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Abstract

A rising horizon in chip fabrication is the 3D integration
technology. It stacks two or more dies vertically with a dense,
high-speed interface to increase the device density and re-
duce the delay of interconnects across the dies. However,
a major challenge in 3D technology is the increased power
density which brings the concern of heat dissipation within
the processor. High temperatures trigger voltage and fre-
quency throttlings in hardware which degrade the chip per-
formance. Moreover, high temperatures impair the proces-
sor’s reliability and reduce its lifetime.

To alleviate this problem, we propose in this paper an OS-
level scheduling algorithm that performs thermal-aware task
scheduling on a 3D chip. Our algorithm leverages the in-
herent thermal variations within and across different tasks,
and schedules them to keep the chip temperature low. We
observed that vertically adjacent dies have strong thermal
correlations, and the scheduler should consider them jointly.
Our proposed algorithm can remove on average 54% of
hardware DTMs and result in 7.2% performance improve-
ment over the base case.

1 Introduction

The 3D integration technology has gained significant at-
tention recently. This is a technology that reduces wiring
both within and across disparate dies, as wiring has become
a major latency, area and power overhead in modern micro-
processors. The 3D technology provides vertical stacking
of two or more dies with a dense, high-speed interface, re-
ducing the wire length by a factor of the square root of the
number of layers used [15]. This significant reduction leads
to improved performance and lower power dissipation on the
interconnection.

One key challenge in 3D die stacking is the heat genera-
tion from the internal active layers because the power den-
sity per unit volume increases drastically in 3D. This exac-
erbates existing hotspots and can create new hotspots within
the chip, especially when active logic circuits are vertically
aligned. For example, the peak temperature can increase by
17~20°C in a two-layer 3D implementation for an Alpha-
like processor, compared to a 2D design [13, 21]. Other stud-
ies on logic-logic stacking 3D floorplans [1, 3, 22] also show
similar thermal constraint.

There are existing dynamic thermal management (DTM)
techniques such as dynamic voltage and frequency scaling
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(DVES) at the architecture level to mitigate this problem.
Hardware DTMs can respond to thermal crisis quickly and
control the temperature efficiently by reducing the processor
power, but inevitably leads to degraded performance. Re-
cently, there has been an increasing interest in OS-assisted
task scheduling on both single-core and 2D chip multipro-
cessors to alleviate the thermal condition on chip [5, 8, 16,
17, 20]. OS-assisted task scheduling can reduce the num-
ber of times DTMs are triggered while still meeting the ther-
mal constraint. This technique does not require any hardware
modifications. Hardware DTMs are engaged only when task
scheduling cannot keep the temperature below the thermal
threshold.

In this paper, we propose a heuristic OS-level technique
that performs thermal-aware task scheduling on a 3D chip
multiprocessor (CMP). The proposed technique aims to im-
prove task performance by keeping the temperature below
the threshold to reduce the amount of DTMs. Unlike previ-
ous thermal-aware OS task scheduler for single core or 2D
CMP, our scheduler for 3D chips must take into account the
thermal conduction in the vertical direction. Early studies
have shown that vertically adjacent dies have strong thermal
correlations [2, 25]. For example, a core in one layer could
become hot because of a high power task running in the same
vertical column but at a different layer. Based on these ob-
servations, our proposed scheduler always considers the ag-
gregated power of cores that are vertically aligned. Further,
when a core is overheated, we choose to engage DTM on a
vertically aligned core that generates the most power. Such
an approach can greatly reduce the total power in one verti-
cal column and quickly cool down the overheated core. Our
experiments show that the proposed scheduler outperforms
a Random and a Round-Robin scheduler. On average, we
can remove 54% of hardware DTMs and obtain a speedup of
7.2% over the baseline.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous related works. Section 3 elab-
orates the motivation of our thermal-aware heuristic algo-
rithms. Section 4 compares our proposed scheduling algo-
rithm with other alternatives. Section 5 introduces the ex-
perimental methodology. Section 6 reports the results and
compares different algorithms. Section 7 concludes this pa-
per.

