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Abstract- We consider a heterogeneous wireless ad hoc network. 
All nodes are within radio range and may employ an arbitrary 
number of antennas. Our goal is to achieve a distributed spatial 
multiplexing gain in this scenario without introducing additional 
delay. To this end we let 2N of the nodes form N 
source/destination pairs, that concurrently communicate on the 
same physical channel. Other nodes in the network act as coher-
ent amplify&forward relays. We use relaying to minimize the 
cochannel interference between different links (coherent multi-
user relaying) and to achieve diversity. Some of the relays may 
be able to exchange received signal information e.g. by utilizing 
a suitable short range wireless technology such as Bluetooth 
(partial cooperation). The main contributions of this  paper are 
(i) a unified derivation of coherent multiuser relaying with an 
arbitrary number of relays and an arbitrary cooperation pat-
tern and (ii) a novel block zero forcing relay gain allocation for 
this setting. The derivation naturally includes any combination 
of multi-antenna (MIMO) nodes. The gain allocation is based on 
a subspace approach and the complexity is essentially independ-
ent of the number of relays. Performance results show, that it 
achieves the full spatial multiplexing gain N. If the number of 
relays and/or cooperations exceeds a minimum value, we addi-
tionally obtain a distributed diversity gain and array gain for 
each source/destination link. 
 
 

I. INTRODUCTION 
 
One of the most challenging tasks in the design of wireless 
networks is to accommodate a large number of user nodes 
(i.e. a large sum rate) in a confined bandwidth. Both ad hoc 
networks and cellular networks (with a fixed infrastructure) 
traditionally rely on variants of distributed spatial multiplex-
ing to achieve this goal: in large ad hoc networks we resort to 
multihop links to improve the sum rate. Due to the reduced 
radio range per hop the transmit power is reduced and the 
same physical channel may be reused at some spatial distance 
in the network. Under a point-to-point coding model this 
leads to a sum rate of the ad hoc network, that scales with the 
square root of the user node density [1]. A major drawback of 
multihop is the delay involved in the decode&forward opera-
tion at each intermediate node. In cellular networks a fixed 
basestation infrastructure with high speed backbone network 
reduces the required radio range of the mobile nodes. Here 
distributed spatial multiplexing is achieved by frequency 
reuse in different cells. Due to the backbone network the 
delay is almost independent of the cell size, but the required 
infrastructure is expensive. As is well known, with multi-
antenna nodes we can extent these classical approaches to 
realize a spatial multiplexing gain on the link level (MIMO 
wireless, e.g. [2]).  

 

 
Fig. 1. Heterogeneous wireless ad hoc network. A cloud indicates an under-
lying wireless personal area network. 
 
In this paper we consider a heterogeneous wireless ad hoc 
network (Fig. 1). All nodes are within radio range and may 
employ an arbitrary number of antennas. Our goal is to 
achieve a distributed spatial multiplexing gain in this sce-
nario. To this end we let 2N of the nodes form N 
source/destination pairs, that concurrently communicate on 
the same physical channel. Other nodes in the network act as 
coherent amplify&forward relays. We use relaying to mini-
mize the cochannel interference between different links (co-
herent multiuser relaying) and to achieve diversity. Some of 
the relays may be able to exchange received signal informa-
tion e.g. by utilizing a suitable short range wireless technol-
ogy such as Bluetooth (partial cooperation). A major benefit 
in comparison to multihop signaling is low delay, as all nodes 
are in radio range. On the other hand we do not save transmit 
power however. Some of the nodes are in close proximity 
(e.g. less than 10m) and use a wireless personal area network 
(WPAN) such as Bluetooth to locally exchange information 
about their respective received signals. A unidirectional co-
operation between nodes i and j implies, that node i commu-
nicates its received signal to node j. Full cooperation in a 
cluster of nodes realizes a virtual antenna array, as each 
nodes knows the received signals of all other nodes in the 
cluster. We refer to an arbitrary set of unidirectional coopera-
tions as partial cooperation. 
To proceed we first review the related state of the art in co-
operative signaling.  In coded cooperation [3] multiple user 
nodes cooperate to jointly transmit their own coded informa-
tion and (partial) coded information of other users. In coop-
erative diversity schemes [4] multiple nodes support the 
communication of a source/destination pair to improve diver-
sity. Relaying schemes typically involve a 2-hop traffic pat-
tern [5], where the relaying nodes forward the (processed) 
received signal in the second time slot to the destination(s). 
Upper and lower bounds on the capacity of wireless networks 
with a relay traffic pattern have been determined in [5]. The 



