
I Know Where You Are and What You Are Sharing:

Exploiting P2P Communications to Invade Users’ Privacy

Stevens Le Blond∗ Chao Zhang† Arnaud Legout‡ Keith Ross† Walid Dabbous‡
∗ MPI-SWS, Germany † NYU-Poly, USA ‡ INRIA, France

ABSTRACT
In this paper, we show how to exploit real-time commu-
nication applications to determine the IP address of a
targeted user. We focus our study on Skype, although
other real-time communication applications may have
similar privacy issues. We first design a scheme that calls
an identified-targeted user inconspicuously to find his IP
address, which can be done even if he is behind a NAT.
By calling the user periodically, we can then observe the
mobility of the user. We show how to scale the scheme
to observe the mobility patterns of tens of thousands of
users. We also consider the linkability threat, in which the
identified user is linked to his Internet usage. We illustrate
this threat by combining Skype and BitTorrent to show that
it is possible to determine the filesharing usage of identified
users. We devise a scheme based on the identification field
of the IP datagrams to verify with high accuracy whether
the identified user is participating in specific torrents. We
conclude that any Internet user can leverage Skype, and
potentially other real-time communication systems, to
observe the mobility and filesharing usage of tens of millions
of identified users.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols

General Terms
Design, Measurement, Security

Keywords
File sharing, Mobility, Privacy, Skype

∗The first author contributed to this work while a Ph.D.
student at INRIA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’11, November 2–4, 2011, Berlin, Germany.
Copyright 2011 ACM 978-1-4503-1013-0/11/11 ...$10.00.

App # Users Dir P2P
Skype 560M ✓ ✓

MSN Live 550M ✗ ✓
QQ 500M ✓ ✓

Google Talk 150M ✗ ✓

Table 1: Number of users claimed by Skype [11],
MSN Live [9], QQ [10], and Google Talk [8] and for
each of these systems, whether it has a directory
service and employs P2P communications.

1. INTRODUCTION
The cellular service providers are capable of tracking and

logging our whereabouts as long as our cell phones are pow-
ered on. Because the web sites we visit see our source IP
addresses and cookies, the web sites we frequently visit –
such as Google [5] and Facebook [4] – can also track our
whereabouts to some extent. Although tracking our where-
abouts can be considered a major infringement on our pri-
vacy, most people are not terribly concerned, largely because
they trust that the cellular and major Internet application
providers will not disclose this information. Moreover, these
large companies have privacy policies, in which they assure
their users that they will not make location history, and
other personal information, publicly available.

In this paper, we are not concerned about whether large
brand-name companies can track our mobility, but instead
about whether smaller less-trustworthy entities can leverage
the Internet to periodically track our whereabouts. Is it possi-
ble, for example, for an ordinary user with modest financial
resources, operating from his or her home, to periodically
determine the IP address of a targeted and identified Inter-
net user and to link it to this user’s Internet activities (e.g.,
file sharing)? We will show that the answer to this question
is yes!

Real-time communication (e.g., VoIP and Video-over-IP)
is enormously popular in the Internet today. As shown in
Table 1, the applications Skype, QQ, MSN Live, and Google
Talk together have more than 1.6 billion registered users.

Real-time communication in the Internet is naturally done
peer-to-peer (P2P), i.e., datagrams flow directly between the
two conversing users. The P2P nature of such a service,
however, exposes the IP addresses of all the participants in a
conversation to each other. Specifically, if Alice knows Bob’s
VoIP ID, she can establish a call with Bob and obtain his
current IP address by simply sniffing the datagrams arriving
to her computer. She can also use geo-localization services to

45

map Bob’s IP address to a location and ISP. If Bob is mobile,
she can call him periodically to observe his mobility over,
say, a week or month. Furthermore, once she knows Bob’s IP
address, she can crawl P2P file-sharing systems to see if that
IP address is uploading/downloading any files. Thus VoIP
can potentially be used to collect a targeted user’s location.
And VoIP can potentially be combined with P2P file sharing
to determine what a user is uploading/downloading. This
would clearly be a serious infringement on privacy.

However, for such a scheme to be effective, there are sev-
eral technical challenges:

• For a specific targeted individual – such as Bob Smith,
28 years old, living in Kaiserslautern Germany – can
Alice determine with certainty his VoIP ID?

• Can Alice determine which packets come from Bob
(and thereby obtain his IP address)? Indeed, during
call setup, Alice may receive packets from many other
peers. In addition, can Alice call Bob inconspicuously,
so that Alice can periodically call Bob and get his IP
address without Bob knowing it? Finally, can Alice
obtain Bob’s address, even when Bob configures his
VoIP client to block calls from Alice?

• If Bob’s IP address, found with VoIP, is the same as an
IP address found in a P2P file-sharing system, then we
cannot conclude with certainty that Bob is download-
ing the corresponding file, since Bob may be behind a
NAT (with the matching IP address being the public
IP address of the NAT). Thus, is it possible to verify
that Bob is indeed uploading/downloading the files,
given that NATs are widely deployed in the Internet?

In this paper, using Skype, we develop a measurement
scheme to meet all the above challenges. (This may be pos-
sible with other VoIP systems as well, which we leave for
future work.) Our main contributions are the following:

• We develop a scheme to find a targeted person’s Skype
ID and to inconspicuously call this person to find his
IP address, even if he is behind a NAT. By carefully
studying Skype packet patterns for a Skype caller, we
are able to distinguish packets received from the Skype
callee from packets received from many other peers.
Having identified these packets, we extract the callee’s
IP address from the headers of the packets. Further-
more, through experimentation, we determine how to
obtain the IP address of the callee fully inconspicu-
ously, that is, without ringing or notifying the user.
Finally, we show that Skype privacy settings fail to
protect against our scheme.

• We show our scheme can be used periodically to ob-
serve the mobility of Skype users. By scaling our
scheme, we demonstrate that Skype does not imple-
ment counter measures to hinder such schemes. Al-
though there are several challenges to measure the mo-
bility of a large number of users, we show that it can
be done efficiently and effectively.

• We show that the scheme introduces a linkability threat
where the identity of a person can be associated to his
Internet usage. We illustrate this threat by combining
Skype and BitTorrent to show that it is possible to de-
termine the file-sharing usage of identified users. One

of the challenges here is that a BitTorrent user is often
NATed, so that he may share his IP address with many
other users. When a common IP address is discovered
in both Skype and BitTorrent, we immediately launch
a verification procedure in which we simultaneously
call the corresponding user and perform a BitTorrent
handshake to the IP address, port and infohash (which
identifies the file being shared). We then use the iden-
tification field of the IP datagrams to verify with high
accuracy whether an identified user is participating in
specific torrents. To the best of our knowledge, we are
the first ones to show that such a scheme can be used
in the wild.

In addition to the technical contributions of this paper,
another contribution is that we are alerting Internet users
(and the Skype company as discussed in the next section)
of a major privacy vulnerability, whereby targeted users can
have their mobility and Internet usage tracked. As of May
2011 (more than six months after having notified the Skype
company), all the schemes presented in this paper are still
valid. We provide some relatively simple solutions so that
future real-time communication systems can be made less
vulnerable to these attacks.

One solution that would go a long way is to design the
VoIP system so that the callee’s IP address is not revealed
until the user accepts the call. With this property, Alice
would not be able to inconspicuously call Bob. Moreover, if
Alice is a stranger (that is, not on Bob’s contact list), and
Bob configures his client to not accept calls from strangers,
then this design would prevent any stranger from tracking
him, conspicuously or otherwise. However, even with this
solution in place, any friend of Bob, say Susan, can still call
him conspicuously and obtain his IP address. Susan could be
Bob’s spouse, parent, employer, or employee, for example.
It would be hard for Susan to periodically track Bob this
way, but Susan could still (i) get Bob’s current location, and
(ii) check to see if Bob is downloading content from a P2P
file-sharing system. Preventing these attacks would require
more fundamental changes in the VoIP system (specifically,
using relays by default) or more fundamental changes in the
underlying Internet protocols.

This paper is organized as follows. We discuss the legal
and ethical considerations of this paper in Section 2. In
Section 3, we describe our scheme to determine the current
IP address of a person using Skype. We then show that
this scheme can be used periodically to observe the mobility
and file-sharing usage of identified users in Section 4 and 5.
Finally, we discuss some simple defenses in Section 6, the
related work in Section 7, and we conclude in Section 8.

2. LEGAL AND ETHICAL CONSIDERA-
TIONS

In this measurement study, all testing involving identified
users has been performed on a small sample of volunteers
who gave us their informed consent to make measurements
and publish results. Unfortunately, the informed consent
process for privacy, as for fraud [25], may significantly bias
user behavior. For example, informed users may stop us-
ing Skype or BitTorrent. For this reason, we also needed
to consider a larger sample of (anonymized) users in or-
der to accurately assess the amount of personal information
that is revealed by a normal usage, e.g., the mobility and

46

file-sharing usage of Skype users. For the sake of privacy,
we only stored and processed anonymized mobility and file-
sharing information.