2 Prior Work

There have been many works recently investigating the
performance potential and the challenges in 3D CMP de-
signs. Mysore et al. [19] proposed to stack on top of a normal
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processor a profiling die that can identify memory leakage,
perform diagnosis etc. to save the area and power on the
main die. Black et al. [3] studied the performance advan-
tages and thermal challenges for stacking a large DRAM and
SRAM cache on a processor, as well as implementing a pro-
cessor in two layers. Xie et al. [25] reported that the peak
temperature in a 3D chip of 2 layers and one die per layer
can be as high as 125°C. More importantly, there is only a
difference of a couple of degrees, in the worst case, between
the hotspots in the top die and the bottom die. This indicates
a strong thermal correlation among adjacent layers in a 3D
processor. To ensure better heat dissipation in a 3D chip, Put-
taswamy et al. proposed a “Thermal Herding” design [22]
which lowers the power of the chip by splitting individual
function unit blocks across multiple layers, and places the
most frequently switched part, or activity, closest to the heat
sink. Alternatively, adding thermal vias can also alleviate the
thermal conditions within a 3D chip. Goplen et al. [9] stud-
ied that propoer placement of thermal vias in 3D IC design
can obtain a maximum of 47.1% reduction in temperature.
In the multicore domain, Loh et al. [18] introduced differ-
ent approaches for implementing single-core and multicore
3D processors. Particularly, they pointed out that stacking
seperate cores (in multicore design) can significantly reuse
the existing 2D designs, and the interface between the cores
needs no more than a few thousand connections.

Compared to the previous work, this paper focuses mainly
on software approaches to thermal management in 3D CMP.
There have been proposals on OS-assisted thermal manage-
ment for single core chip. The HybDTM [16] technique
controls temperature by limiting the execution of a hot job
once it enters an alarm zone. This is achieved by giving
hot jobs fewer timeslices and giving cool jobs more times-
lices to execute. An ideal simulation study was performed
in [17] to show the benefits of interleaving hot and cool job
executions. However, neither performance study nor task
switching overhead was considered. In the 2D multicore do-
main, Choi et al. [5] compared and implemented three differ-
ent task schedulers, heat-balancing, deferred execution, and
threading with cool-loops, to leverage temporal and spatial
heat slacks among application threads. The proposed mech-
anisms are implemented in PowerPC5. Chong et al. [6] pro-
posed a 3D MPSoC thermal optimization algorithm that con-
ducts task assignment, scheduling, and voltage scaling for a
set of real-time workloads. The goal to slowdown the work-
loads as long as the deadlines are met is quite different from
our approach focusing on best performance and low thermal
profile.

3 Motivation and Rationale

3.1 Floorplan choices

There have been a number of 3D CMP floorplans, as
shown in Figure 1 (a)-(c), proposed in literature [1, 3, 18].
One observation we make is that for a 3D stacked chip to
be scalable in layer count, it is inevitable to encounter more
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than one active cores in one vertical core column, no matter
how the floorplan staggers them with cache banks (see Fig-
ure 1 (a)and (b)). Also, for core layers and cache layers that
are “sandwiched” as shown in (c), the cache layers almost
serve as heat conductance between the core layers. The heat
from any core can quickly propagate vertically to other cores
above and below. Extracting the commonality among vari-
ous 3D floorplans and projecting the future trend in integrat-
ing more layers, we choose to use the floorplan in Figure 1(d)
as a representative and also a more difficult case than earlier
floorplans. Here, there are two layers, and each layer con-
tains four cores. The cache banks are subsumed within each
core. Our results therefore serve as the lower bound of the
efficiency in thermal-aware task scheduling.
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Figure 1. 3D chip multiprocessor floorplan options.
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Figure 2. A face-to-back 3D die stacking structure
(adapted from [3]), and the corresponding thermal model.

3.2 Vertically adjacent layers have strong
thermal correlations

Similar to a regular 2D processor where heat dissipates
mostly in the vertical direction [12], 3D chips also have
better heat conductivity in vertical than horizontal direc-
tion. This implies that vertically adjacent cores have larger
thermal impact among each other than horizontally adjacent
cores. We will use a simple heat transfer model to explain
this phenomenon. Figure 2 shows a basic two-layer 3D chip
structure (adapted from [3]). We use a face-to-back bond-
ing technology for better scalability in layer count. The top
layer is thinned for better electrical characteristics and im-
proved physical construction of the through silicon vias for
power delivery and I/O. A thin die also has better heat con-
ductivity than a thick die such as the bottom die. As we can
see, the distance between the two active silicon dies are very
small (< 100um). This directly determines the high heat
conductivity between the two adjacent dies. The heat trans-
fer model for this 3D chip is shown on the right of the figure.