 

 

system model consists of one source/destination pair, while 
all other nodes operate as relays in order to assist this trans-
mission. In [6] the analysis of [5] is extended and upper and 
lower bounds on the capacity of MIMO wireless networks are 
given.  
 
Coherent (synchronous) relaying scheme explicitly or implic-
itly require a phase synchronization between the relaying 
nodes. This makes distributed beamforming possible, as the 
relay gains may be chosen such, that the relayed signals add 
up coherently at the destination. In multiuser relaying the 
relay nodes jointly process the signals of multiple 
source/destination pairs. In [6] is was observed, that the data 
streams of different users are orthogonalized, if the number 
of relays is large and the relay gains are appropriately 
matched to the channel coefficients. In [6,7] relaying scheme 
for multi-antenna nodes are suggested. For stream orthogo-
nalization with a finite number of relays these schemes re-
quire however, that each relay itself can separate the different 
source streams (for a single source/destination pair this im-
plies, that each relay has at least as many antennas as the 
source and destination). 
 
In [8] we have introduced a coherent multiuser relaying 
scheme, which orthogonalizes the streams of different users 
in a homogeneous network with single antenna nodes and 
amplify&forward relays. In contrast to previous work we do 
neither require multiple antennas at the relays nor a very 
large number of relays.  Let N  be the number of single an-
tenna source/destination pairs and rN  the number of single 
antenna relays. In [8] we  have shown, that for  

( )1rN N N> ⋅ −  it is possible to choose the relay gains such, 
that the interference between different source/destination 
links is nulled (multiuser zero forcing relaying). Note, that 
this does not require any cooperation between the sources and 
the destinations respectively. In [9] we have shown on the 
basis of the average sum rate, that multiuser zero forcing 
relaying achieves the full spatial multiplexing gain N . As a 
result the sum rate in a dense ad hoc network scales with the 
square root of the number of nodes. This is the same behavior 
as in a multihop network. Due to the 2-hop traffic pattern 
however the delay is independent of the number of nodes. On 
the other hand the required transmit power per node does not 
drop with increasing user node density. In [10] the approach 
is verified on the basis of measured matrix channel impulse 
responses. In [11] the impact of noisy channel state informa-
tion on the performance of the minimum relay configuration 
is analyzed. 
 
In this paper we present a unified formulation of coherent 
multiuser relaying with an arbitrary number of am-
plify&forward relays (excess relay case) and an arbitrary 
cooperation between the relays (Section III). This naturally 
includes any combination of multi-antenna (MIMO) relays. 
Our original proposal [8] with single antenna nodes is in-

cluded as a special case. In Section IV we suggest a novel 
block zero forcing gain allocation for this setting. It is based 
on a subspace approach and the complexity is essentially 
independent of the number of relays. The performance results 
in Section V show, that the novel gain allocation achieves the 
full spatial multiplexing gain and realizes a distributed diver-
sity gain and a distributed array gain in the excess relay case. 
 
 

II. SIGNAL MODEL 
 
We consider a ( )( )1 1 2 2r rN N N N× × ×  network with a total 
number 1N  of antennas at the N  sources (single and multi-
antenna sources) and a total number 2N  of antennas at the N  
destinations. The relay tier includes a total number 1rN  of 
receive antennas at all relays and a total number 2rN  of trans-
mit antennas. We assume a 2-hop relay traffic pattern (Fig. 
2), i.e. there is no direct path between the sources and the 
destinations.  