Based on these arguments, the INRIA IRB approved this
study. In the following, we describe our motivation to run
privacy measurements, the tests that we ran with volunteers,
and the remaining measurements.

Motivation for Running Privacy Measurements.
Internet users publish a lot of personal information that

can be exploited in non-trivial ways to invade their privacy.
Indeed, recent research demonstrates that personal informa-
tion can be correlated in ways that would have been hard
to anticipate [32]. One goal of this study is to show that
any Internet user can leverage popular real-time commu-
nication applications to observe the mobility patterns and
file-sharing usage of tens of millions of Internet users. It is
important to give public visibility to these privacy issues, as
they constitute serious invasions into users’ privacy, and can
potentially be used for blackmail and phishing attacks.

Volunteers.
In this study, we have relied on two sets of volunteers for

which we have obtained informed consent. The first set com-
prises 14 research faculty in the CSE department at NYU-
Poly for which we have attempted to find the Skype IDs.

The second set comprises 20 people spread throughout the
world (4 in Asia, 2 in Australia, 7 in Europe, and 7 in USA)
in cable and DSL ISPs, with 10 users directly connectable
and 10 users behind NAT. We deliberately chose users lo-
cated in different continents and with different Internet con-
nectivity to observe a large diversity of user and client be-
haviors. We have relied on the second set of volunteers to (i)
determine Skype packet patterns between caller and callee,
(ii) develop and test inconspicuous calling, and (iii) evaluate
the accuracy of mobility measurements. After manual test-
ing, we called each volunteer 100 times and systematically
observed one of the three packet patterns described in Sec-
tion 3 between caller and callee. We also observed that our
inconspicuous calling procedure never notified them about
the calls in any way.

Anonymized users.
We relied on two samples of users for which we did not

store their personal information in this study. We first used
a sample of 10,000 random users to quantify their mobility.
We then used a second sample of 100,000 random users that
we used to illustrate a linkability threat, where the identity
of a person can be associated to his Internet usage (e.g., file
sharing).

We always collected the IP addresses of the anonymized
users using inconspicuous calls, which we validated on the
volunteers. Therefore, no human contact was ever made
with any of the anonymized users. Moreover, we pro-
cessed and stored only anonymized information, e.g., we
anonymized all localization information, downloaded con-
tent, and we did not store the IP addresses. Details of all
anonymized information are given in Section 4 and 5.

Other considerations.
In order to conform to the responsible disclosure pro-

cess, we informed the Skype company of our conclusions in

November 2010. In addition, we did not perform any reverse
engineering on Skype binaries. Finally, our measurements
generated at most 2.7 calls per second and a few kilobytes
of bandwidth per second, so the load that we created on the
Skype infrastructure was marginal.

3. MAPPING A PERSON TO AN IP AD-
DRESS

In the following, we first describe how to find a targeted
person’s Skype ID, that is a unique user ID of a person in
Skype. Then, we present our scheme to find, based on a
Skype ID, the IP address used by this person. We explain
how to make this scheme inconspicuous for the user, and
we show that the privacy settings in Skype fail to protect
against our scheme.

3.1 Finding a Person’s ID
When creating a Skype account, a user needs to provide

an e-mail address and Skype ID. The user is also invited to
provide personal information, such as birth name, location,
gender, age, and/or website. This information is recorded
in the Skype directory. Therefore, in attempting to define
a person’s Skype ID, the obvious first step is to input into
the directory’s search service the person’s e-mail address or
birth name.

When searching for a birth name, Skype will often return
many results. Along with these results, there is often side in-
formation, such as city and country of residence. As we will
discuss below, if there is still ambiguity about which Skype
ID corresponds to the targeted person, we can, using the
methodology described in the following section, inconspicu-
ously call each of the candidate Skype IDs, obtain a current
or recent IP address for each of those IDs, and from the
IP addresses determine current city and ISP (which might
be a University or an employer ISP). Such a procedure of-
ten determines a person’s Skype ID without ambiguity. We
briefly remark that if this search was instead based on a
service that doesn’t provide a directory (such as MSN Live
or Google Talk), one may still be able to determine the ID
by scraping homepages, scraping pages from various social
networks, or simply by guessing.

To illustrate that one can easily find the Skype IDs for
a set of identified individuals, we attempt to find the IDs
of the 14 research faculty in the CSE department at NYU-
Poly, all of whom gave us their informed consent. By search-
ing the corresponding 14 professional e-mail addresses, we
found 2 Skype IDs and by searching the corresponding 14
birth names, we found 7 additional IDs with a single match.
Among the 5 people for which we did not find a conclu-
sive Skype ID, there was multiple matching IDs for 4 and
no matching Skype ID only for 1. For the professors with
multiple candidate IDs, it would have been possible to in-
conspicuously call each of the candidate IDs (as described
below), geo-localize each candidate, and most likely pinpoint
the correct ID. In summary, among 14 NYU-Poly faculty
members, we found the Skype IDs for nine of them, and we
could have very possibly determined the IDs for four more.

3.2 Finding a Person’s IP Address
We have seen how to find the Skype ID of a targeted

person. We now discuss how, given the person’s Skype ID,

47

we can find the IP address of the machine on which that
person is currently active. (If the machine is behind a NAT,
then we instead obtain the public IP address of the NAT.)
The basic idea is to call the Skype ID, receive IP datagrams
from the machine on which that ID is currently logged in,
and sniff the packets to get the machine’s IP address from
the IP header. We describe in the following when this IP
address is available.

When the caller calls a Skype user who is currently off-
line, the Skype application will still provide to the caller
the user’s most recent IP address, as long as the user was
running Skype in the past 72 hours. For this reason, we are
able to retrieve the IP address of a Skype user that used
Skype within the past 72 hours.

By examining traffic patterns to and from a Skype client
when our client makes a call to a Skype ID that has been
active in the past 72 hours, we have observed that Skype
behaves as follows. At the time of the call, the user may be
in one of three possible states (i) the user is online and not
behind a NAT; (ii) the user is online and behind a NAT;
(iii) the user is offline, but was online (with or without a
NAT) within the past 72 hours. (There is also the pos-
sibility that the user is logged in at more than one address
simultaneously. We will discuss that case subsequently.) For
case (i), when the user (callee) is online and not behind a
NAT, the caller will initiate communication with the callee,
sending packets directly to the callee (with the callee’s IP
address in the destination address field of the datagrams).
For case (ii), when the callee is online but behind a NAT,
the callee will be instructed (via the callee’s supernode) to
initiate communication to the caller. In this case, the callee’s
public IP address will be in the source address field of the
incoming datagrams. For case (iii), when the targeted user
is offline (but was online in the past 72 hours), the caller’s
Skype client will still attempt to call the targeted user, using
the IP address that was most recently observed by Skype in
the past 72 hours. (If the targeted user is behind a NAT,
the caller will try to initiate a call, using the public IP ad-
dress of the NATed user.) In this last case, the callee’s most
recent (public) IP address can be determined from the IP
datagrams. Thus, the callee’s IP address (current or most
recent) can be extracted from the source and destination
fields of IP datagrams.

However, there is a major complication here. In the pro-
cess of establishing a call, the call triggers communication
with tens of IP addresses (supernodes and relays). As su-
pernodes and relays are hosted by Skype users, their IP ad-
dresses belong to a multitude of address ranges that we can-
not just filter out. So it is complex to determine which Skype
datagrams are for direct communication with the callee. As
Skype uses a proprietary protocol and encrypts the pay-
loads of its messages, we cannot perform direct packet in-
spection to find packets originating from the callee. To solve
this problem, we designed a scheme that relies solely on the
packet patterns between the caller and the various Skype
nodes it is communicating with.

To understand Skype’s traffic, we placed calls to the sec-
ond set of volunteers for which we knew the IP addresses
of (see Section 2). We observed three identifiable patterns
of communication that take place between the caller and
callee during the call establishment phase. By exploiting
these patterns, we were able to filter out the noise, such as

TCP:SYN

Caller Callee

t1
t1+2
t1+3

t2
t2+2

t2+4

TCP:SYNTCP:SYN
UDP:59B/58BUDP:59B/58B
UDP:59B/58B

UDP:28B

Caller Callee

UDP:28B

UDP:28B

UDP:3B

UDP:3B

(ii)

TCP:SYN

Caller

t1

t1+2
t1+3

t2

t2+2

t2+4

UDP:59B/58BTCP:SYNTCP:SYNUDP:59B/58B
UDP:59B/58B

(i)

UDP:3B
t1+10

Callee

X

X
X

X

X
X

(iii)

Figure 1: Communication pattern: (i) callee is on-
line and public; (ii) callee online and behind a NAT;
(iii) callee is offline. Crosses correspond to SYN
packets that we dropped in order to call inconspic-
uously.

communication with supernodes. Fig. 1 shows these three
patterns.

