
Partly Parallel Overlapped Sum-Product Decoder
Architectures for Quasi-Cyclic LDPC Codes

Ning Chen, Yongmei Dai, and Zhiyuan Yan
Department of Electrical and Computer Engineering, Lehigh University, PA 18015, USA

E-mail: {nic6, yod304, yan}@lehigh.edu

Abstract— In this paper, we propose partly parallel architec-
tures based on optimal overlapped sum-product (OSP) decoding.
To ensure high throughput and hardware utilization efficiency,
partly parallel parity check and pipelined access to memory
are utilized. Impacts of different node update algorithms and
quantization schemes are studied. FPGA implementation of our
proposed architectures for a (1536, 768) (3, 6)-regular QC LDPC
code can achieve an estimated 61Mbps decoding throughput at
SNR= 4.5 dB. Finally, noncoherent OSP decoder, which does
not always satisfy the data dependency constraints, is proposed to
ensure that the maximum throughput gain 2 of the OSP decoding
is achieved for all QC LDPC codes.

Index Terms— low-density parity-check (LDPC) codes, quasi-
cyclic (QC) codes, turbo decoding, sum-product decoding, FPGA.

I. INTRODUCTION

Low-density parity-check (LDPC) codes have attracted
much attention due to their spectacular error performance and
inherent parallelism in their decoding algorithms. The latter
is significant since it is conducive to high throughput imple-
mentations. Quasi-cyclic (QC) LDPC codes [1], [2] not only
have relatively good error performance [1] but also are suitable
for hardware implementation due to their regular structure:
they can be encoded efficiently with shift registers [2] and
can be decoded with partly parallel decoder architectures that
require simpler address generation, less memory, and localized
memory access [3], [4]. Thus, QC LDPC codes are of great
interest and we focus on the decoding of QC LDPC codes in
this paper.

An LDPC code can be represented by its Tanner graph,
wherein the codeword bits and the parity check equations
are represented as variable and check nodes respectively. The
sum-product (SP) algorithm [5], sometimes referred to as the
message passing algorithm, is an efficient iterative decoding
algorithm for LDPC codes based on belief propagation. Each
iteration of the SP algorithm has two sequential updates: check
node updates (CNUs) and variable node updates (VNUs). Due
to the data dependency between the VNUs and CNUs, partly
parallel decoder architectures based on direct implementation
of the SP algorithm either require twice as much memory
or lead to low throughput and hardware utilization efficiency
(HUE). Overlapped sum-product (OSP) decoder has been
proposed for QC LDPC codes [4] to improve throughput and
HUE. Optimal OSP decoder is proposed in [6] for regular QC
LDPC codes, which can improve throughput and HUE by up
to 100%. In this paper, we further study the OSP decoding of
QC LDPC codes. The main contributions of this paper are:

• We utilize partly parallel parity checks (PPPCs) and
pipelined memory access to ensure high throughput and
HUE for our OSP decoder architectures;

• We evaluate the performances of the SP and the min-sum
algorithms as well as different quantization schemes for
our OSP decoder architectures;

• We implement our decoder architectures in FPGA and
compare the implementation results with those of previ-
ously proposed decoder architectures;

• Noncoherent OSP decoder of QC LDPC codes is pro-
posed, where data dependency is not always satisfied, so
as to improve throughput and HUE.

The rest of the paper is organized as follows. In Section II,
we briefly review QC LDPC codes and the SP algorithm
and its variants. Section III presents our partly parallel OSP
decoder architectures and evaluates the impacts of different
design choices. In Section IV, we compare the FPGA imple-
mentation results of our decoder architectures with those of
previously proposed decoder architectures. We also propose
noncoherent OSP decoding of QC LDPC codes in Section V.

II. BACKGROUND

A. Quasi-Cyclic LDPC Codes
A subclass of (j, k)-regular QC LDPC codes can be repre-

sented by a parity check matrix of the form

H =

Id0,0 Id0,1 · · · Id0,k−1

Id1,0 Id1,1 · · · Id1,k−1

...
...