N
rN
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dest.

2Z  
Fig. 2. Multiuser relaying 

 
The amplify&forward (nonregenerative) half duplex relays  
are coherent in the sense that their local oscillators are phase 
synchronized to a global phase reference.  
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Fig. 3. Signal model 

 
Fig. 3 depicts the signal model. The transmit symbols of the 
source antennas are stacked in the transmit symbol vector s . 
The source sum transmit power is given by the expectation 

H
s sP E s s = ⋅   

The matrix 1Z  denotes the channel matrix from the source 
antennas to the relay receive antennas and 2Z  the channel 
matrix from the relay transmit antennas to the destination 
antennas. The received signal at the relays includes the addi-



 

 

tive white Gaussian noise component ( )20, mm CN I σ= ⋅ . The 
relays multiply the received signal vector with the gain ma-
trix G  to obtain the relay transmit signal r .  The relay sum 
transmit power follows as 

,
H

r s mP E r r = ⋅                                                                      (1) 
Note that the columns of the gain matrix G  correspond to the 
receive antennas and the rows to the transmit antennas of the 
relay tier. The vector ( )20, ww CN I σ= ⋅  denotes the local noise 

contribution at the destinations. The decision vector d  com-
prises the received signals at all destination antennas. It is 
given by 

2 1 2 SDd Z G Z s Z G m w H s n= ⋅ ⋅ ⋅ + ⋅ ⋅ + ≡ ⋅ +                            (2) 

SDH  is the equivalent channel matrix and n  the equivalent 
destination noise. It has the correlation matrix 

( ) 2 2
2 2

H H
nn m wZ G G Z Iσ σΛ = ⋅ ⋅ ⋅ ⋅ + ⋅                                           (3) 

Due to the relay noise contribution, nnΛ  is in general not 
diagonal.  
 
A simple and efficient approach to optimize the gain matrix 
G  is the block zero forcing (ZF) criterion. For block ZF we 
choose the gain matrix subject to a relay sum power con-
straint (1) such, that there is no interference between different 
source/destination links. In other words block ZF nulls all 
elements of the equivalent channel matrix SDH , which corre-
spond to transmit/receive antenna pairs at non-associated 
sources and destinations. Besides simplicity an additional 
advantage of block ZF is the transparency to the source 
power allocation (near-far problem). 
 
In the special case of single antenna sources and destinations 
the equivalent channel matrix SDH  is diagonal. To enhance 
the clarity of the exposition we will constrain our attention to 
this case throughout the paper. Furthermore we assume, that  
• no channel state information is available at the sources. 

Consequently we use i.i.d. complex normal transmit sym-
bols ( )20, ss CN I σ= ⋅ ), 

• the relay tier has the same number of receive and transmit 
antennas, i.e. 1 2r r rN N N= = . 

A configuration with N  single antenna source, N  associated 
single antenna destinations and a relay tier with rN  antennas 
will be denoted as ( )rN N N× × . For a given channel matrix 

1Z and i.i.d. source symbols the relay transmit signal has the 
sum power  

2 22 2
1 22r s mP G Z Gσ σ= ⋅ ⋅ + ⋅                                           (4) 

The operator 2

2
 denotes the squared Froebenius norm of a 

matrix. The signal to interference plus noise ratio ( )SINR k at 
destination ( )k  follows readily 

( ) ( )
( ) ( )

22

22

,
SINR

, ,

s SDk

s SD nn
m k

H k k

H k m k k

σ

σ
≠

⋅
=

⋅ + Λ∑
                                (5) 

 
Let some of the rN  relays cooperate by exchanging their 
received signals. A unidirectional cooperation between relay i 
and j implies, that relay i communicates its received signal to 
relay j (e.g. by using a short range WPAN). As a result the 
element [ ],G j i  of the gain matrix may be nonzero.  To visu-
alize the cooperation pattern, we introduce the cooperation 
matrix coopR . A uni-directional cooperation i-j is identified by  

[ ], 1coopR j i = .  All other elements are zero.  
 