We observe the first pattern when the callee is online and
public (case (i)). In that case, the caller will try to initi-
ate the TCP connection by sending a SYN packet. We will
see in Section 3.3, that we need to drop SYN packets to
make inconspicuous calls. When the TCP timeout occurs,
the caller retransmits the SYN, making two tries after the
initial attempt before giving up. The first timeout interval
is 3 seconds and the second is 1 second. In addition to the
TCP packets, there are UDP packets between the caller and
the callee. We always observe three 59 byte or 58 byte pack-
ets from caller to callee, and the intervals between them are
2 seconds and 4 seconds. Thus, between caller and callee
there is a specific traffic pattern, which is shown in Fig. 1
(i). There is also communication between caller and supern-
odes; however, the communication with non-callees does not
exhibit the pattern in Fig. 1 (i). In summary, by identifying
the IP address that has packets with the pattern in Fig. 1
(i), we identify the IP address of the callee. We remark that
the TCP packets and UDP packets don’t always appear se-
quentially. Most of the time, they are mixed.

The second pattern is observed when the callee is online
but behind a NAT (case (ii)), that is, the caller cannot ini-
tiate communication with the callee. In that case, we have
observed that the callee will send a 28 byte UDP packet
to the caller. The caller replies with the same size UDP
packet. Next, the caller and callee will exchange UDP pack-
ets of varying sizes. After about 10 seconds, the callee sends
3 byte UDP packets to the caller. We do not observe these 3
byte UDP packets from any other source besides the callee.
The pattern is shown in Fig. 1 (ii).

The last pattern occurs when the callee is offline but has
been online in the past 72 hours. In that case, the caller
still attempts to call the user at its last-seen IP address.
The pattern is shown in Fig. 1 (iii). Note this pattern has
the same structure as that of case (i) except now there is no
response from the callee, since it is offline.

To make things even more complicated, a Skype ID can
be simultaneously online at more than one machine. In this
case, for each online machine either the pattern in Fig. 1 (i)
or (ii) will occur once for each online machine. We developed
a script that searches for the various patterns and identifies
the callee’s IP address(es).

48

3.3 Inconspicuous calling
In the following, we define the tracking client as the Skype

client we use to exchange packets with a callee. The tracking
client is an actual Skype client controlled by a script via
the Skype API. Importantly, each of the tracking client is
not behind a NAT and, therefore, has a public IP address.
Therefore, communication between each tracking client and
any user (NATed or not) will always be P2P rather than
relayed.

Whenever a Skype call comes in, it is accompanied with a
ring and a pop-up window for notification. The callee then
chooses to accept, reject, or ignore the call. (We use the
terminology “user” and “callee” interchangeably, depending
on context.) Since the tracking client actually makes calls to
callees, if not designed carefully, it will cause ringing and pop
ups on the callees’ machines. Not only would this disturb
the callee, but it would expose the attacker. We therefore
need to design our scheme so the tracking client exchanges
packets directly with the callee – without notifying the callee
of the call.

In our testing, we have observed that during call estab-
lishment, both TCP and UDP packets are sent between the
tracking client and the callee. We have found that if we
prevent TCP connections from being established with the
callee, the callee will not be notified about the call. Thus, a
possible simple solution is to have the tracking client drop
all TCP SYN packets sent to and from the callee. How-
ever, at the time when we make the call, we have no clue
about the callee’s IP address, and we cannot tell whether an
observed TCP SYN is going to (or coming from) a Skype in-
frastructure node, a supernode, a relay node, or the targeted
callee.

To solve this problem, during each call, we prevent the
establishment of any new TCP connection by dropping all
outgoing and incoming SYN packets (to all IP addresses).
Note this procedure does not terminate the tracking client’s
TCP connections that were in progress before making the
call (for example, an ongoing connection to a supernode).
With this simple mechanism, the callee is never notified,
even if the callee is behind a NAT. To check that no pop ups
appear, we tested this scheme on the volunteers as described
in Section 2.

3.4 Skype Privacy Settings
Skype has two privacy settings to block calls from spe-

cific people. The first setting, allows call from people in my
Contact list only, is a white list. The second setting called
blocked people is a black list blocking all people whose Skype
ID is in this list.

We tested the impact of both settings on our scheme to
inconspicuously get the IP address of a callee. For the first
setting, the caller was not in the contact list of the callee. For
the second setting, the callee explicitly blocked the Skype ID
of the caller. In both cases, we were able to inconspicuously
retrieve the IP address of the callee. In summary, we ob-
served that Skype privacy settings fail to protect against our
scheme.

4. MOBILITY OF SKYPE USERS
In the previous section, we presented a scheme to map a

person’s name to an IP address. We now investigate whether
our scheme can be used to periodically observe the mobility
patterns of large sets of Internet users.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Offline

University,NY

Brooklyn,NY

Manhattan,NY

Chicago,IL

France
Mobility of a Volunteer

Time (days)

Figure 2: Example of mobility of a volunteer.

4.1 Mobility of a Volunteer

4.1.1 Geo-Localize Skype Users
In the following, we use MaxMind [6] to geo-localize the IP

addresses that are obtained from the tracking client, hence
providing us with the location of users. MaxMind is a service
that, given an IP address, provides a city, country, and AS.
To determine city and country, it first aggregates known
IP locations from websites that ask their users to provide
their geographic location. Then, it uses various heuristics
to interpolate the location of other IP addresses. MaxMind
claims that it achieves 99.8% accuracy at the country level
and 83% on a city level for the US within a radius of 25
miles.

Apart from our set of volunteers, for the sake of user pri-
vacy, we anonymized (using a salted hash) all location infor-
mation. Therefore, we can tell when users change locations
at the city, AS or country scale, but not where they actually
are.

4.1.2 Example
To give a concrete idea of the kind of mobility that can be

observed, we plot in Fig. 2 the mobility of a user in our sec-
ond set of volunteers. (This volunteer has seen the paper and
has given us his consent for all the information about him
disclosed.) This person makes publicly available his birth
name, gender, date of birth, language, and city of residence
in Skype. By searching his birth name and city on Facebook
and LinkedIn, we are able to determine his profession and
employer.

We now briefly describe the mobility of this user. He con-
firmed to us that during our measurement period he was
first visiting a university in New York; he then took a va-
cation in Chicago; then returned to university and lodged
in Brooklyn; and finally returned to his home in France.
Fig. 2 gives an accurate description of the real mobility of
this user during the measurement period. The Manhattan
location corresponds to an Internet cafe (confirmed by the
user).

We remark that if we had followed the mobility of the
Facebook friends of this user as well, we likely would have

49

determined who he was visiting and when. In conclusion,
mobility combined with information from social networks
can provide a vivid picture of the daily activities of a tar-
geted user. It is, in our opinion, a major privacy concern for
users of real-time communication systems.

Whereas this volunteer has an active mobility pattern well
suited for our illustrative purpose, a legitimate question is
whether it is possible to observe mobility for any Skype user.
We answer this question in the following.

4.2 Mobility of the Anonymized Users
We now describe how to scale our scheme to measure

the availability and mobility of a representative sample of
anonymized Skype users. To confirm the frequent mobility
of Skype users, these users indeed need to be often running
Skype and from several locations. In addition, we are also
interested in evaluating the cost of scaling our scheme and
in examining whether Skype employs counter measures to
hinder it.

For the sake of privacy, we anonymized (as described in
section 4.1.1) all location information, and we do not store
IP addresses. Therefore, we can only report aggregated
statistics, and not detailed user location information.

4.2.1 Obtaining Millions of Skype IDs
In the following, we show that one can easily retrieve a

large number of Skype IDs along with the personal informa-
tion associated with these IDs. To this end, we use the Skype
API to collect the IDs. For each ID, we check whether the
birth name and other personal information is available. We
do not store this information, but instead just note whether
it is available in the Skype user’s profile.

The Skype public API provides a mechanism for third
party applications to control a Skype client. This API op-
erates as follows. After registering with the Skype client,
the application can send to the client plain text commands
such as search and call. The Skype client then returns plain
text messages to the application. In particular, the Skype
API has a search users command that takes a search string
as a parameter and returns a list of users whose ID, birth
name, or e-mail address matches the string. If the search
string contains @, the search is performed by e-mail address
and has to be an exact match. If the search string is a valid
Skype ID, the search is performed on the birth name and
ID. Otherwise, the search is made on the birth name only.
In addition to the Skype ID of a user, this command will re-
turn any other personal information that the user provided
at registration, such as birth name, age, gender, homepage,
country, language, and other identifying information.

To build our search strings, we use a set of 580K birth
names that we collected on Facebook using a similar
technique as the one described by Tang et al. [29]. This
set is made up of 66K first names and 156K last names.
We then combine the birth names, first names, and last
names, to obtain 802K unique search strings. For each of
these search strings, we send the search users command,
which typically returns a long list of users, some of whom
didn’t specify birth names. We then aggregated these
lists together and obtained 13M Skype IDs together with
which identifying information was available in the profile.
For these 13M Skype IDs, 88% provide their birth names
and 82% provide either age, gender, homepage, country or
language identifying information (we only store a binary

information indicating whether a user has provided a given
personal information). We note that even though we used
Facebook to build our search strings, we could use any
database of first and last names.