. . .
...

Idj−1,0 Idj−1,1 · · · Idj−1,k−1

 ,
where Ids,t

denotes an m×m identity matrix with all the rows
cyclically shifted to the right by ds,t positions (0 ≤ s ≤ j−1,
0 ≤ t ≤ k− 1). The (j, k)-regular QC LDPC code defined by
H has block length k ·m and rate ≥ 1 − j/k. Various ways
to define the values of ds,t have been proposed [1], [3].

B. Sum-Product Decoding
Given the Tanner graph of an LDPC code, let N(c) and

M(v) denote the sets of the variable and check nodes that are
adjacent to the check node c and variable node v respectively.
In CNUs of the i-th iteration, the check-to-variable message
R

(i)
cv from each check node c to any variable node v ∈ N(c)

is updated as follows

R(i)
cv = −

n 6=v∏
n∈N(c)

sign(L(i−1)
cn)ψ

 n 6=v∑
n∈N(c)

ψ(L(i−1)
cn)

 , (1)

2

where L
(i)
cv denotes the variable-to-check message from the

variable node v to the check node c, and is updated in VNUs of
the i-th iteration by L(i)

cv = − 2rv

σ2 +
∑m6=c

m∈M(v)R
(i)
mv . Note that

ψ(x) = ln ex+1
ex−1 , σ stands for the estimated standard deviation

of the additive white Gaussian noise (AWGN) channel, and
2rv/σ2 is the intrinsic information.

A well-known variant of the SP algorithm is the min-sum
(MS) algorithm, where VNUs remain the same and the CNU
in (1) is approximated as

R(i)
cv = −

n 6=v∏
n∈N(c)

sign(L(i−1)
cn)

n 6=v

min
n∈N(c)

|L(i−1)
cn |. (2)

Obviously, the update in (2) involves less computation. It is
also shown that the MS algorithm can outperform the SP
algorithm when there are many short cycles [7].

Since ψ(x) function is typically implemented using look-
up tables, CNUs involve two look-up operations and are
more complex than VNUs, often leading to low throughput in
hardware implementation due to the unbalanced computation.
A variant of the SP algorithm (see, for example, [8]), referred
to as the balanced SP algorithm henceforth, redistributes the
computation between CNUs and VNUs. CNUs and VNUs of
the balanced SP algorithm are respectively given by

R(i)
cv = −

n 6=v∏
n∈N(c)

sign(L(i−1)
cn)

n 6=v∑
n∈N(c)

ψ(L(i−1)
cn) (3)

and L(i)
cv = − 2rv

σ2 +
∑m6=c

m∈M(v)

[
−sign(R(i)

mv)ψ
(
R

(i)
mv

)]
.

C. Overlapped Sum-Product

Overlapped sum-product (OSP) algorithm [4], where CNUs
and VNUs are partially overlapped, improves both throughput
and HUE while introducing no error performance loss. If dual-
port memory is used, CNUs and VNUs can work on the
same memory blocks so as to reduce the memory requirement.
By choosing the addressing schemes of CNUs and VNUs
properly, throughput of OSP decoder can be optimized [6].
For partly parallel decoder architectures, the optimal through-
put gain of overlapping is bounded by 2, and whether the
maximum throughput gain of 2 can be achieved depends on
the given code itself [6].

III. PARTLY PARALLEL OSP DECODER ARCHITECTURES

In this section, we propose partly parallel OSP decoder
architectures based on the optimal OSP decoding scheme [6],
and discuss various implementation issues.

