
A Multithreaded Framework for Sequential
Monte Carlo Methods on CPU/FPGA Platforms

Markus Happe, Enno Lübbers, and Marco Platzner

University of Paderborn, Germany
(cyclash, enno.luebbers, platzner)@upb.de

Abstract. Sequential Monte Carlo techniques are among the principal
tools for the on-line estimation of the state of a non-linear dynamic sys-
tem. We propose a framework for the multithreaded implementation of
the widely popular sampling importance resampling (SIR) method on hy-
brid CPU/FPGA systems. The framework is based on the multithreaded
reconfigurable operating system ReconOS which allows for an easy repar-
titioning of threads between hard- and software. We demonstrate the
framework on a case study for visual object tracking and evaluate the
performance of different hardware/software partitionings.

1 Introduction

Sequential Monte Carl (SMC) methods, also denoted as particle filters, have be-
come a popular tool for on-line estimation of the state of a non-linear, dynamic
system. Particle filters are iterative methods that track a number of possible
state estimates, the so-called particles, across time and gauge their probability
by comparing them to measurements. State estimation of non-linear dynamic
systems is an important problem with applications in areas as diverse as object
tracking, network packet processing, and sensor networks. Because the parti-
cles tracked by SMC methods are independent, many calculations can be paral-
lelized and are, additionally, amenable to implementation in dedicated logic. For
example, Athalye et al. [1] developed methods and architectures for accelerat-
ing the resampling stage of the SIR algorithm while at the same time reducing
the memory requirements for hardware implementations. Our framework adapts
their technique for parallelizing the resampling stage. At the same time, the
sequential algorithm governing these computations is implemented more effi-
ciently using general purpose CPUs. These facts make today’s modern platform
FPGAs, which integrate fine-grained reconfigurable logic with dedicated CPUs,
a promising implementation target for particle filters in embedded systems.

The novel contribution of this paper is a framework for implementing SMC
methods on hybrid CPU/FPGA platforms. The framework significantly simpli-
fies the design of particle filters following the sampling importance resampling
(SIR) algorithm. By building on top of our multithreaded reconfigurable oper-
ating system ReconOS [2] the framework handles the recurring tasks of particle
data transfer and thread control, letting the designer focus on the application-
specific details of an individual particle filter. Because the operating system

transparently supports both software and hardware threads using one unifying
programming model, the designer can quickly create different hardware/software
partitionings to react to changing application and performance requirements.
The work of Saha et al. [3], who developed a parameterizable framework for
the hardware implementation of particle filters, bears some similarity to our
approach in that it provides an interface for the model definition of a particle
filter. However, their proposed framework targets a hardware-only implementa-
tion of the filter and thus significantly differs from our flexible, multithreaded
hardware/software approach.

2 Sequential Monte Carlo Methods

We are considering a dynamic system with state xt at a given time t. As there
can be uncertainty in the state information, we model the initial system state
by its probability distribution p(X0), where X0 is a random variable describing
the state at time t = 0. The system model is a Markov process of first order.
Thus, p(Xt|Xt−1) denotes the probability distribution of the system’s current
state given the system’s previous state. We assume that the system state can
only be tracked by measurements yt, which may be influenced by noise. The rela-
tion between measurements and system states is described by the measurement
model. The distribution p(Yt = yt|Xt) describes the probability of the current
measurement given the system’s current state.

To predict the current state based on past measurements, p(Xt|y1, · · · , yt−1),
our framework closely follows the sampling importance resampling (SIR) algo-
rithm. SIR is one of the most widely used sequential Monte Carlo methods, which
allow system state estimates to be computed on-line while the state changes, as
it is the case for tracking algorithms. For a more thorough discussion of the
theoretical foundations of SMC methods we refer to [4].

An SIR filter usually manages a fixed number of possible system state hy-
potheses xi

t, also called particles. Ideally, these particles approximate the distri-
bution of the system state, p(Xt). The SIR algorithm distinct stages iterated over
discrete time steps. Figure 1 graphically represents one iteration. The individual
stages are:

– Sampling: To follow the state during subsequent iterations (t ← t + 1),
the system model is used to obtain a possible new state for every particle
x̃i

t based on its last state xi
t−1. Formally, this corresponds to drawing or

sampling the new particle state from the distribution p(Xt|Xt−1 = xi
t−1).