4.2.2 Parallel Calling
From the Skype IDs obtained in the previous section, we

select 100,000 Skype IDs at random. From these 100,000
IDs, we then determine (using the techniques discussed in
Section 3) that 10,000 Skype IDs (10%) have been active in
the past 72 hours. Finally, we call these 10,000 Skype IDs on
an hourly basis. From this result based on a random sam-
ple of 100,000 Skype users, we can extrapolate that we can
retrieve the IP address of approximately 10% of all Skype
users at any time, which represents 56 million of users at
any moment in time. We now describe the methodology to
call the 10,000 Skype IDs.

We deploy several tracking clients in parallel, each of
which calls a subset of the 10,000 Skype IDs. The track-
ing client calls sequentially all the Skype IDs in its subset,
and then repeats the procedure every hour. We determine
the IP address of each called Skype ID using the inconspic-
uous call methodology described in Section 3.3. Based on
this IP address we compute the anonymized location of the
user as described in section 4.1.1.

Scaling our scheme is challenging. To be able to call 10,000
users on an hourly basis, we need to deploy many tracking
clients in parallel, with each one sequentially making one
call after another. In order to keep the number of parallel
tracking clients to a reasonable level, the time s between two
successive calls for a given client should be short.

Indeed, there is an important tradeoff in considering an
appropriate value for s. Consider that the tracking client
calls one user, waits s seconds, terminates the call, and then
repeats the process with another user. If s is large, our
tracking client will call users at a relatively low rate. If s
is too small, we may terminate the call before the packet
pattern is initiated, in which case we may incorrectly assign
the IP address of the subsequent Skype ID to the current
Skype ID. Thus, special care must be taken to associate the
IP addresses with the correct Skype IDs.

The simplest approach is, before making the subsequent
call, to wait long enough so that the complete packet pattern
elapses. Normally, this takes about 15 seconds from when
the first packet is observed until the whole packet pattern
occurs. But if we wait 15 seconds between each call, only 4
Skype IDs per minute can be probed.

To increase the calling rate, we performed further tests
and observed that (a) once a packet pattern starts, it com-
pletes even if the call is terminated before completion; (b) all
packet patterns begin within three seconds after making the
call. Based on these observations, by waiting three seconds
before calling a new Skype ID, we always see the pattern be-
ginning before the end of the three second interval, and also
see the pattern complete (extending beyond the 3 seconds).
To verify claim (a), we randomly pick 500 users from our
Skype ID pool, and call them using two different values of
s: 3 seconds and 20 seconds. After comparing the mappings
generated from the two approaches, we observe that they are
identical for all 500 random Skype users. This implies that
the interval of 3 seconds is sufficiently large; we therefore
use s = 3 seconds in our measurements.

50

To validate the accuracy of our scalable calling scheme,
every 100 calls, we call a random Skype ID among our
second set of volunteers (see Section 2). We stress that
these volunteers were not in the contact list of the tracking
clients, so the patterns generated when calling them are
identical to those of the other 10,000 users we are calling.
On the 1,368 calls that we made when volunteers were
online, we observed only 4 false positives (0.3%) due to
patterns that have been reordered during parallel calling.
By assigning each IP address to the only Skype user that is
the most often designated by the packet patterns, we were
able to remove all false positives.

4.2.3 Cost of the Scaling
To call 10,000 users on a hourly basis, we run our tracking

clients on 30 physical machines, each one with a different IP
address. Each physical machine runs one Skype client and
can call 340 IDs per hour. We estimate the costs of running
this measurement on a cloud computing platform such as
EC2 [1] to be approximately $500 per week.

Preliminary tests suggest that it would have been possi-
ble to increase the number of called users by one order of
magnitude with virtualization. Indeed, the main issue we
faced is that running several tracking clients on a machine
makes it harder to isolate packets from each client. One
solution we tested but did not use in our scheme, is to run
several tracking client per physical machine, each client in a
different virtual machine. Because the goal in this paper is
to demonstrate the feasibility of our scheme and not to fully
optimize it, running a single tracking client per machine is
sufficient.

4.2.4 Measurement Results
Whether our scalable calling scheme actually captures the

mobility of a significant fraction of Skype users depends on
three questions that we address in the following.

1) Is it possible to periodically call a large number of Skype
users? In Fig. 3 (left), we see that at any given time, we
are calling between 2, 000 and 3, 000 online users among the
10,000 users. The diurnal behavior is due to the heteroge-
neous distribution of Skype users worldwide. A large frac-
tion of Skype users are from the US and Western Europe.
So during the daytime in the US and Western Europe, there
are more Skype users online than during night in these ge-
ographical areas. We also see in Fig. 3 (left) that after two
weeks, we have found at least one current IP address for
9, 500 users, which represents 95% of the users we were pe-
riodically calling. In summary, it is possible to periodically
call a large number of Skype users.

2) How often are Skype users online? We define availabil-
ity as the fraction of the time a given user is online. In Fig. 3
(middle), we plot the CDF of availability for the 9,500 Skype
users that we have seen online at least once. Skype users are
surprisingly available with 20% of all users available more
than 50% of the time. One explanation for this behavior is
that the Skype clients starts automatically at the startup of
the system. In summary, Skype users are highly available so
one can call them to collect their location most of the time.

3) Can Skype users be found in several locations? Mo-
bility results in a change of IP address geo-localized in a
different city, AS, and/or country. For each user that is on-

line at least once, we determine the different locations he
visits over the two-week period. This location information
is anonymized (see section 4.1.1). In Fig. 3 (right), we see
that 40% of the 9,500 Skype users change city, 19% change
AS, and 4% change country at least once in two weeks. In
summary, Skype users run Skype from several locations so
one can observe their mobility. In summary, Skype users
often run Skype from different locations, and this mobility
can be tracked by our methodology.

Our methodology to measure the number of locations of
a user has two limitations. First, in some cases (e.g., dy-
namic IP address), MaxMind might erroneously associate a
same user to different locations. We believe that such errors
are very unlikely at the scale of a country or an AS, and
only occurs rarely at the scale of cities so that it does not
significantly impact our conclusions (see Section 4.1.1). Sec-
ond, the IP address may not capture the location of users
running Skype on their mobile phones [17]. Although this
may impact our ability to track Skype users in the future,
we believe that relatively few users fall into this category
today.

We may observe that significantly more users are mo-
bile among cities than among ASes for two reasons. First,
some ISPs have broad geographical coverage, so users lo-
cated in those ISPs are likely to move within the same ISP,
even though they change city. Second, some ISPs provide
country-wide free Wifi hotspots to their users. When users
of such ISPs change of city, they are likely to use these
hotspots, thus connecting from the same AS but a differ-
ent city.

We note that, as the accuracy of IP geo-localization
improves, it will be possible to determine the locations of
users with much finer granularity. For instance, a recent
paper shows that it is possible to geo-localize IP addresses
with a median error distance of 690 meters [30].

5. FILE-SHARING USAGE OF SKYPE
USERS

In the previous sections, we established that it is possible
to map a person to his IP address in a scalable manner. We
are now interested in validating that this scheme introduces
a linkability threat where the identity of a person can be
associated to his Internet usage. In particular, we focus
in this section on finding the identity of file-sharing users.
We focus on the BitTorrent application; however, other P2P
applications – such as eMule [3] or Xunlei [12] – could instead
be used.

One of the challenges here is that many file-sharing users
are NATed, that is, they may share their IP address with sev-
eral users. We present in the following a scheme exploiting
the identification field in the IP datagrams to check whether
two different applications actually run on the same machine.
To the best of our knowledge, we are the first ones to run
and validate such a scheme in the wild.

In this section, we anonymized (as described in sec-
tion 4.1.1) all localization information, we do not store IP
addresses after the verification procedure, and we never
store any information (including the infohash and the
content name) related to the contents downloaded by a
given user.

51

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Number of Online Skype Users Tracked in Time

Time (days)

N
um

be
r

of
 u

se
rs

Cumulated
Simultaneous

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Availability of Skype Users

Availability

C
D

F
 o

f u
se

rs

0 1000 2000 3000 4000 5000 6000
10

0

10
1

10
2

Number of Locations per Login

Login rank

N
um

be
r

of
 lo

ca
tio

ns
 (

lo
g)

IP
AS
City
Country

Figure 3: (left) Number of simultaneous and cumulative unique online Skype users (of 10,000) called in two
weeks. (middle) CDF of availability of Skype users. (right) Number of locations visited in two weeks by each
Skype user, sorted by decreasing number of locations. Skype users are mobile.