Here one die is modeled using one node. Its temperature and
power are denoted as 1" and P respectively. Ra; represents
the thermal resistance between the two nodes. Rq_yp repre-
sents the thermal resistance between the bottom node and the
ambient air. We omit the thermal capacitance here to model
only the steady state temperature (In our experiments later,
both thermal resistance and capacitance are modeled). Let
T4 and T5 be the temperature (relative to the ambient air) in
the bottom and top node respectively. Then,

Ti = Ri_amb(P1 + P2) (D

Ty = Ri_amb(P1 + P2) + Ro1 P )
Hence, the temperature difference between the two nodes is
Ry P>. From the parameter used in literature [3, 7, 12, 23],
R51is0.0108—0.0159K /W . P; represents the power gener-
ated by the entire die. This value is in the range of 40 — 70W
for a typical single-core processor. Therefore, the tempera-
ture difference between the top and bottom die is merely a
0.43 - 1.11K.
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Figure 3. Thermal correlation between adjacent dies.

Such a strong thermal correlation between the two adja-
cent dies can also be demonstrated from our simulation. Fig-
ure 3 shows a typical thermal profile of running eight threads
concurrently on eight cores as floorplaned in Figure 1 (the
experimental setup will be introduced in Section 5). Here
eight threads are eight different benchmarks chosen from the
benchmark suite we use. We refer to vertically aligned two
cores as a core stack. We can see from Figure 3 that there are
four distinct clusters of temperature curves. Each cluster has
drastically different variations from others. However, each
cluster has two lines that are very close to each other. The
four clusters correspond to the four core stacks in the floor-
plan. And the two lines in each cluster correspond to the tem-
perature variation of the two cores per stack. This experiment
shows clearly the strong correlation between adjacent dies,
as the temperatures for different core stacks hardly have any
dependencies among them, but within each core stack, the
temperatures of the two cores are strongly correlated. Such
correlation can still be observed for a 4-layer floorplan in
our experiments, as the intermediate thin cache layers serve
as good heat conductors among their vertical core neighbors.
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3.3 The die layers further from the heat sink
are usually hotter

Not only are the cores in a stack strongly correlated in
their temperatures, but also the ones on the top are usually
hotter than those near the bottom. This has also been noted
in the literature for steady state temperatures [2, 18]. For
clarity, we refer to the cores further from the heat sink as
“top” cores, as illustrated in Figure 2. The intuition is that
the bottom cores are closer to the heat sink, therefore, their
heat can be removed more quickly. Here we give a more an-
alytical analysis taking into account the thermal capacitance
as well.

Suppose in the thermal model depicted in Figure 2, the
thermal capacitance between the top die and ambient air is
C5. Then,

— dTs

=Py — (s 7

As mentioned earlier, P», which represents the power of a
modern processor, has a typical value range of 40 — 70W.
C' represents how quickly temperature changes from the top
die. For a thin die within 100pum in a 2-layer 3D chip, the
thermal capacitance is reported as 23.6 — 37.4mW-s/K [3,
23]. dT>/dt is the temperature change rate within a short
time. From our experience, and many other results in the
literature, temperature varies slowly with time. For example,
we observed a less than 6°C increase in temperature in a
8ms window using Hotspot 3.0.2 for 3D chips. Hence, the
right hand side of equation 3 is usually positive with a range
of 12 — 52.3W. Therefore, T5 is usually higher than 77 .

We also performed simulations to testify the above obser-
vation. We intentionally put the coolest job (lowest average
temperature in a 2D chip) in our benchmark suite on the top
die, and the hottest job on the bottom die in a 2-core stacked
3D chip setting. The temperatures of the two cores are shown
in Figure 4. We can see that the top core has higher temper-
atures than the bottom layer almost always.
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Figure 4. Demonstration of the top die being hotter than
the bottom die.

4 Scheduling algorithms

The strong correlations among the cores in one stack leads
to a scheduling that considers the entire stack as a whole.
The fact that top cores are hotter than the bottom cores sug-
gests that threads within a core stack should be placed with
care. Furthermore, we take advantage of this observation
and introduce a new voltage/frequency scaling mechanism



that results in the fastest temperature drop within the short-
est amount of time, once the peak temperature within a stack
reaches the thermal threshold. In this section, we present a
sequence of thread scheduling algorithms, starting from the
simplest baseline algorithm to our proposed algorithm.