A. Partly Parallel Architectures

Similar to the partly parallel architecture in [4], our partly
parallel OSP architectures include j check node function
units (CNFUs), k variable node function units (VNFUs),
j×k message memory banks, k intrinsic information memory
banks, parity check function units (PCFUs), and memory
banks for hard decisions. CNFUs, VNFUs, and PCFUs are
the hardware units that implement CNUs, VNUs, and parity

checks, respectively. The numbers of PCFUs and hard decision
memory banks depend on implementation, and are discussed
below. Fig. 1 illustrates our OSP architectures for (2, 3) QC
LDPC codes. Each message memory bank consists of m units,
indexed by row and column addresses [6]. The j CNFUs
update the j block rows simultaneously, while the k VNFUs
update the k block columns simultaneously. CNFU-s updates
the m rows in the s-th block row of H sequentially, one row
each step. VNFU-t updates the m columns of the t-th block
column of H sequentially, one column each step.

Fig. 1. OSP decoder architecture with PPPCs for (2,3) QC LDPC codes

B. PCFUs and Hard Decision Memory

The iterative decoding stops when either all parity checks
are satisfied or the maximum iteration number is reached. Dur-
ing VNUs of the i-th iteration in the SP and MS algorithms,
hard decision on the bit corresponding to the variable node v is
made based on the soft output1 L(i)

v = − 2rv

σ2 +
∑

m∈M(v)R
(i)
mv .

Fully parallel implementation of the jm parity checks achieves
high throughput and small latency, but it leads to very high
hardware cost (km bit registers to store the hard decisions and
jm PCFUs) and routing congestion due to the typically large
size of H. This is also unnecessary due to limited throughput
achieved by partly parallel decoders. It is natural to utilize
partly parallel parity checks with j PCFUs so as to match
throughput of CNFUs and VNFUs. This enables us not only
to reduce the number of PCFUs, but also to use memory
to store the hard decisions. Similar to the CNFUs, the j
PCFUs check the parity of the j block rows simultaneously
and PCFU-s check the parity check equations in the s-th block
row sequentially. Clearly, parity checks run concurrently2 with
CNUs because when VNUs generate the messages (L(i)

cv s) for
CNUs, they also generate soft outputs (L(i)

v s) and the hard
decisions needed by parity checks.

The amount of hard decision memory depends on imple-
mentation. A straightforward implementation needs k memory
banks, each of m bits, to store the hard decisions. Each
memory bank corresponds to one block column and the hard
decisions come from the VNFU for this block column. If each
parity check takes one clock cycle, since each memory bank
is accessed by all j PCFUs and this VNFU simultaneously, it

1A minor modification is necessary for the balanced SP algorithm.
2This possibility of concurrency was mentioned in [4].

3

is necessary to use (j + 1)-port memory, which is generally
unavailable in RAM compilers supplied by standard cell
library vendors. An alternative solution is to use j dual-port
memory banks, one for each PCFU, instead of one (j + 1)-
port memory bank. The VNFU writes the decisions into all j
banks, and each bank is accessed by only one PCFU.

In fact, CNUs and parity checks may be combined by merg-
ing the PCFU and CNFU as well as the k dual-port memory
banks for messages and k dual-port memory banks for hard
decisions corresponding to the same block row. The advantage
of this approach is that only one set of addressing mechanisms
is shared for both CNUs and parity checks. However, this
approach is not adopted in our decoder architectures since it
does not allow the improvements described in Section III-D.
Since PPPCs perform parity check concurrently with CNUs, it
is checking the decisions from VNUs of the previous iteration.
Thus the latency introduced by PPPCs is m−wcv , where wcv

is the intra-iteration waiting time in the optimal OSP [6].