5.1 Methodology
Our measurement system comprises a Skype tracker, an

Infohash crawler, a BitTorrent crawler, and a Verifier which
communicate through shared storage. We begin by ran-
domly selecting a set of 100,000 identified Skype users. The
Skype tracker employs ten tracking clients to daily collect
the IP address for the 100,000 users. The Infohash crawler
determines the infohashes (file identifiers) of the 50,000 most
popular BitTorrent swarms. Operating in parallel with the
Skype tracker, the BitTorrent crawler collects the IP ad-
dresses participating in the 50,000 most popular swarms,
and determines the IP addresses found in both Skype and
BitTorrent. Finally, the Verifier attempts to initiate P2P
communications with the two applications in order to verify
that the same user is indeed running both of them. In the
following, we describe in more detail the operation of each
component. The operation of the Verifier will be described
in Section 5.3.

The Skype Tracker.
We use the methodology developed in Section 3 and Sec-

tion 4 to find 100,000 active Skype users. In order to daily
call 100,000 Skype users, the Skype tracker uses ten track-
ing clients. Because we are now not interested in fine grain
mobility measures but instead in file-sharing usage, we only
call each user once per day. We then analyze packet pat-
terns to determine the latest IP address of these users and
temporarily save them to a shared storage. (Keep in mind
we collect the IP addresses not only of users that are online
but also of all users that have logged into the system in the
last 72 hours.) These IP addresses are then loaded from the
shared storage by the BitTorrent crawler to determine which
files are distributed from these IP addresses.

The Infohash Crawler.
We collect file identifiers (infohashes) from the PublicBit-

Torrent tracker [14], which is the largest BitTorrent tracker
at the time of this writing. PublicBitTorrent publishes a
file with all the infohashes it tracks on its website. This file
is the dump of a request, scrape-all, supported by trackers
running the OpenTracker software [19]. This request returns
all infohashes of files it is tracking and the number of down-
loaders (leechers) and uploaders (seeds). We download this

file every day from the PublicBitTorrent website and extract
the infohashes for the 50,000 most popular files.

The BitTorrent Crawler.
In this step, we seek an efficient mechanism to obtain the

IP addresses participating in the 50,000 most popular tor-
rents. BitTorrent trackers such as PublicBitTorrent support
a request, announce started, that returns a list of peers par-
ticipating in a torrent identified by an infohash. As tracker
developers became aware that such requests can be abused
they started to limit the number of requests a given peer
can send before being blacklisted. Therefore, instead of us-
ing the PublicBitTorrent tracker to collect IP addresses, we
use a decentralized tracker (DHT).

We collect the IP addresses participating in the top 50,000
torrents from the Mainline DHT every hour for two weeks.
This DHT is a decentralized tracker that is primarily used by
µTorrent [7] and Mainline BitTorrent [2], the most popular
BitTorrent clients. However, we note that other popular
P2P file-sharing clients, such as Xunlei, also support it.

When a peer wants to download a new file, it contacts the
Mainline DHT to obtain a list of peers distributing that file.
This peer first finds the DHT node maintaining the list of
peers for that file using the find node request. That request
takes an infohash as a parameter, and essentially returns the
ID and (IP, port) pair of the DHT node responsible for that
infohash. Then, the peer sends a get peers request to that
node, which returns a list of (IP, port) pairs belonging to
peers distributing the file.

Unlike centralized trackers, we observed that DHT nodes
do not implement blacklisting strategies. So we located the
nodes responsible for the 50,000 files that we wanted to
crawl and then repeatedly sent get peers requests to col-
lect the peers distributing these files. The whole procedure
distributed over 10 machines takes about one hour.

Each of our crawling bots periodically loads the
(Skype ID, IP) pair of active Skype users into memory. If
the IP address of an active Skype user is also found in a
BitTorrent swarm, the user is possibly downloading the cor-
responding file (this correlation is performed on-the-fly and
we never store the mapping IP address, infohash). However,
we must verify this hypothesis as an IP address may corre-
spond to a NAT shared by several users. We refer to this
problem as the NAT problem. We note that several types

52

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF of Number of Ports per Users

Number of ports (log)

C
D

F
 o

f u
se

rs

Figure 4: CDF of the users using BitTorrent as a
function of BitTorrent ports. 50% of collected Bit-
Torrent users share their IP address with other Bit-
Torrent users.

of middleboxes, including NATs and IPv6 routers can use
a single public IP address for different users. For the sake
of simplicity, we use the term NATs when we refer to the
generic notion of middleboxes in the following. (We note
that dynamic IP addresses can also be shared by several
users, resulting in the same problem.)

5.2 The NAT Problem
Depending on the Internet connectivity of a user, an IP

address may correspond to a computer or to a NAT shared
by a household, a company, or even an ISP. Because several
users can share the same IP address, we may wrongly asso-
ciate an identified Skype user to the BitTorrent downloads
of another user behind the same NAT. To the best of our
knowledge, all BitTorrent clients multiplex torrents on a sin-
gle port. This port is picked at random at the installation of
the client, and remains the same in subsequent utilizations.
Therefore, we can associate each IP/port pair to a single
BitTorrent user [19]. However, this observation alone does
not allow us to match a Skype user to a BitTorrent user
when the user is behind a NAT, as described below.

We found 15,000 users (out of 100,000) who have IP ad-
dresses that were simultaneously found in Skype and Bit-
Torrent during a period of two weeks. Of these 15,000
Skype users using BitTorrent, approximately 7,500 (50%)
share their IP address with another BitTorrent user (as in-
dicated by users with more than one port in Fig. 4). In
other words, a significant fraction of the 15,000 Skype users
are behind a NAT and may therefore not be the ones using
BitTorrent (false positives).

5.3 The Verifier
We now describe the operation of our Verifier tool, which

is responsible for definitively establishing whether Skype and
BitTorrent are run on the same machine. Although more
than one person simultaneously share the same machine,
the granularity of a machine is enough for our purpose. For

the sake of simplicity, we assume in the following that each
machine is used by a single person.

Given an IP address that participates in both Skype and
BitTorrent (matching IP), we now describe how the Verifier
makes sure the person identified in Skype is indeed the one
using BitTorrent. Consider a scenario where two users, Alice
and Bob, are behind the same NAT. Suppose that, by calling
Alice on Skype, we have determined that her IP address is
in a swarm in BitTorrent, but the IP address is a NATed
one. Two scenarios are possible. In the first scenario, Alice
is using both Skype and BitTorrent on the same host. In the
second scenario, Alice is using Skype on one host and Bob
is using BitTorrent on another host. The second scenario
corresponds to a false positive because Alice is not the one
using BitTorrent.

To detect false positives, we leverage the predictability of
the identification field in the IP datagrams (IP-ID) originat-
ing from the same machine [18]. As soon as the BitTorrent
crawler detects a matching IP address, it signals the Veri-
fier, which immediately calls the corresponding Skype user
and, at the same time, initiates a handshake with the Bit-
Torrent client. If the distance between the IP-IDs generated
by Skype and those generated by BitTorrent is small, Al-
ice is very likely to be the identified BitTorrent downloader.
Otherwise, Alice is likely to be a false positive.

At the end of the verification procedure, IP addresses are
anonymized using a salted hash. All subsequent analysis is
performed on this anonymized data.

Limitations.
Our verification procedure has two limitations. The first

limitation is that we can only initiate communication to pub-
lic peers or NATed peers that accept incoming communica-
tions (e.g., when UPnP is used). This limitation significantly
restricts the number of BitTorrent users we can verify. How-
ever, for this proof of concept, it is not necessary to verify all
the Skype users who are downloading with BitTorrent. An
aggressive attacker could easily verify more users by regis-
tering the IP address of the Verifier to the Mainline DHT. In
this manner he would also receive incoming communication
from peers whose NATs refuse incoming communications.
Therefore, an attacker could in principle verify NATed peers
also.

The second limitation is that we assume that the IP-IDs
originating from the same machine are predictable, which
depends on two conditions. The first condition is that the
IP-IDs originating from the same machine should be pre-
dictable (e.g., sequential). Because IP-IDs are attributed by
the TCP stack of an Operating System (OS), this first con-
dition highly depends on the fraction of OSes observed in
the wild whose attribution is indeed predictable. By test-
ing Windows XP, Vista, and 7, we verified that they all
use sequential IP-IDs. As these three versions of Windows
alone account for 90% of all OSes found in the wild [13],
we conclude that this first condition is largely met. The
second condition is that NATs do not modify the IP-IDs as
attributed by the TCP stack of the machine. This condition
is supported by (i) related work in which this behavior was
not observed in practice [18] and by (ii) the specification of
the IPv4 ID field, which specifies that NATs should ignore
this field [15].

In conclusion, we expect that our verification procedure
based on the predictability of the IP-ID field to be highly

53

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Verifying Users

User rank (sorted by 90th percentile)

D
is

ta
nc

e

Figure 5: After two weeks, we plot the 90th per-
centile of the shortest distance between the IP-IDs
on a ring of 216 elements of the first Skype and
BitTorrent packets received from a verifiable user,
sorted by increasing 90th percentile (curve). There
is one dot per verification experiment. We verify
400 users out of 765 users.

accurate, that is, with no, or few, false positives (due to
similar IP-IDs originating from different machines) and rel-
atively few false negatives (due to OSes with unpredictable
IP-IDs attribution or IPv6 routers that re-attribute IP-IDs
unpredictably).