1 1 0
1 1 0
0 0 1
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Fig. 4. Cooperation matrix for (a): one (2x2) MIMO relay and one single 
antenna relay, (b) three single antenna relays, (c) one (3x3) MIMO relay, (d) 
one relay with 2 receive and 1 transmit antenna and one single antenna relay. 
 
Fig. 4 illustrates the cooperation matrix for some typical 
configurations. Note, that each off-diagonal one represents  
either a co-located antenna pairs or a unidirectional coopera-
tion. Let ,r cN  denote the total number of cooperations be-
tween the relays (including "self cooperations" i-i). In the 
pure relaying case ,r c rN N=  (Fig. 4, (a)) and the gain matrix 
is diagonal. In the distributed antenna case (full cooperation) 

2
,r c rN N=  (Fig. 4, (c)) and all elements of the gain matrix may 

be nonzero.  
 
 

III. ZERO FORCING GAIN MATRIX WITH PARTIAL RELAY 
COOPERATION 

 
In this section we present a new unified formulation for the 
ZF gain vector in the presence of a arbitrary relay coopera-
tion pattern. Our exposition is based on the simple equality 
[12] 
 ( ) ( ) ( )Tvec ABC C A vec B= ⊗ ⋅  (6) 

The operation ( )a vec A=  converts the matrix A  into a vector 
a  by stacking all columns. The operator ⊗ indicates the 
Kronecker product. For a ( )2 2×  matrix A  we obtain e.g. 

11 12

21 22

a B a B
A B

a B a B
 

⊗ =  
 

 

Let the equivalent channel vector  be defined as 
( )SD SDh vec H=  and  the compound gain vector as 

( )0g vec G= . With (2) and (6) we obtain 



 

 

( )1 2 0 0 0
T

SDh Z Z g A g= ⊗ ⋅ ≡ ⋅                                                    (7) 

We refer to 0A  as the compound channel matrix. For a given 
relay cooperation pattern we may drop the zero elements of 
the compound gain vector: ( )0 , 1r cg g N⇒ = ×  and the corre-
sponding columns of the compound channel matrix: 

( )2
0 ,r cA A N N⇒ = ×  without loss of generality. Thus the 

equivalent channel vector is given by 
SDh A g= ⋅                                                                               (8) 

The equivalent channel matrix SDH  has "signal elements", 
which contribute signal power at the respective destination, 
and "interference elements", which generate interstream in-
terference. In the present case of noncooperating destinations, 
the signal elements are the N  diagonal elements of  SDH  and 
the interference elements the ( )1N N − off-diagonal elements. 
We will constrain our attention to this case in the sequel. Let 

,SD sh  be the vector of signal elements of SDh  and ,SD Ih  the 
vector of interference elements. We define the compound 
signal matrix ( ),S r cA N N= ×  and the compound interference 

matrix ( )( ),1ZF r cA N N N= − ×  such, that 

,

,

SD s S

SD I ZF

h A g

h A g

= ⋅

= ⋅
                                                                         (9) 

Multiuser ZF relaying requires , 0SD Ih = .  Let 

( ),0ZF ZFN null A=  be a nullspace of  ZFA , i.e. ,0 0ZF ZFA N⋅ =  

and ,0 ,0
H
ZF ZFN N I⋅ = . Clearly any ZF gain vector lies in this 

nullspace, i.e. for any vector y  we obtain a ZF gain vector 
ZFg  as 

,0ZF ZFg N y= ⋅                                                                       (10) 
We will refer to y  as the nullspace gain vector in the sequel. 
A sufficient, but not necessary condition for a nonempty 
nullspace is given by ( )1rcN N N> − . We refer to the case  

( )1 1rcN N N= − +                                                                 (11) 
as the minimum cooperation configuration. In this case the 
nullspace gain vector is a scalar. In order to obtain the full 
spatial multiplexing gain N  the equivalent channel matrix 

SDH  should have full rank, i.e. all diagonal elements should 
be nonzero. As 
 ( ) ( ) ( ) ( )( )2 1 2 1rank min rank ,rank ,rankZ G Z Z G Z⋅ ⋅ ≤  
the gain matrix G  should at least have rank N . This imposes 
some constraints on suitable relay cooperation patterns. In 
particular any cooperation pattern, which involves a total 
number of less than N  receive and/or transmit antennas in 
the relay tier, leads to a rank deficient gain matrix (pinhole 
channel). 
 