Now, the set of particles x̃i
t forms a prediction of the distribution of Xt.

– Importance: The measurement model is evaluated for every particle and
the current measurement to determine the likelihood that the current mea-
surement yt matches the predicted state x̃i

t of the particle. Formally, this
corresponds to evaluating p(Yt = yt|Xt = x̃i

t). The resulting likelihood is
assigned as a weight wi

t to the particle and indicates the relative quality of
the state estimation. In Figure 1, particles with higher weights are drawn as
larger circles.

p
(Y

t
=

y t
|X

t
)

Xt

xi
t−1

x̃i
t

x̃i
t, w

i
t

xi
t

Importance

Resampling

Sampling

Fig. 1. Sampling importance resampling algorithm

– Resampling: Particles with comparatively high weights are duplicated and
particles with low weights are eliminated. The distribution of the resulting
particles xi

t approximates the distribution of the weighted particles before
resampling.

3 Particle Filter Framework

All particle filters using the SIR algorithm rely on the same underlying algo-
rithmic structure. Hence, a substantial part of the functionality, code, and – in
the case of hybrid CPU/FPGA systems – hardware circuitry can be re-used,
allowing for a framework-based design approach. Our particle filter framework
takes care of common tasks shared by all SIR implementations, such as data
transfer and control flow, and lets the designer focus on the application-specific
tasks, such as system and measurement modeling.

The distinctive feature of our particle filter framework is the use of multi-
threaded programming across the hardware/software boundary. Because SIR fil-
ters are composed of a mixture of highly parallel, data-centric tasks and purely
sequential, control-dominated tasks, hybrid CPU/FPGA systems appear as a
natural choice for their implementation. Multithreading on such hybrid systems
is enabled by the reconfigurable operating system ReconOS [2], which allows
an application to be modularized into threads that are executed either in soft-
ware on the system’s CPU or in hardware in the FPGA’s reconfigurable fabric.
All threads communicate and synchronize using the same programming model
primitives such as semaphores, message boxes, and shared memory.

Figure 2 shows the basic structure of an SIR implementation using our frame-
work. The particles cycle through the three stages sampling, importance, and
resampling. Each of these stages can have an arbitrary number of software and

Fig. 2. Structure of an SIR filter implementation

hardware threads. This execution structure is created and initialized by a soft-
ware thread, which also sets the initial number of threads for each stage.

Generally, the number of HW and SW threads for each of the stages will de-
pend on the availability of computing resources, i.e. CPU utilization factors and
logic area. The other threads of the framework are mainly control-dominated
or show limited potential for parallelism and are therefore implemented in soft-
ware. Access to the needed data, the control flow, as well as necessary operating
system services for communication and synchronization are completely managed
by the framework. Due to the fully transparent communication and synchroniza-
tion across the hardware/software boundary provided by ReconOS, the designer
can easily change the hardware/software partitioning by instantiating a differ-
ent number of hardware and software threads in order to adapt to changing
performance requirements and resource constraints.

4 Case Study

To demonstrate our framework, we have implemented a prototype system for
visually tracking moving objects in a video sequence. The application uses the
software implementation by Hess [5] as a template and reference. Given an initial
tracking target, the particle filter estimates the object’s position and size in each
subsequent frame of the video sequence. An example of the desired tracking
behavior can be seen in Figure 3.

We have implemented two prototypes on a Virtex-II Pro XC2VP30 FPGA
and a Virtex-4 XC4VFX100 FPGA. On both systems, an embedded PowerPC
405 CPU, clocked at 300 MHz, runs the SW threads and the OS kernel, while
the remaining system including buses and HW threads is clocked at 100 MHz.

