−1
i,j ) (14)

and

μ̃i,j =
μi,jαi,j + Pi,jQi,jα

N
j

αi,j + Qi,jαN
j

, (15)

α̃i,j = αi,j + Qi,jα
N
j , (16)

where P =
(
(ΦΘ)H(ΦΘ)

)−1 (ΦΘ)HV and Q =(
(ΦΘ)H(ΦΘ)

)−1 (ΦΘ)HIM×L.

IV. SIMULATION RESULTS

In formulation (5), we note that, there is an underlying

algorithm. That is separate procedure of compressive sensing

and wavelet-based blind source separation, i.e.

• Step 1: Inference of Θ̃ from linear projection V (see [8]).

• Step 2: Inference of Θ from Θ̃ (see [3]).

We call this the decoupled method and note that it is

generic. Indeed there is no other generic methods to handle

with compressive blind source separation.We now present

simulations that compare our integrated approach with the

decoupled approach.

In one round of MCMC inference, we set burn-in process

as 400 iterations and the collection period as 100 iterations.

A. One-dimensional Signals

Here, the task is to separate two one-dimensional sparse

signals s1 and s2. The two sources and mixing matrix are

generated randomly. In the wavelet domain, their coefficient

vectors are θ1 and θ2 respectively with dimensions as 512.

There are two mixtures and 200 measurements are taken from

each mixture. Therefore, the linear projection V has size 200×
2 and the compression rate is 200

512 .

In Fig. 2, ‘Sep-Recovered Signals’ denotes signals recov-

ered by the separate method; ‘Bayes-Recovered Signals’ de-

notes signals recovered by our proposed method. It shows that
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Fig. 2. Bayesian compressive blind separation of one dimensional signals

our proposed method provides better recoveries. The wavelet

coefficients are provided in Fig. 3.

100 200 300 400 500

−2

0

2

4

Original Signal 0

100 200 300 400 500
−2

−1

0

1

Original Signal 1

100 200 300 400 500

−2

0

2

4

Bayes−Recovered Signal 0

100 200 300 400 500

−2

0

2
Bayes−Recovered Signal 1

100 200 300 400 500

−2

0

2

4

Sep−Recovered Signal 0

100 200 300 400 500

−2

0

2
Sep−Recovered Signal 1

Fig. 3. Comparisons of recovered wavelet coefficients

B. Two-dimensional Images

We consider blind separation of two 32 × 32 images. Each

coefficient vector in the wavelet domain has 1024 entries. Two

mixtures are generated randomly and we take 500 measure-

ments from each mixture. Therefore, the compression rate is
500
1024 .
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Fig. 4. Bayesian compressive blind separation of two images

Fig. 4 shows that our proposed method provides better

recoveries. The first 256 wavelet coefficients are provided in

Fig. 5, which also verifies better recoveries by our proposed

method.

We note that, both methods do not give very clear re-

coveries; one reason is that the original images has very
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Fig. 5. Comparisons of the first 256 recovered wavelet coefficients

low definition and the second reason is that these two low-

definition images are not sparse enough. From Fig. 5, we

notice that these images are not sparse but nearly sparse
in wavelet domain (most entries are close to zero but not

equal to zero); yet, our algorithm mainly aims separating and

recovering sparse signals. It would be interesting to tune our

algorithms to handle these nearly sparse images. This will be

our future work.

V. CONCLUSION

In this paper, we have considered the blind source separa-

tion problem directly from the compressed mixtures obtained

from compressive sensing measurements. We have proposed

a bayesian inference which separates and recovers original

sparse signals directly from the compressed mixtures. We

have also shown that our proposed algorithm provides effec-

tive recoveries and outperforms its peer, especially for one-

dimensional signals. As for the future work, we will focus on

improving our proposed method in separation and recovery of

nearly sparse signals by exploring their special structures.
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