IV. OPTIMIZATION OF THE NULLSPACE GAIN VECTOR 

 
For the minimum cooperation configuration the nullspace 
gain vector (10) is a scalar: y y= and y  is uniquely deter-
mined by the relay sum power constraint (4). If there is an 
excess number of  cooperations, we may use the additional 
degrees of freedom to optimize the performance.  The dimen-
sionality of the nullspace gain vector y  grows proportionally 
to the number of cooperations. The gain vector (10) captures 
the signal contribution (9) 

, ,0SD s S ZFh A N y= ⋅ ⋅                                                                (12) 
It is convenient to transform the nullspace such, that the ele-
ments of y  have decreasing impact on the vector ,SD sh .  With 
the singular value decomposition 

,0
H

S ZFU S V A N⋅ ⋅ = ⋅                                                             (13) 
we obtain the desired transformation 

,0ZF ZFN N V= ⋅                                                                      (14) 
Note, that only  

( ) ( )( )min rank ,rankys S ZFN A N=                                           (15) 

elements of y  contribute to ,SD sh . The other elements do not 
contribute signal energy at the destinations. However they 
may still have impact on the performance, as they influence 
the relay noise contribution at the destinations. 
 
We suggest the following heuristic approach to the optimiza-
tion of the compound gain vector:  
1. determine y  such, that the minimum diagonal element 

of the equivalent channel matrix SDH  is maximized  
2. perform this maximization subject to the constraint 

2

2
1y =  ( i.e. 2

2
1G = ).  

The constraint 2. relates to the average relay sum transmit 
power rP .  To illustrate this we consider a channel matrix 

1Z  with i.i.d. elements with unit variance and we assume, 
that the ZF gain matrices are uncorrelated to  1Z . With (4) 
we obtain 

[ ]

( )
1 1

2 22 2
1 22

22 2
2

r Z r Z s m

s m

P E P E G Z G

N G

σ σ

σ σ

 = = ⋅ ⋅ + ⋅  

= ⋅ + ⋅
                           (16) 

Clearly this assumption does not hold in reality, as the gain 
matrix is a deterministic function of 1Z  and 2Z . Due to (7)
however G  is a function of the product of certain elements of 
these matrices. This reduces the correlation and in reality (16) 
holds surprisingly well in many cases. Nevertheless in all 
simulations we have normalized the gain vector such, that the 
instantaneous sum relay transmit power satisfies 2

r sP N σ= ⋅ . 
The max-min approach 1. is motivated by fairness and diver-
sity considerations. As an immediate consequence of the 
suggested approach we need to consider only those elements 
of the gain vector, that contribute signal energy at the destina-



 

 

tions. Due to (15) these are the first ysN  elements of the gain 
vector.  
 
We define the reduced gain vector 1:s ysy y N ≡    and let 

,ZF sN  be the corresponding part of the nullspace ZFN  from 
(14). According to our suggested approach we determine the 
subspace gain vector as follows: with , ,SD s S ZF s sh A N y≡ ⋅ ⋅  
solve 

( )( )*
, ,arg max min

s

s SD s SD s
y

y h h=                                            (17) 

subject to 1sy = . The symbol  denotes the Hadamard 
(element-wise) product.  
 