C. Pipelined Access to Message Memory

In FPGA and RAM compilers for ASIC with deep sub-
micron technology, only synchronous static memory is avail-
able [9]. A drawback of typical synchronous memory is
that one or two waiting clock cycles are needed in every
read operation. We assume exactly one waiting clock cycle
is added for each read operation, but our approach can be
easily extended to synchronous memory that requires two
clock cycles. To fully exploit the bus of message memory and
achieve high throughput, we consider two different pipelined
access schemes: one is to let the functional units read message
for the next step during the waiting clock cycle, while the other
is to let VNFUs read during the waiting clock cycle of CNFUs.
They will be referred to as intra-unit and inter-unit pipelined
memory access schemes respectively.
Intra-Unit Pipelined Access: For both CNFUs and VNFUs,
two adjacent update steps can be pipelined as in Fig. 2. In
comparison to non-pipelined access, the throughput gain of the
intra-unit pipelined access is 6/4 = 1.5. Dual-port memory is
still needed in this case. However, to facilitate this pipelined
access, slightly more complicated addressing mechanisms than
those in [6] are needed for CNFUs and VNFUs.
Inter-Unit Pipelined Access: The scheduling for inter-unit
pipelined message access is depicted in Fig. 3. In the OSP
architecture proposed in [4], dual-port memory is required.
With inter-unit pipelined message access, they can be replaced
by single-port memory to reduce area and routing congestion
at the expense of throughput. However, CNFUs and VNFUs
need to share the read/write and address ports by simply
adding some multiplexers. The scheduling scheme for inter-
unit pipelined message access remains the same as in [6].
Throughput of the inter-unit pipelined access is one half of
that of the intra-unit pipelined access due to idle clock cycles.

D. Folded Operations

As in the pipelined memory access schemes, each step of
VNFUs and CNFUs may need multiple clock cycles. This
enables us to fold operations, leading to hardware savings. If

Fig. 2. Intra-unit pipelined message access scheme

Fig. 3. Inter-unit pipelined message access scheme

Fig. 4. The combined access with p = 2

each step of CNFUs and VNFUs takes p clock cycles, the
LUTs for ψ(x) function and q-bit adders (q is the wordlength
of messages) in CNFUs and VNFUs can be folded by a factor
of p. Each VNFU requires only dj/pe LUTs and dj/pe q-bit
adders while each CNFU requires dk/pe LUTs and dk/pe q-bit
adders. For both LUTs and adders, the total number required
is reduced from k × j + j × k to dk/pe × j + dj/pe × k by
folding. But at the same time, the folded operations require
more registers to store the intermediate results (one extra q-
bit register is needed to save one LUT) and involve more
complicated control. Folding also reduces the critical path.
Folding can be combined with the intra-unit pipelined access
as depicted in Fig. 4. This combined approach, referred to
as the combined access henceforth, not only keeps the high
throughput and memory access efficiency from the intra-unit
pipelined access, but also reduces hardware by folding.

PPPCs can also take advantage to share hard decisions
and PCFUs to save area. By accessing different addresses
of hard decision memory, one PCFU can perform p different
parity checks in parallel with each step of CNFUs(VNFUs). It
reduces the numbers of required PCFUs and dual-port memory
banks from j and jk to dj/pe and djk/pe respectively.

E. Message Quantization

The quantization scheme affects not only area and power
consumption of decoder architectures but also error perfor-
mance due to the finite precision effect. We assume the
messages and intrinsic information have the same wordlength,
and consider two types — uniform and nonuniform — of
quantization schemes.

For uniform quantization schemes, there is a tradeoff be-
tween dynamic range and quantization step. In [10], the 8-bit
uniform quantization scheme uses a quantization step 0.125 so
as to obtain a large dynamic range up to 16. This is achieved by
dividing eight quantization bits into one sign bit, four integer
bits, and three fraction bits. We can also divide them into one
sign bit, three integer bits, and four fraction bits. We refer
to these quantization schemes as 843bu and 834bu schemes
respectively henceforth.

Nonuniform quantization method [11] can provide a dif-
ferent tradeoff between dynamic range and quantization step.