4.1 The baseline

We use the Linux 2.6 scheduler [4] as our baseline al-
gorithm. In this scheduler, each core has a task queue that
keeps track of all running tasks on that core. Each queue
contains two priority lists: active and expired list. At run-
time, the core selects to execute the tasks in the active list.
Once a task uses up its time quota, it is moved to the expired
list. If all active tasks are in the expired list, an epoch has
finished, and the scheduler iterates the process by swapping
the two lists. Each task in the active list has 10 — 200ms of
CPU cycle quota, depending on its own priority. By default,
the core switches to a different task every 100ms. Thus, in
our 8-core 3D chip, upon the scheduling interval of every
100ms, the scheduler selects a task from each core’s active
list according to its original policy, and then assigns it to a
different randomly selected core.

This algorithm is simple, and has low context switch over-
head compared to other algorithms introduced later. How-
ever, it may run into the risk of putting two hot tasks into the
same core stack, which may lead to extremely high tempera-
ture that results in harsh voltage/frequency scaling penalty to
both tasks. Moreover, once a poor scheduling has been made,
it stays in that condition for a long period of time (100ms un-
til the next scheduling time).

4.2 Random (Baseline+)

A quick fix of the baseline scheduler is to increase the
scheduling frequency. In the normal Linux OS, any context
switch interval between 10 — 200ms may be used [4]. A
minimum of 10ms is recommended to avoid unnecessary
context switch overhead. We used 8ms as our scheduling
interval mainly due to restrictions in collecting the power
traces using performance counters. Also, 8ms is close to
the thermal constant of the core under testing. However, the
algorithm can be directly applied to any scheduling interval
recommended in Linux such as 10ms if those restrictions
do not apply. Further, we take into account the extra context
switch overhead using an 8ms scheduling interval during our
experiments. We performed a real machine measurement on
the time required to perform a single context switch. For an
8ms interval, it is ~ 0.44%, a mild penalty that can be easily
offset by the performance gain from a better scheduling.

With the improved baseline scheduling algorithm (termed
Random to reflect the scheduling decision), the chip can exit
a poor thermal condition due to an unwise scheduling more
quickly, resulting in less harmful impact.

4.3 Round-Robin

The Random scheduler may result in uneven distribution
of power and temperature as tasks are assigned randomly to
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any core. A Round-Robin scheduler (RR) can overcome this
by rotating tasks among cores in a fixed order every 8ms.
This can help balancing the power and temperature distribu-
tion in the long run.

4.4 Temperature balancing by core

An alternative way to balance the heat among the cores
is to explicitly arrange the tasks according to their power
consumption and the core temperatures. Essentially, a high
power task should be assigned to a low temperature core. At
each scheduling point, the scheduler sorts the power con-
sumption of all tasks and the current temperature of each
core. It then assigns the task with the highest power to the
coolest core, the 274 highest power to the 27d coolest core,
and so forth.

Such a mechanism should perform a better job in balanc-
ing the temperature distribution among cores than RR. How-
ever, recall that there is a strong thermal correlation between
two adjacent layers, and the cores in one stack have only a
small difference in temperatures. This implies that if a core
stack contains the hottest core, it probably also contains the
274 hottest core. When the temperature balancing-by-core
algorithm is applied, the tasks with the lowest and 2% low-
est power are scheduled to this hot core stack. Similarly, the
tasks with the highest and 2" highest power will be sched-
uled to the coolest core stack. After that, the hottest/coolest
core stack will have the largest temperature drop/rise, which
may lead to temperature oscillations and task thrashing be-
tween those two stacks, potentially leading to more thermal
emergencies. In that case, a RR, or a Random algorithm may
be a better solution.

Another issue with this mechanism is how the power con-
sumption of each task is obtained. Recently, there has been
proposals on obtaining the runtime power consumption of an
application through probing the performance counters in a
processor [14]. We also adopt this approach and assume that
each core is equipped with such counters that can be used
for power estimation. Note that our power estimation need
not be very accurate, as we only need the sorted order of the
power, not the absolute values.