For 2ysN = ,  (17) has an analytical solution. Consider the 
QR-decomposition  ,S ZF sA N R Q⋅ = ⋅  such that R  is a lower 
triangular matrix and Q  is a unitary matrix. We substitute the 
gain vector by H

sy Q z= ⋅  and obtain  the triangular set of 
equations  

( ) ( ) ( ) ( ), ,
H

SD s S ZF s sh A N y RQ Q z Rz= ⋅ = ⋅ =                             (18) 
Without loss of generality we let 

( ) ( )1/ 22
2 2 2 21 exp 0 1

T

z jρ ρ ϕ ρ = − ⋅ ∀ ≤ ≤  
                         (19) 

Note, that 1z = . As R  is lower triangular,  

11

21 22

0r
R

r r
 

=  
 

 

the angle 2ϕ  affects only the element [ ], 2SD sh . Thus for any 

given 2ρ  the value [ ], 2SD sh  is maximized by  ( )*
2 21 22r rϕ = ⋅  

and (17) is reduced to an optimization of  2ρ . This lead to the 
following solution: 
if               21 11 2, 0optr r ρ≥ ⇒ =  
else 

              ( )
11 21

2 22

22 11 21

2 2

2, 2 22 22 21min , /opt

r r

r r r

r r r

ρ

ρ ρ

−
=

+ −

 = + 
 

                          (20) 

At time of writing for 3ysN ≥  we resort to numerical optimi-
zation.  
 

V. PERFORMANCE RESULTS 
 
For all simulation results we let the channel matrices have 
i.i.d. complex normal random elements with unit variance. 
The source symbols as well are ( )0,CN I . Thus the source 
sum transmit power sP  is proportional to the number of 
sources. Both sources and relays use the same sum transmit 

power: s rP P= . Relay and destination noise have the same 
variance: 2 2

m wσ σ= . The reference signal to noise ratio SNR ref  
determines the noise variance at relays and destinations: 

2 2 1/m w refSNRσ σ= = . In a (1x1x1) system the reference SNR is 
equal to (i) the average SNR at the relay and to (ii) the aver-
age SNR at the destination, if the relay would be noiseless. 
The equivalent SINR of the source/destination link (k) is 
given in (5). The maximum rate supported by this link in 
bit/complex dimension/source channel use is 

( ) ( )( )2log 1 SINRk kR = +                                                         (21) 

Note, that this rate involves one channel use by each the 
source tier and the relay tier.   
 
A. Figures of Merit 
 
In this section we study the performance of multiuser ZF 
relaying with partial relay cooperation in terms of:  
• distributed array gain: the average destination SINR nor-

malized to the average destination SINR of a (1x1x1) sys-
tem with noiseless relay. 

• distributed spatial multiplexing gain: let ( )SNR refR  be the 
mean sum rate as a function of the reference SNR. We ap-
proximate this function as 
( ) ( )2SNR log 1 SNRref refR b a≈ ⋅ + ⋅                                    (22) 

and determine ˆa a=  and ˆb b=  such, that the mean error 
magnitude is minimized.  b̂  is the estimated spatial multi-
plexing gain. 

• effective diversity gain@outage probability: this measure 
is determined on the basis of  (i) the mean destination 
SINR and (ii) the outage destination SINR at a reference 
outage probability (here: 210outP −= ). The estimated effec-
tive diversity gain is one half of the number of degrees of 
freedom of a chi2-distributed random variable with the 
same mean and outage value.  

The effective diversity gain depends to a certain extend on 
the reference outage probability. In contrast to the standard 
asymptotic definition of the diversity gain (infinite SNR) the 
effective diversity gain more directly reflects the diversity 
improvement in the operating region of the system under 
consideration.  As an example in Fig. 5 we consider a system 
with one source/destination pair and 1 8rN =  relays. The 
solid lines indicate the empirical cumulative distribution 
functions (cdfs) for 10000 channel realizations each and the 
dashed lines the approximations. In this case there is a very 
close fit and the reference point has marginal impact on the 
estimated diversity factor.  The approximations capture the 
slope of the empirical cdfs at the reference point 210outP −=  
very well.  
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Fig. 5. Empirical cdf of the destination SINR and chi2-approximation for a 

( )1 1rN× ×  configuration. 