5.4 Experimental Results
By running our verification procedure for two weeks, we

successfully triggered communication between the Verifier
and 765 unique users on both Skype and BitTorrent. We
refer to these users as verifiable.

We investigate the fraction of verifiable users that we ac-
tually fully verified. For the 765 verifiable users, we com-
pute the shortest distance on a ring of 216 elements between
the IP-IDs of the first packet received from Skype and from
BitTorrent. The smaller the distance, the more likely the
identified Skype user is indeed using BitTorrent. In Fig. 5,
we see that running this procedure finds 400 unique users for
whom the 90th percentile of the distance is less than 1,000.
We conclude that approximately 400 users (52% of the 765
verifiable users) are indeed using BitTorrent. We cannot
conclude for sure that the remaining 48% of the verifiable
users are not BitTorrent users (they might be false nega-
tives). However, as we have seen that at least 90% of the
OSes use sequential IP-IDs, we strongly believe that most
of them are not using BitTorrent.

In summary, we have determined 400 identified Skype
users (from a random set of 100,000) who are definitely us-
ing BitTorrent. Table 2 shows the information that is readily
available about the top-10 BitTorrent users. When register-
ing with Skype, all of these users provided their last names
and all but two users also provided their first names. In
addition, all but one of these users provided their cities of
residence. However, we remind that we do not store any per-

Rank # Files First name Last name City Country
1 23 ✓ ✓ ✓ ✓
2 18 ✓ ✓ ✓ ✓
3 12 ✓ ✓ ✗ ✓
4 11 ✓ ✓ ✓ ✓
5 11 ✓ ✓ ✓ ✓
6 11 ✓ ✓ ✓ ✓
7 9 ✗ ✓ ✓ ✓
8 8 ✗ ✓ ✓ ✓
9 7 ✓ ✓ ✓ ✓
10 6 ✓ ✓ ✓ ✓

Table 2: For each of the top10 verified user, we show
the number of files shared by that user, whether the
user provides in its Skype profile a first or last name,
a city, and a country.

sonal information (e.g., name and city) for the purpose of
this measurement; instead, we only store a binary informa-
tion indicating whether a personal information is available
or not.

6. DEFENSES
In the previous sections we have seen that it is possible for

an attacker to develop and deploy (possibly from a home) a
tool that periodically determines the current IP address of a
targeted VoIP user. Even if the VoIP user is behind a NAT,
the attacker can determine the user’s public IP address. Ob-
serving the mobility of a targeted individual could be used
for many malicious purposes. In this section we briefly dis-
cuss defenses for this attack, both at the application level
and at the user level.

One measure that can go a long way is for the designers of
the VoIP signaling protocol to simply ensure that the callee’s
IP address is not revealed to the caller until the callee accepts
the call. That is, before the callee accepts the call, callee’s
signaling packets are sent to supernodes or infrastructure
nodes, and not to the caller; furthermore, the caller is not
provided the callee’s IP address during call set-up. By only
revealing the callee’s IP address after the callee accepts the
call, then (i) it is no longer possible to make an inconspic-
uous call to the target; and (ii) if Alice chooses to block
all calls from strangers (i.e., people not on her contact list),
then a stranger will no longer be able to determine her IP
address and observe her mobility. This solution has a very
low overhead as only a few signalling messages are relayed.
Thus, we strongly recommend that all VoIP applications
adopt this simple mechanism.

However, even with this simple mechanism in place, a
friend of Alice (that is, anyone on her contact list, including
friends, old boyfriends, family members, employers, and em-
ployees) would still be able to determine her IP address (and
location) when they call her and she accepts the call. We
now outline some measures that defend against this attack.

One blanket defense for these attacks is to have all calls
pass through relays. When a datagram passes through a re-
lay, the relay regenerates the datagram with the source IP
address of the relay. If the relay can be trusted, then nei-
ther party in the call sees the other’s IP. In fact, in Skype,
if both caller and callee are behind a NAT, then the call
is typically relayed through a third skype user (who is not
behind a NAT), serving as a relay. The relays must be se-
lected so as not to give away the location of the callee. (For
example, the system shouldn’t strive to find a relay in same

54

city as the callee.) The main problem with this solution is
that it detracts from the efficiencies of P2P communication
because (i) relays must now be made available to support
the huge bandwidth demands of large-scale real-time voice
and video communication systems; and (ii) access ISPs will
see an increase of upstream and downstream relay traffic.

In order to not excessively route traffic through relays,
the system can be designed so that Alice can specify for
which contacts in her address book the calls are to be routed
through relays. For example, if Alice is only concerned about
her boss observe her mobility, she can configure her client
to have calls between her and her boss pass through relays.
The client could also be designed to make this decision on a
call-by-call basis: whenever, her boss attempts to call her,
she is asked whether this should be a P2P or relayed call.

We briefly mention that another approach for providing
location privacy is to run the P2P communication applica-
tion through a third-party anonymizing service such as Tor
[22]. However, the delay and throughput performance of
Tor and similar services is clearly insufficient for support-
ing real-time voice and video [21, 24]. In addition to being
inefficient, Tor also introduces privacy issues for certain ap-
plications (e.g., P2P file sharing) [20].

We conclude this brief discussion on defenses by mention-
ing that these location attacks actually have their roots in
the current Internet architecture, for which all datagrams
carry source and destination IP addresses. We are not advo-
cating a total re-design of the Internet, but we mention that
this and other Internet privacy problems could be resolved
by using alternative underlying network architectures. For
example, if the Internet were to use virtual circuits (as with
X.25 and ATM), then it would be much more difficult for a
stranger or a friend to observe a user’s mobility.

7. RELATED WORK

7.1 Mobility
We now describe the related work on observing the mo-

bility of users by using IP addresses and cell phones.

IP Address Mobility.
Guha et al. [23] is the work on IP address mobility that

is the closest to ours. The authors show that by periodi-
cally retrieving the IP address of dynamic DNS users, an
attacker can observe the mobility of these users. Whereas
the goal of their attack is similar to ours, there are two ma-
jor differences between exploiting dynamic DNS and Skype
to measure mobility. First, dynamic DNS allows to infer the
identify of the user in “some cases” whereas we have showed
that 88% of Skype users provide their birth name, and that
82% also provide either age, gender, homepage, country, or
language. Second, targeting dynamic DNS users limits the
scope of the attack. Whereas there are a few millions users
of dynamic DNS in the world, we showed that much more
Skype users are susceptible to have their mobility tracked.

Cell Phone Mobility.
The Carmen Sandiego Project [16] recently showed how to

use cell phones to observe the mobility of a user. The authors
first use the caller ID service to collect persons-to-cell phone
numbers mappings. Then, by accessing the Home Location
Register (HLR), they show that an attacker can collect the

current Mobile Switching Center (MSC) identifier for a given
phone number. As MSC identifiers often gives the indication
of the location of a user, an attacker can periodically collect
that information to observe the mobility of an identified cell
phone user. One important weakness of this attack is that
there is no convention on how an operator attributes MSC
identifiers. So the naming convention for MSCs varies from
one operator to the other and it is hard to determine to
which location a given identifier corresponds.

Even though it is not our primary purpose, we believe our
scheme, and in particular the description of Skype packet
patterns between caller and callee, also has the potential to
significantly simplify the tracing of Skype calls.

To the best of our knowledge, we are the first to show that
it is possible to use real-time applications to map a person to
an IP address and to scale that scheme to observe the mobil-
ity of a large number of persons. As we have shown it might
be possible to observe the mobility of 56 million identified
Skype users worldwide at any moment in time, we claim
that the scope and the severity of our attack are very severe.

7.2 File-sharing Usage
We now describe the related work on observing file-sharing

usage and verifying users. Because we have used BitTorrent
in this paper and it is one of the most popular file-sharing
system, we focus on BitTorrent in the following. However,
we remind that all file-sharing systems are in principle vul-
nerable to our attack.

In recent works, the scale of BitTorrent measurements has
significantly increased [19,28,33]. For example, Zhang et al.
collected 5 million IP addresses in 12 hours [33], Siganos et
al. collected 37 million IPs in 45 days [28], and Le Blond
et al. collected 148 million IPs in 103 days [19]. As noted
by Le Blond et al. and more recently by Wolchok et al.
[31], being able to continuously collect the IP addresses is
a serious privacy threat in itself. In this paper though, we
have not only collected the IP addresses of a large number
of BitTorrent users but we have also identified a significant
fraction of these users.