4.5 Temperature balancing by stack

The core-based temperature balancing algorithm can
create thrashing of tasks, as we analyzed earlier. This is be-
cause the algorithm, while trying to balance the temperatures
among all cores, treats each core independently. However,
as adjacent dies have strong temperature correlations, cores
in the same stack should indeed be considered together.
Intuitively, we can assume that each stack is a “super” core
that has cores with similar temperatures. Hence, scheduling
of the tasks within three dimensions can be reduced to
scheduling of “super” tasks within two dimensions. Ap-
parently, a super task is a set of tasks that are assigned to a
super core, i.e., a core stack.

Super tasks. Let L be the number of layers in a 3D chip, and



N be the number of cores per layer. As a super core contains
L cores, a super task should also contain L tasks and there
are N super tasks. The scheduling of N super tasks among
N super cores is now simply a 2D problem, where a balanced
temperature distribution is desired. Hence, we first let each
super task have about the same power, and then balance the
temperatures among super cores by scheduling a relatively
high power super task onto a relatively cool super core.

To balance the power among super tasks, we first sort
the powers of all N x L tasks. Let B;_n be N initially
empty bins. We will fill powers into these bins such that
each bin will contain L tasks, and the total powers of each
bin are about the same. In descending order of powers, we
put each power value into a bin that has the smallest current
total power among all bins. This policy attempts to reduce
the gap between the smallest and the largest total power in
each step, in order to generate a relatively balanced total
power across N bins. Finally, all powers within a bin form a
super task. We remark that our policy is only a heuristic as
an optimum solution may require an exhaustive search. We
aim for a simple, yet low-complexity heuristic because the
scheduler makes the decision at runtime.

Task distribution among and within super cores. The goal
of producing super tasks is to generate relatively balanced
power distribution across super cores. Once the super tasks
are formed, we sum up the temperatures of all L cores in
a super core, and sort them. Similar to the previous proce-
dure, we assign the hottest super core with the super task of
the lowest power, and so on. Figure 5 shows an example of
scheduling 8 tasks onto a 2-layer, 4-core-per-layer, 3D chip.
Step (a)-(c) depict the procedure except for how tasks within
a super task are allocated onto different cores within a stack.

As discussed earlier, the top cores are usually hotter than
the bottom cores in a core stack. Hence, we should allocate
tasks of higher powers onto the bottom cores for better heat
removal. For example, if the temperatures of the cores from
bottom up are strictly increasing, then the tasks allocated to
them should have strictly decreasing powers from bottom
up. Figure 5’s last step illustrates this policy in a two-layer
floorplan

Scheduling procedure. To sum up, on every scheduling in-
terval (8ms in our case), the scheduler performs the follow-
ing steps:

1. Sort the powers of all tasks. Form super tasks. Sort the
power sums of the super tasks from low to high.

2. For each super core, sum up the temperatures for all
cores. Sort the temperature sums for all super cores

from high to low.

3. Create a sequential one-one mapping between the
sorted super tasks and sorted super cores.

4. In each super core, allocate the tasks in their increasing
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Figure 5. The temperature balancing-by-stack algorithm.

power order onto the cores with decreasing temperature
order.

Our algorithm involves mostly sorting of the powers
and temperatures.  Therefore, its time complexity is
O(NLlog(NL)).

A new thermal management scheme. A critical component
in company with our proposed scheduling algorithm is how
to handle thermal emergencies once a core temperature in-
creases above the hardware threshold. Conventionally, such
a core will be put to a low power state through DVFS. In a 3D
chip, since the top cores are usually hotter, thermal emergen-
cies usually occur in the top layers. Moreover, our scheduler
puts cooler tasks on the top layers, which means that those
tasks are more likely to undergo DVFS.

The problems of such conventional thermal management
are twofold. First, the cooler tasks could be penalized more
often than the hotter tasks. For fairness, hotter tasks should
be restrained by the system due to their potential harmful im-
pact to the chip. Second, applying DVES to the cooler tasks
on the top layers does not yield the same efficiency as in a
2D chip. This is because it takes longer time to cool down
the top cores due to their high power neighbors at the bot-
tom. Therefore, a more rational thermal management should
employ the scalings to the source of an overheating — the
bottom cores that are running high power tasks.