4

In q-bit quantization, a message is denoted as vqvq−1 . . . v1,
where vq is the sign and vq−1 is used as a flag. If the magnitude
of the message value is less than 1, then vq−1 is set to 0 and
the decimal point lies between vq−1 and vq−2. When q = 8,
in the fraction range the quantization step is 1/64 = 0.0156,
smaller than those of the two uniform quantization schemes.
If the magnitude of the message is at least 1, vq−1 is set to 1
and the decimal point moves to a proper position for desired
dynamic range. In our implementation, the decimal point lies
between vq−4 and vq−5, and the message value of integer part
is interpreted as

vq−1 · v̄q−2 · v̄q−3 · v̄q−4 · 23 + vq−2 · 22 + vq−3 · 2 + vq−4,

where v̄i represents the bitwise complement of vi. When
q = 8, the dynamic range is roughly the same as that of
the uniform scheme with 3 integer bits and 4 fraction bits.
Though the quantization step is bigger when the message
value is greater than 1, it does not matter because ψ(x)
function will be less sensitive to the quantization step when
the message value is greater. We also experimented with an
nonuniform quantization scheme where the decimal point is
between vq−5 and vq−6 when the message value is greater than
1. For q = 8, we refer to these two schemes as 833bnu and
842bnu schemes respectively below. The main disadvantage
of nonuniform quantization scheme is that it requires more
complicated adders than the uniform scheme, leading to bigger
area and larger critical path delay as seen below in Section IV.

The BER performance and average iteration numbers of
the SP and MS algorithms using different 8-bit uniform
and nonuniform quantization schemes are compared with
simulation results of full floating point precision in Figs. 5
and 6 respectively. In our simulations, and the maximum
iteration number is set to 20. From Figs. 5 and 6, we observe
that between the two uniform quantization schemes, 834bu
scheme for the SP algorithm and 843bu scheme for the MS
algorithm have slightly better error performance in high SNR
range and hence they are adopted in our implementations
in Section IV. For nonuniform schemes, 833bnu has slightly
better performance than 842bnu, and hence is adopted in our
implementations in Section IV. In the simulation of the SP
algorithm, 834bu scheme has slightly better BER performance
than 833bnu and 842bnu schemes. The MS algorithm using
uniform quantization has better BER performance than the
others in high SNR range, including those with full floating
point precision (This was also observed in [12]). On the
convergence rate, all simulations are fairly close when SNR
is high. We remark that for four curves in Fig. 5, we do not
give bit error rates at 4.5dB. Although we are certain bit error
rates for these points are all below 10−7, not enough frames
are simulated to report reliable bit error rates.

IV. FPGA IMPLEMENTATION RESULTS

We implement five different partly parallel OSP decoder ar-
chitectures proposed above — one based on the MS algorithm
and four based on the balanced SP algorithm (using ψ(x))
— using a Xilinx Vertex II xc2v6000-5ff1152 FPGA, which
has 33792 slices and 144 block RAMs (each block RAM is

1 1.5 2 2.5 3 3.5 4 4.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR

B
E

R

ms−fp
ms−843bu
ms−834bu
sp−fp
sp−843bu
sp−834bu
sp−842bnu
sp−833bnu

Fig. 5. BER performance of a (1536, 768) (3, 6)-regular code

1 1.5 2 2.5 3 3.5 4 4.5
2

4

6

8

10

12

14

16

18

20

SNR

A
ve

ra
ge

 N
o.