A security threat noted by Piatek et al. consists in inject-
ing the IP address of random Internet users into BitTorrent
trackers to falsely implicate them into copyright infringe-
ment [27]. We note that the ability to map a targeted per-
son to an IP address significantly worsens this threat because
an attacker could also implicate that particular person into
copyright infringement.

As far as we know, we are the first to show that it is
possible to find the identity of BitTorrent users without
requesting that information from an ISP. We believe that
this attack introduces a serious potential for blackmail and
phishing attacks.

Verification.
We relied on IP-IDs to verify the identity of BitTorrent

downloaders. This technique has been used in the context
of passively counting the number of machines behind a NAT
[18] (on a LAN). As far as we know, it has never been used on
the Internet to actively verify that several applications were
running on the same machine. Alternatively, we could have
used remote physical device fingerprinting [26] but using IP-
IDs was simpler and sufficient for our purpose.

55

8. CONCLUSION
We have shown that it is possible for an attacker, with

modest resources, to determine the current IP address of
identified and targeted Skype user (if the user is currently
active). It may be possible to do this for other real-time
communication applications that also send datagrams di-
rectly between caller and callee (such as MSN Live, QQ,
and Google Talk). In the case of Skype, even if the targeted
user is behind a NAT, the attacker can determine the user’s
public IP address. Such an attack could be used for many
malicious purposes, including observing a person’s mobility
or linking the identity of a person to his Internet usage.

We have further shown that by deploying modest re-
sources, it is possible for an attacker to scale this scheme
to not just one user but tens of thousands of users simulta-
neously. A prankster could use this scalable calling scheme
to, for example, create a public web site which provides the
mobility and file-sharing history of all active Skype users in
a city or a country. Parents, employers, and spouses could
then search such a web site to determine the mobility and
file-sharing history of arbitrary Skype users.

Acknowledgements. We would like to thank the vol-
unteers for the considerable amount of time they have spent
to help us test our scheme. We also would like to thank
Justin Cappos, David Choffnes, Paul Francis, Krishna
Gummadi, Engin Kirda, and the anonymous reviewers for
their constructive comments. This research was partially
supported by the NSF grant CNS-0917767.

9. REFERENCES

[1] Amazon EC2. http://aws.amazon.com/.

[2] BitTorrent. http://www.bittorrent.com/.

[3] eMule. http://www.emule-project.net.

[4] FaceBook. http://www.facebook.com.

[5] Google. http://www.google.com.

[6] MaxMind. http://www.maxmind.com/.

[7] µTorrent. http://www.utorrent.com/.

[8] Number of Google Talk Users.
http://tinyurl.com/6h4lxbd.

[9] Number of MSN Live Users.
http://tinyurl.com/6z3mno8.

[10] Number of QQ Users. http://tinyurl.com/5w2scvq.

[11] Number of Skype Users.
http://tinyurl.com/6ce49sv.

[12] Xunlei. http://www.xunlei.com.

[13] OS Market Share, 2010. http://tinyurl.com/6myem6.

[14] Public BitTorrent: An Open Tracker Project, 2010.
http://publicbt.com.

[15] Updated Specification of the IPv4 ID Field, 2010.
http://tools.ietf.org/html/

draft-ietf-intarea-ipv4-id-update-01.

[16] Bailey, D., and DePetrillo, N. The Carmen
Sandiego Project. In Proc. of BlackHat (Las Vegas,
NV, USA, 2010).

[17] Balakrishnan, M., Mohomed, I., and

Ramasubramanian, V. Where is that Phone?:
Geolocating IP Addresses on 3G Network. In Proc. of
IMC (Chicago, Illinois, USA, 2009).

[18] Bellovin, S. M. A Technique for Counting NATed
Hosts. In Proc. of IMW (Marseille, FR, 2002).

[19] Blond, S. L., Legout, A., Lefessant, F.,

Dabbous, W., and Kaafar, M. A. Spying the World
from Your Laptop - Identifying and Profiling Content
Providers and Big Downloaders in BitTorrent. In
Proc. of LEET (San Jose, CA, USA, 2010).

[20] Blond, S. L., Manils, P., Chaabane, A., Kaafar,

M. A., Castelluccia, C., Legout, A., and

Dabbous, W. One Bad Apple Spoils the Bunch:
Exploiting P2P Applications to Trace and Profile Tor
Users. In Proc. of LEET (Boston, MA, USA, 2011).

[21] Dhungel, P., Steiner, M., Rimac, I., Hilt, V.,

and Ross, K. W. Waiting for Anonymity. In Proc. of
P2P (2010).

[22] Dingledine, R., Mathewson, N., and Syverson,

P. Tor: the Second-generation Onion Router. In Proc.
of USENIX (Boston, MA, 2004).

[23] Guha, S., and Francis, P. Identity Trail: Covert
Surveillance Using DNS. In Proc. of PETS (Ottawa,
Canada, 2007).

[24] Isdal, T., Piatek, M., Krishnamurthy, A., and

Anderson, T. Privacy-Preserving P2P Data Sharing
with OneSwarm. In Proc. of SIGCOMM (Bangalore,
India, 2010).

[25] Jakobsson, M., Finn, P., and Johnson, N. Why
and How to Perform Fraud Experiments. Proc. of
IEEE Security & Privacy 6, 2 (2008), 66–68.

[26] Kohno, T., Broido, A., and Claffy, K. C.

Remote Physical Device Fingerprinting. In Proc. of
Security & Privacy (Oakland, CA, 2005).

[27] Piatek, M., Kohno, T., and Krishnamurthy, A.

Challenges and Directions for Monitoring P2P File
Sharing Networks or Why My Printer Received a
DMCA Takedown Notice. In Proc. of HotSec (San
Jose, CA, 2010).

[28] Siganos, G., Pujol, J., and Rodriguez, P.

Monitoring the Bittorrent Monitors: A Bird’s Eye
View. In Proc. of PAM (Seoul, South Korea, 2009).

[29] Tang, C., Ross, K. W., Saxena, N., and Chen, R.

What’s in a Name: A Study of Names, Gender
Inference, and Gender Behavior in Facebook. In
SNSMW (2011).

[30] Wang, Y., Burgener, D., Flores, M.,

Kuzmanovic, A., and Huang, C. Towards
Street-Level Client-Independent IP Geolocalization. In
Proc. of NSDI (Boston, MA, 2011).

[31] Wolchok, S., and Halderman, J. A. Crawling
BitTorrent DHTs for Fun and Profit. In Proc. of
WOOT (Washington, DC, USA, 2010).

[32] Wondracek, G., Holz, T., Kirda, E., and

Kruegel, C. A Practical Attack to De-anonymize
Social Network Users. In Proc. of Security & Privacy
(Oakland, CA, USA, 2010).

[33] Zhang, C., Dhungel, P., Wu, D., and Ross,

K. W. Unraveling the BitTorrent Ecosystem. TPDS
(2010).

56

Summary Review Documentation for

“I Know Where You Are and What You Are Sharing:
Exploiting P2P Communications to Invade Users’ Privacy”

Authors: S. Le Blond, C. Zhang, A. Legout, K. Ross, W. Dabbous

Reviewer #1
Strengths: The practical demonstration of an unobtrusive
tracking attack that undermines privacy for a popular Internet
application (Skype). Unlike most attacks, this one is not exotic. It
is straightforward to run at scale and represents a real
vulnerability in Skype at least.

Weaknesses: In terms of writing, the paper is a bit thin; it would
be better as a tighter 10-pager (or to have a deeper evaluation if it
remains at 14 pages) and so other papers may have larger
contributions.

Note that the work is a straightforward combination of largely
known techniques, but I don’t think this is a weakness. Rather, it
makes the result more of a vulnerability.

Comments to Authors: Nice job. I particularly like the way you
tied all of the pieces together to provide a method of tracking and
profiling a user starting with only their name and email.

The title doesn’t seem right. You are not exploring limits as best I
can tell. The work is more like a practical, scalable technique for
tracking the location and activity of Internet users via Skype.

Why not try to find the Skype ID of the other 4 faculty?

Re mobility, it would be better to gather ground truth for all of
your consenting users and compare this to inferred location,
instead of presenting a single user. This might identify ways that
the tracking fails, e.g., remote desktop?

In 5, I would have considered counting users behind NATs to be
pretty close to testing whether two applications behind a NAT are
the same user -- if they are not then they will count as two users,
not one.

The defenses section seems a bit weak. There is a large
performance tradeoff in the relaying that you get to. Another,
possibly better option might be to change the Skype client so that
it would alert users to unobtrusive calls so that tracking can’t
proceed silently.

Similarly, for IPID, using non-IP networks seems overkill. What
about this as a solution: have NATs keep virtual IPID counters
per external destination and protocol (or more detailed key). The
NAT could add a random offset for each different external
destination and protocol, recording the offset in the connection
record to rewrite as packets pass through. Seems like a privacy-
enhancing NAT. Problem solved? Hosts could directly keep
virtual IPID counters for destination IP/port pairs, which would be
more effective.