To illustrate how our framework assists the designer in resolving the rather
involved problem of selecting the appropriate HW/SW partitioning, the perfor-
mance of our object tracking prototype has been evaluated using the following

(a) Frame 5 (b) Frame 90 (c) Frame 150 (d) Frame 260

Fig. 3. Object tracking in a video sequence (video sequence soccer)

five different hardware/software partitionings: all threads run in software (sw),
only one thread executes in hardware (hws: sampling, hwi: importance, hwr: re-
sampling), or all threads of the SIR stages execute in hardware (hwa), while the
remaining threads run in software. Figure 4 shows the performance of the indi-
vidual partitionings, as well as the reference implementation on a PC equipped
with an Intel Pentium 4 HT 630 processor (template), measured in clock cy-
cles per frame. The measurements were performed on the soccer video sequence
displayed in Figure 3.

The overall drop of frame processing times in the first 250 frames of the
sequence is due to the soccer player retreating into the background, which re-
duces the amount of image data to be considered per particle in the importance
stage. Figure 4 also shows that partitionings which compute the importance
stage in hardware, hwi and hwa, generally show the best performance. This
indicates that, in our prototype, the importance stage is the computationally
most expensive part of the application. However, the attainable speedup of any
hardware-implemented stage is considerably data dependent – a partitioning
that performs better than another during one part of the video can easily be
worse during another part. This is demonstrated by the hwr partitioning at
frame 200 or 275. Also, computing more than one stage in hardware does not
necessarily lead to better performance, as can be seen when comparing the hwi

and hwa partitionings between frames 100 and 250.
Overall, the experimental results serve to highlight the advantage of a frame-

work that allows for an easy HW/SW repartitioning. Using our framework, an
application designer can quickly explore the design space to determine the suit-
able partitioning. The framework even allows for changing the partitioning dur-
ing runtime driven by characteristics of the input data. Adaptive repartitioning
approaches are part of our ongoing research.

The resource requirements of the object tracking prototype as implemented
on both target FPGAs are given in slices in the top table of Figure 4. It can
be seen that the area used for the different partitionings is about the same
on both target FPGAs. The most resource-consuming partitioning, hwa, could
only be mapped to the Virtex-4 board. The bottom table of Figure 4 shows
FPGA resource utilization after synthesis for the three hardware threads of the
framework, divided into slices for the functions provided by the framework, the
user functions, and the ReconOS interface core.

Virtex2-Pro Virtex-4

sw 5305 5355
hws 9449 9577
hwi 8794 8955
hwr 8314 8430
hwa — 15958

component S I R

framework 1086 918 1227
user 1033 481(∗) -
OS 1353 1353 1353

total 3479 2873(∗) 2580

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300 350 400

clo
ck

 c
yc

le
s/

fra
m

e

frame

sw-partitioning
hw_s-partitioning
hw_i-partitioning
hw_r-partitioning
hw_a-partitioning

template

Fig. 4. Resource usage (slices) and performance (cycles
frame

) of different partitionings

5 Conclusion

In this work, we have presented a multithreaded framework for the implemen-
tation of SIR filters on hybrid CPU/FPGA systems, and demonstrated it using
a case study for visual object tracking which uses the repartitioning capabili-
ties of the framework to quickly explore the design space with regard to hard-
ware/software partitioning of the filter’s threads.

Our ongoing research focuses on two areas. First, we are working on refining
and optimizing the structure of the framework to allow for a more efficient
usage of hardware resources. Second, we are working on approaches to adapt the
partitioning during runtime. Here, we are trying to exploit the target FPGA’s
partial reconfiguration capabilities for better utilization of the logic resources.

Acknowledgement

This work was supported by the German Research Foundation under project
number PL471/2-1.

References

1. Athalye, A., Bolić, M., Hong, S., Djuric, P.M.: Generic Hardware Architectures for
Sampling and Resampling in Particle Filters. EURASIP Journal on Applied Signal
Processing (2005)

2. Lübbers, E., Platzner, M.: ReconOS: An RTOS supporting Hard- and Software
Threads. IEEE Int. Conf. on Field Programmable Logic and Applications (2007)

3. Saha, S., Bambha, N.K., Bhattacharyya, S.S.: A Parameterized Design Framework
for Hardware Implementation of Particle Filters. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (2008)

4. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice.
Springer (2001)

5. Hess, R.: Particle Filter Object Tracking (2006) http://web.engr.oregonstate.

edu/~hess.