More formally, when core A of a super core S is over-
heated, the thermal management will select core B with the
highest power in S to engage DVFS. B may or may not be
identical to A. Such a thermal management strategy solves
the two above problems effectively. First, cool tasks are not
penalized more often than hot tasks because if a cool task
becomes a temperature victim, the hot task that caused the



problem is penalized. Second, all cores in S, including A and
B, are quickly cooled because the total power of S is reduced
with the maximum strength. For example in Figure 5, if
the super core containing the 20W-40W super task tripped a
thermal emergency on the 20W core, and suppose the DFVS
reduces the power of a core by half, then our scheme will re-
duce the total power of this super core to 20 +40/2 = 40W,
while the conventional thermal management will only reduce
it to 20/2 + 40 = 50W. As we can see, if DVFS is applied
to a relatively low power task, the result is inferior because a
task is being penalized, but the total power in the chip is not
reduced as much. This is often the case for the temperature
balancing-by-core scheduler as it tends to allocate cool tasks
on the top layer (since it is usually hotter).

As a result, our mechanism brings down the temperature
of the hotspot at the highest speed, resulting in minimum
penalty to the overall performance of this super core.

5 Experimental Methodology
5.1 Floorplan setup

As discussed in Section 3.1, our experiments are con-
ducted on a floorplan as depicted in Figure 1(d). In this floor-
plan, there are two layers with four cores on each layer. We
simulated 8 P4 Northwood cores in 3.0GHz clock frequency.
Each P4 core has a size of 1.144 x 1.144 e¢m?, so the die
size is 2.289 x 2.289cm?. Other physical parameters of the
floorplan are similar to [3].

5.2 Simulation tool and power trace collection

We used Hotspot [12] version 3.0.2 as our simulation tool.
We chose the grid model to experiment our 3D floorplan as
shown in Figure 1(d). We substituted the 4th-order Runge-
Kutta method with TILTS [11] to generate accurate temper-
atures at high speed.

As mentioned earlier, we adopt the recently proposed per-
formance counter based method [14, 24] to collect runtime
hardware activities of a program on a real machine. We ob-
tained the power model (calibrated) from [14, 24] to produce
long power traces for programs from a Linux machine with
a Pentium 4 core. The traces contain powers for each func-
tional unit, and all traces are complete execution of the pro-
grams in SPEC2K.

For scheduling algorithms that require power informa-
tion (Balancing-by-core and Balancing-by-stack), we use the
power in the last 8ms interval to predict the power in the
next interval. That is, the scheduling decisions are based on
local power information. The scheduler needs not to know
whether a program is globally hot or cool. Also, we use
the last power predictor in the scheduler due to its simplic-
ity. We experimented with more complex power predictors
and found that their overhead, both in time and space, is not
appropriate for on-line scheduling [26]. Most of the bench-
marks exhibit ~ 5% power mis-prediction rate. Our exper-
iments show that an error within 5% makes last power pre-
diction accurate enough for the scheduler.
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5.3 Benchmark classification

We first ran the power traces of each benchmark to obtain
its temperature profile as shown in Figure 6. We next clas-
sified these benchmarks as hot(power-intensive), cool(power
non-intensive), and mild(between hot and cool). After that,
we created 9 workload combinations, as listed in Table 1,
each with one or more hot tasks. The workload mixes with-
out hot tasks are less thermally critical and thus, are not con-
sidered here. In Table 1, when the number of benchmarks
in one combination is less than 8, copies of the benchmarks
will be created to ensure that every core in the floorplan has
one task to run.
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Figure 6. Temperatures of the benchmark in SPEC2000

Table 1. the combination of benchmarks in simulation

HC crafty mcf
HC sixtrack swim
HHCC bzip twolf art ammp
HMMC wupwise equake applu ammp
HM gzip mgrid
HM parser equake
HHMM crafty gzip mgrid apsi
HHMMMCCC | gap twolf equake mgrid vortex ammp art swim
HHHHCCCC bzip gzip sixtrack wupwise ammp art mcf swim

5.4 DVFS implementation and context switch-
ing overhead

We modified Hotspot to incorporate the hardware DVFS.
Every 80us, 1/100 of a scheduling interval, Hotspot checks
if the temperature has trespassed the threshold. If so, the
voltage is lowered from 1.3V to 1.1V and the frequency
is reduced by 4/5. We charge 30 ps of overhead on every
voltage/frequency transition. During a DVFS scaling, if the
temperature persists above the threshold after one 80us, the
scaling continues and no additional DVFS switch overhead
is charged. We do not choose multi-level DVFS scheme to
avoid unnecessary switch overhead in every level transition.