Related work is verbose and doesn’t add much value. Note that
there are other bodies of work related to VoIP and privacy, e.g.,

look at the work of Fabian Monrose, including recovering the
likely contents of conversations despite encryption.

Reviewer #2
Strengths: This is an interesting work showing a rather surprising
attack against skype.

The main contribution of this study is highlighting an important
design flaw in a popular application (Skype) that enables an
attacker to find the IP address of a Skype ID (even when the
attacker is not a friend with or is the blacklist of the victim).

The authors demonstrate how information from BitTorrent and
Skype can be linked to find private information about their users.

Weaknesses: The described attack is not a fundamental problem
is real-time communication applications, but rather a design flaw
that can be rather easily fixed.

Comments to Authors: The main lesson I learned from the paper
is that a real-time communication network should not disclose the
IP address of a callee before the callee answers an incoming call,
which I found interesting.

20 people spread across the world is a rather small sample to
claim "a large diversity of user and client behaviors". At some
points, I found the authors over-claim a bit.

The authors conclude based on Figure 3 that 40% of Skype users
change city. I don’t trust this result. Each user is associated with
multiple IP addresses over time. Even if one of the IP addresses is
geolocalized incorrectly (which is possible and rather likely when
the number of IP addresses is large), then the resulting figure
(40%) will be artificially inflated.

Skype could obfuscate the patterns the authors observe in Section
3.2 making it hard to identify the callee traffic. It would be nice if
the paper discussed this defense as well.

In Section 6, the authors explain that their attack could be avoided
by relaying signaling traffic. If a relay is adversarial, what further
security holes does this open?

Reviewer #3
Strengths: One of the first works that explores privacy leakage in
distributed applications. We need more examples like these before

57

we can start developing principles for systems that are reasonably
private. (An analogy here would be to developing secure
protocols.)

Despite the weakness mentioned below, we should accept this
paper because the results are so telling. This work will likely
encourage others to go analyze other systems.

Weaknesses: The whole thing hinges on a Skype oddity which
lets me call you inconspicuously. Unlike some of the other
privacy holes that this work exploits, this one appears easy to fix,
and once fixed the problem goes away. So, the work might be of
short-lived value, given that it’s hard to see how the methodology
generalizes.

Comments to Authors: I love this paper! It’s amazing how much
information you manage to glean for an individual. I appreciate
you treating Skype behavior like a bug and following the best
practices that apply to serious bugs. You have any insight into
why the report was not taken seriously by Skype? I only have
some minor comments on the paper:

1. The title of the paper seems all wrong. What privacy
limit has been explored by you?

2. To increase parallelism of tracking, why don’t you start
close-by calls from different IP addresses (by using
multiple IP addresses for your NIC)? That way, you
wouldn’t have to worry about carefully tunings.

3. Why don’t you worry about false positives in IP Id
matching? Two machines can accidentally have similar
IP Ids. Rocketfuel folks report on running into false
positives when using IP Ids for resolving router IP
aliases. My guess is that you would run into that as
well.

Reviewer #4

Strengths: Nice simple idea that is well studied in the paper.
Being able to show that by doing this at a large scale for Skype,
one can find the IP addresses, that are mapped to real people, in a
separate data set like P2P logs.

Weaknesses: Doesn’t cover the case of IP addresses assigned to
cellular users. The actual problem to solve is given an IP address,
can we find who is the user behind it? You are solving the
opposite problem which is much simpler.

Comments to Authors: Nice paper to read. Here are some
comments:

1. Intro: you cannot claim 1.6B because of the overlap
between users.

2. You should mention in the list of questions in the intro:
who owns this IP address? This is really the key
question about Internet privacy. While you don’t solve
that problem, you can say that you show that by
collecting a large data sets and a large number of user
IDs, you can being to answer that question in some
cases. You want to emphasize that point further. It is
really the critical question.

3. Section 3.2: somehow the case iii doesn’t make sense
to me. If the targeted user was online in the past 72
hours but was NATed and is now offline, why would

the application try to contact directly the IP? This
would automatically fail because of the NAT. Why
would the application even try? Am I missing
something?

4. Section 3.2 case (i) signature. You don’t explain for the
first signature, what is similar and what is distinctive
about the pattern observed between the callee and other
Skype communications. Can you be clearer about what
the signature is?

5. It might be interesting to share some stats about the
population. For instance, how many users have multiple
machines active at the same time.

6. Section 4.1: you talk about Mobility but you don’t
mention about the case of Skype users on cellular
network. Recent work has shown that the IP addresses
can be assigned to regions covering hundreds or
thousands of miles. You should mention that caveat:
IMC 2009: Where’s that Phone?: Geolocationg IP
Addresses on 3G Networks Mahesh Balakrishnan, Iqbal
Mohomed, Venugopalan Ramasubramanian (Microsoft
Research) and/or Sigmetrics 2011: Qiang Xu, Junxian
Huang, Zhaoguang Wang, Feng Qian, Alexandre
Gerber, Zhuoqing Morley Mao: Cellular data network
infrastructure characterization and implication on
mobile content placement.

7. One major caveat that you missed is in section 5:
because you only collect the Skype ID once a day,
when the IP address match a Bittorrent IP address. You
don’t know if you are looking at the same access line.
This is not just about NATs. A common scenario is that
the ISP will simply reassign the IP address to another
access line (this is not about Bob and Jim behind the
same NAT box. This is Bob and Jim in 2 different
houses.), so you need to rewrite that whole section.
Related to that point, you can see that your initial
15,000 matching users goes down to 765 verifiable. I
think most of the issue is due to DHCP and dynamic
public IPs.

Reviewer #5

Strengths: The techniques are simple and effective. The privacy
implication is strong and the large-scale measurement is
convincing.

Weaknesses: The proposed techniques have a few assumptions/
weakness, which may not be present in the future. In other words,
the attack can be defeated with relative ease.

Comments to Authors: I like the uncovered threat with a major
vendor, which allows an attacker to get huge amount of
information with relatively small amount of resources.

Despite the findings, there are also two main techniques proposed
in the paper: (1) Inconspicuous calling (by reverse-engineering
Skype traffic and dropping SYN packet). (2) Application co-
location detection (via sequential IPID).

The first technique has an implicit assumption (which is not
mentioned in the paper) that the IP address of other users can be
obtained/queried continuously. I would assume that the IP address

58

of other users are stored in some directory node (or supernode)
which can only be queried when a call is about to be placed.
However, a normal user may never query the directory node so
frequently (every 3s). I’m actually surprised that Skype does not
enforce any kind of rate limiting on this.

As mentioned by the authors, there’s an even stronger assumption
(which is more like a bug) -- Even though a user chooses to
accept calls from only friends, its IP address can still be queried
easily by essentially anyone. I doubt there will be many
applications allowing this. For example, as far as I know, QQ
does not allow a user’s IP address to be revealed without being
added as a friend of the attacker first.

The second technique relying on sequential IPID made a fair
argument that windows machines are the most popular machines,
thus the technique is widely applicable. However, if we think
about the emerging mobile world (which are mostly iPhone and
Android), neither of them uses sequential IPIDs as far as I know.
As a result, when mobile users are on Skype through Wifi, there
is no way to detect what other applications are running
simultaneously (be it BitTorrent or not) through IPID.

A related issue is that the IP-to-location mapping is not going to
work in the cellular network, as IPs are assigned from a very large
pool that serves millions of users covering a large geographic
area.

Despite these limitations, I think the paper is still an interesting
one. Fairly easy to read.

Response from the Authors

We made several changes to the paper based on the reviewers’
comments. We changed the title (reviewers 1&3). We also
mentioned the issues of two users with overlapping IP-IDs behind
the same NAT (reviewer 1), and of precisely geolocating mobile
users (reviewers 4&5). Finally, we indicated that dynamic IPs can
also be a source of false positives at the IP level (reviewer 4).
However, we emphasize that the existence of dynamic IPs does
not invalidate our verification scheme based on IP-IDs.

Several reviewers commented on the defenses. Reviewer 1: a) We
agree that it would go a long way if the callee’s IP was not
revealed until he accepts the call. However, a spouse, employee
or a motivated attacker impersonating the callee’s friend, could
place a call, and hang up after collecting the callee’s IP. While
such an attacker would not be able to track the callee’s mobility,
he may still be able to link the callee’s identity to his Internet
usage (for example, file sharing), or break into the callee’s
machine. b) Building NATs that rewrite the IP-IDs would be great
but it might significantly increase the manufacturing costs. Also,
IP-IDs could still be used to verify users with a public IP.

Reviewer 2: Obfuscating packet patterns is difficult to do when
the attacker can call several times and observe overlapping IPs
(without proxying the one overlapping IP will be the callee’s).
Relaying all calls is a potential solution, but would require a
significant change in the software, and significantly increase
Internet traffic, since many calls today are video calls.

Reviewer 5: It is hard to limit the number of calls per caller if the
directory is distributed over users’ clients, as it is likely that a
different client will be responsible for different callee’s IPs.

59