 o
f i

te
ra

tio
ns

 to
 c

on
ve

rg
e

ms−fp
ms−843bu
ms−834bu
sp−fp
sp−843bu
sp−834bu
sp−842bnu
sp−833bnu

Fig. 6. Average iteration number of a (1536, 768) (3, 6)-regular code

18 Kbits). The synthesis and implementation are carried out
using Xilinx ISE Version 8.1. Our decoder architecture based
on the MS algorithm uses the intra-unit pipelined message
access, whereas our four decoder architectures based on the
balanced SP algorithm use the intra-unit pipelined access and
the combined access respectively. Among the four architec-
tures implementing ψ(x) function, two are using uniform
quantization scheme and the other two are using nonuniform
quantization scheme. Note that PPPCs are used in all five of
our decoder architectures. In Table I, we specify the numbers
of occupied slices, flip flops, 4-input LUTs, and block RAMs
as well as critical path delays, average iteration numbers, and
estimated decoding throughput of our decoder architectures.
The first two rows of Table I, reproduced from [10, Table I],
itemize implementation details of the two decoder architec-
tures in [10] using the same FPGA. These two architectures,
referred to as the MS and HEMS architectures respectively
henceforth, are based on the MS algorithm and the high-
efficiency min-sum algorithm proposed in [10] respectively.
The HEMS algorithm in [10], a variant of the MS algorithm,
uses extra VNUs so as to achieve better message passing,
leading to faster convergence rate. The estimated decoding
throughputs for all five decoder architectures are computed
based on the same assumptions made in [10]: The input

5

TABLE I
FPGA IMPLEMENTATION RESULTS OF A (1536, 768) (3, 6)-REGULAR CODE (THE FIRST TWO ROWS ARE REPRODUCED FROM [10, TABLE I])

Architecture Quantization Slice F/F 4-input LUT Block Critical Path Average Iteration Throughput
logic ROM RAM Delay (ns) Number at 4.5 dB at 4.5 dB (Mbps)

MS [10] 843bu 1144 1089 1705 0 102 9.894 3.4 23
HEMS [10] 843bu 1296 1358 1785 0 102 9.900 2.0 38

intra-unit OSP MS 843bu 1167 664 2066 0 36 10.893 3.0 61.20
intra-unit ψ(x) 834bu 2166 778 1885 2016 36 11.898 3.2 53.65

combinational ψ(x) 834bu 1919 1141 2227 1176 36 12.645 3.2 50.48
intra-unit ψ(x) 833bnu 2808 1240 2892 2016 36 12.426 3.3 51.04

combinational ψ(x) 833bnu 2914 1793 3379 1176 36 15.885 3.3 39.35

interface can get intrinsic information by groups of k nodes
from different block columns, and the clock frequency is the
inverse of the critical path delay. The decoding throughput of
our five decoder architectures is given by

Throughput =
k ×m× f

m+ 2×m× (l + 1)
, (4)

where f is the clock frequency and l is the average number
of iterations. The difference between Eq. (4) and [10, (8)] is
due to the different scheduling schemes.

Comparing all three MS-based decoder architectures item-
ized in the first three rows of Table I, it is clear that our
OSP decoder architecture requires less hardware and achieves
a higher throughput. Although our OSP decoder architecture
based on the MS algorithm requires slightly more combina-
tional logic than the two architectures in [10], the number of
flip-flops is reduced to 61% of the MS architecture and 49% of
the HEMS architecture, and the overall number of slices is less
than the HEMS architecture and roughly the same as the MS
architecture. Furthermore, our decoder architecture requires
65% fewer block RAMs than those in [10]. Memory efficiency
of our decoder architecture will enable implementation on
small FPGAs and simplify the placement and routing in ASIC
implementation. As shown in Table I, the critical path delay
of our decoder architecture based on the MS algorithm is
close to those of the MS and HEMS architectures. More than
double the throughput of the MS architecture, the throughput
of our OSP decoder architecture based on the MS algorithm is
61% higher than that of the HEMS architecture despite fewer
iterations required by the latter.

Comparisons among our five decoder architectures illustrate
the advantage of the MS algorithm over the SP algorithm
involving ψ(x). We note that the extra combinational logic
and ROMs required by our decoder architectures using ψ(x)
are for the implementation of LUTs and adders, which are
not needed by our decoder architecture based on the MS
algorithm. That is also why our decoder architecture based
on the MS algorithm has a shorter critical path delay. We
note that the significant difference in the number of flip-flops
is mostly due to duplicate registers to reduce fan-out and
routing congestion for shorter critical path delay. As shown
in Figure 5, the MS algorithm is also less vulnerable to the
effects of finite precision implementation, and has better BER
performance in high SNR range than the SP algorithm. Our
decoder architectures using the combined access require about
half as much ROM as their counterparts using the intra-unit

scheme, but they have longer critical path delays and use
more combinatorial logic and flip-flops. Also, our decoder
architectures with nonuniform quantization scheme are more
complex, require more area, and have longer critical path
delays than their counterparts with uniform schemes.