 
 
B. Performance Results 
 
In Figs. 6-8 we consider the performance of multiuser ZF 
relaying with three source/destination pairs. The minimum 
cooperation configuration (11) requires , ,min 7r cN =  coopera-
tions in this case. The array gain, diversity gain and mean 
sum rate are plotted versus the excess number , 7ex r cN N= −  
of relay cooperations. The results are shown for four systems 
with different cooperation patterns: 
 
System I is pure relaying; i.e. the cooperation matrix (Section 
II) is diagonal. This situation is typical for an ad hoc network, 
where some user nodes act as noncooperating relays. System 
II employs one MIMO relay with three antenna elements and 

exN  additional noncooperating relays. This is typical for a 
cellular relaying application, where the cellular operator has 
installed a dedicated MIMO relay to improve range, coverage 
and sum rate. The noncooperating relays may be additional 
user nodes, that volunteer to support the communication. 
 
Both systems III and IV are examples of ad hoc networks 
with partial relay cooperation. In both systems seven user 
nodes act as relays. The partial cooperation between the relay 
nodes could be based on an underlying short range wireless 
personal area network such as Bluetooth or Ultra Wideband 
(UWB), which enables cooperation between spatially adja-
cent nodes. For system III, the excess cooperations are pad-
ded along the first minor diagonal of the cooperation matrix.  
For system IV the excess cooperations are chosen at random. 
For each channel snapshot a new random cooperation pattern 
is used. For 5exN =  e.g. we have for systems I-III: 

(1) (2) (3)
12

11100000 110000011100000 011000011100000 001100000010000 000110000001000 000011000000100 000001000000010 000000100000001

coop coop coopR I R R

         = = =            

                (23) 

For reference we also show the performance of a 
( )1 1 1exN× + ×  system.  
 
The performance of all multiuser systems is essentially de-
termined by the number of excess cooperations. In the mini-
mum cooperation configuration ( 0exN = ) all systems achieve 
the same array and diversity gain as the single user reference 
system and the sum rate is tripled. This indicates, that for the 
given setup the minimum cooperation configuration essen-
tially orthogonalizes the multiuser system to N  single user 
systems, i.e. to ( )1 1 1× × . For all performance measures the 
systems rank according to their system number. Systems III 
and IV have very similar performance. Note, that both are 
employing the same number of relays. This illustrates, that 
for a given number of relays and excess cooperations the 
performance is quite insensitive to the actual cooperation 
pattern.  
 
As shown in Fig. 6, for all systems the proposed gain alloca-
tion scheme is able to translate an excess number of coopera-
tions into an distributed array gain. Note that an array gain of 
0db implies, that the average SNR at the destination is the 
same as in a ( )1 1 1× ×  system with noiseless relay. For this 
reason the array gain for a small number of excess coopera-
tions is negative. The reference system achieves a larger 
array gain than the multiuser systems. This may be a result of 
our optimization criterion, which is targeted at diversity gain 
rather than maximizing the average SNR.  
 
For the same number of excess cooperations the number of 
degrees of freedom in the channel matrices increases with the 
number of relays, thus providing more potential for diversity 
gain. The diversity ranking of systems I to IV in Fig. 7 fol-
lows this intuition. System I essentially achieves the same 
performance as the reference system. The diversity gains of 
systems III and IV seem to saturates around 5.   
 
The mean sum rate (Fig. 8) of all multiuser systems is very 
similar. The minor differences may essentially be attributed 
to the different array gains. In comparison to the reference 
system the mean sum rate is almost tripled, as all systems 
achieve the full spatial multiplexing gain ˆ 3b =  (22). 
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Fig. 6. Array gain versus the excess number of cooperations. 

 

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

excess cooperations Nex

di
ve

rs
ity

 g
ai

n

ref. 

system:
I

II

III

IV

 
Fig. 7. Effective diversity gain versus the excess number of cooperations. 
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Fig. 8. Mean sum rate versus the excess number of cooperations. 
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