Fig. 7. Scheduling scheme of optimal OSP decoder

V. NONCOHERENT OSP DECODER

Depending on a quantity wcv , which is determined by the
parity check matrix of a QC LDPC code, the scheduling
scheme for the optimal OSP decoder falls into two scenarios
[6] shown in Figs. 7(a) and 7(b) respectively. Under the first
scenario where wcv > dm

2 e, after finishing CNUs (VNUs) of
any iteration, CNFUs (VNFUs) have to wait wcc = wvv =
2wcv −m cycles before they can start CNUs (VNUs) of the
next iteration. In this case, the HUE m

wcc+m is clearly smaller
than 1 and the throughput gain of the OSP decoder [6] is
less than 2. Under the second scenario that corresponds to
wcv ≤ dm

2 e, wcc = wvv = 0, after finishing CNUs (VNUs)
of any iteration CNFUs (VNFUs) can start CNUs (VNUs) of
the next iteration right away. Thus, the HUE is 100%, and the
maximum throughput gain of G ≈ 2 is indeed achieved.

Note that wcv and hence the throughput gain as well as
HUE of the optimal OSP decoder in [6] is determined by the
given QC LDPC code itself. For LDPC codes with wcv >
dm

2 e, we propose noncoherent OSP (NOSP) decoder so as
to achieve high throughput and HUE. The basic idea is to
utilize a scheduling scheme as in Fig. 7(a) with wcv = 1
for these codes. Since the starting addresses for CNFUs and
VNFUs need to be increased by wcv − 1 for each iteration
[6], setting the wcv to 1 implies that the starting addresses for

6

CNFUs and VNFUs are the same for each iteration, thereby
simplifying control mechanisms. This scheduling scheme is
called noncoherent OSP decoding since data dependencies
of node updates are no longer guaranteed. That is, some of
the variable-to-check messages used in (1) (or (2)) are from
the (i − 1)-th iteration and the rest are from the (i − 2)-th
iteration. Similarly, some of the check-to-variable messages
used to compute L(i)

cn are from the i-th iteration and the rest
are from the (i− 1)-th iteration.

1.5 2 2.5 3
0

10

20

30

40

50

60

SNR [dB]

A
ve

ra
ge

 It
er

at
io

n
N

um
be

r

i
osp

i
nosp

i’
osp

i’
nosp

Fig. 8. Average iteration number of a (5, 13)-regular QC LDPC code
(maximum iteration number is 50)

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1
10

−5

10
−4

10
−3

10
−2

10
−1

SNR [dB]

B
E

R

osp
nosp

Fig. 9. BER performance of a (5, 13)-regular QC LDPC code (maximum
iteration number is 50)

NOSP decoder eliminates the idle clock cycles of CNFUs
and VNFUs in the OSP decoder of these codes, which obvi-
ously improves HUE to 100%. By setting wcv to 1, NOSP
decoder also reduces the number of clock cycles used to
decode a block slightly. These two factors, however, do not
necessarily improve throughput gain since NOSP decoding
may need more iterations. To account for all the factors, we
define an identity called effective iteration number that is
inversely proportional to the decoding throughput3. Suppose it
takes the (coherent or noncoherent) OSP decoder i iterations

3The latency associated with parity checks as described in Section III-B is
not considered for simplicity.

to converge, then the effective iteration number i′ is defined
to be

i′ = i(1 +
wcc

m
) +

wcv

m
.

For a (5, 13)-regular QC LDPC code [1, Table I] with wcv =
72, we compare the average of both iteration numbers and
effective iteration numbers by coherent and noncoherent OSP
decoders (wcv = 1) in Fig. 8. For this code, NOSP decod-
ing improves decoding throughput under any SNR by about
10% (see, or example, i′osp = 6.32 and i′nosp = 5.76 at
SNR= 3.1 dB). Also, the BER performances of coherent and
noncoherent OSP decoders for this code, shown in Fig. 9, are
very close. Our simulation results with other codes suggest
that NOSP decoder improves throughput for all the codes with
wcv > m/2 with negligible difference in error performance.

The architectural difference between coherent and nonco-
herent OSP decoders is their scheduling schemes, including
starting addresses and address generation, which are easily
configurable in our architectures. Hence, our decoder architec-
tures described above for coherent OSP decoder can be readily
adapted to noncoherent OSP decoder. In fact, since the starting
addresses of noncoherent OSP decoder are the same for each
iteration, noncoherent OSP decoder has simpler control than
coherent OSP decoder, leading to reduced hardware cost.

VI. ACKNOWLEDGMENT

We thank the authors of [10] for providing details of the
(3, 6)-regular QC LDPC code used in [10].

REFERENCES

[1] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja and D. J. Costello,
“LDPC Block and Convolutional Codes Based on Circulant Matrices,”
IEEE Trans. Info. Theory, vol. 50, pp. 2966–2984, Dec. 2004.

[2] M. P. C. Fossorier, “Quasi-Cyclic Low-Density Parity-Check Codes
From Circulant Permutation Matrices,” IEEE Trans. Info. Theory,
vol. 50, pp. 1788–1793, Aug. 2004.

[3] M. M. Mansour and N. R. Shanbhag, “Low Power VLSI Decoder
Architecture for LDPC Codes,” in Proc. IEEE Int. Symp. on Low Power
Electronics and Design (ISLPED), pp. 284–289, Aug. 2002.

[4] Y. Chen and K. K. Parhi, “Overlapped Message Passing for Quasi-Cyclic
Low Density Parity Check Codes,” IEEE Trans. Circuits and Systems,
vol. 51, pp. 1106–1113, June 2004.

[5] F. R. Kschischang, B. J. Frey and H. A. Loeliger, “Factor Graphs and the
Sum-Product Algorithm,” IEEE Trans. Info. Theory, vol. 47, pp. 498–
519, Feb. 2001.

[6] Y. Dai and Z. Yan, “Coset-Based Quasi-Cyclic LDPC Codes for Optimal
Overlapped Message Passing Decoding,” in Proc. IEEE Workshop on
Signal Processing Systems (SiPS), Nov. 2005.

[7] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier and X.
Hu, “Reduced-Compelxity Decoding of LDPC Codes,” IEEE Trans.
Commun., vol. 53, pp. 1288–1299, Aug. 2005.

[8] Z. Wang, Y. Chen and K. K. Parhi, “Area Efficient Decoding of Qausi-
Cyclic Low Density Parity Check Codes,” in Proc. IEEE Int. Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. V49–V52,
May 2004.

[9] Xilinx, “Xilinx libraries guide,” 2005.
[10] K. Shimizu, T. Ishikawa, N. Togawa, T. Ikenaga and S. Goto, “Partially-

Parallel LDPC Decoder Based on High-Efficiency Message-Passing
Algorithm,” in Proc. Int. Conference on Computer Design (ICCD),
pp. 503–510, Oct. 2005.

[11] T. Zhang, Z. Wang and K. K. Parhi, “On Finite Precision Implementation
of Low Density Parity Check Codes,” in Proc. IEEE Int. Symp. on
Circuits and Systems (ISCAS), vol. 4, pp. 202–205, 2001.

[12] J. Zhao, F. Zarkeshvari and A. H. Banihashemi, “On Implementation of
Min-Sum Algorithm and Its Modifications for Decoding Low-Density
Parity-Check (LDPC) Codes,” IEEE Trans. Commun., vol. 53, pp. 549–
554, April 2005.