Other overheads in our proposed scheduler is mainly the
increased number of context switches. We measured this
time in a Linux machine by enforcing a large number of con-
text switches between two tasks, and calculating the average
switch time from the increased execution time of these two
tasks. This quantity in our test machine is ~ 35us.

Finally, our DVFS trigger temperature is set at 108°C be-
cause a 3D chip generates higher temperature than does a
planar chip which typically engage DVFS around 80°C.



6 Results and Analysis

The metrics we use to evaluate scheduling algorithms are
peak temperature of cores, the reduction in time that a task
stays above the thermal threshold (termed ‘“thermal emer-
gency reduction” ), and performance improvement in terms
of total execution time reduction of all tasks. The peak tem-
perature indicates how well a scheduler can alleviate the
worst cases of the thermal condition on-chip. The thermal
emergency reduction indicates the capability of a scheduler
to control the temperature below the hardware threshold. The
performance improvement is the result of both the thermal
emergency reduction and the efficiency of lowering the tem-
perature during an emergency.

6.1 Thermal behavior comparison of different
schedulers

First, let us see a qualitative comparison among differ-
ent schedulers. Figure 7 shows a close-up of temperature
traces for 8 cores running the HMMC workload under differ-
ent scheduling algorithms. Here, we did not enforce DVFS
at the threshold because otherwise, many high temperature
curves would be capped at the threshold. As we can see, the
baseline algorithm can result in a large temperature gradient
across different core stacks. A ~ 35°C difference between
the hottest and the coolest core stack is observed in this fig-
ure. For Random, RR and balacing-by-core scheduler, the
temperature gradient within the 3D chip gradually reduces
because their scheduling interval is 8ms, much smaller than
that in the baseline. Temperature gradient is between 4-
15°C in these schedulers. Finally, our proposed balancing-
by-stack creates the smallest temperature gradient among all
cores. The temperature curves of all cores almost overlap
entirely. The width of the temperature band is < 2-3°C'
only, indicating an excellent balance of temperature among
the cores.
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Figure 7. A zoom-in of temperature variation over time
under different scheduling algorithms.
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6.2 Peak temperature reduction

Balancing the temperatures across the chip can reduce
the peak temperatures among all cores. Figure 8 shows the
peak temperature generated from each scheduling algorithm
assuming there are no DVFS employed. We can see that
baseline algorithm can generate the highest peak tempera-
ture of 145.08°C'. The Random, RR, balancing-by-core and
balancing-by-stack can reduce the peak temperature better
and better. Our proposed balancing-by-stack scheduling gen-
erates the lowest peak temperature of 121.3°C, nearly 24°C
lower than the baseline.

Peak temperature

145.08

D 122.17 121.32 121.3

Random RR

)
20
58

135 —
125
115 +—
105

Temperature(C)

Baseline Balancing-

by-core

Balancing-
by-stack
Scheduling algorithm

Figure 8. Peak temperatures of different scheduling algo-
rithms.

6.3 Thermal emergency reduction

A direct benefit from the scheduling the tasks is the re-
duced thermal emergency time. Note that this metric does
not necessarily correlate with the peak temperatures reported
in Figure 8, which are collected under no DVFS. Figure 9
shows thermal emergency time reductions from different al-
gorithms, normalized to the baseline case. As we can see, the
Random, RR and Balancing-by-core can reduce the emer-
gency time by 34.45%, 39.61% and 30.14% on average re-
spectively. Our Balancing-by-stack algorithm consistently
removes the most emergency time. An average of 53.98% re-
duction is observed, with a range of 21.37%-82.28%. Also,
the Balancing-by-core algorithm turns out to introduce more
time in emergency than Random and RR algorithms even
with lower peak temperature. This is because (1) it tends
to create temperature oscillations among core stacks as dis-
cussed in Section 4.4; and (2) it tends to allocate cooler tasks
on the top layer where DVFS is usually engaged for a long
time. Therefore the overall power in the entire chip is not re-
duced as much as in other schedulers where high power tasks
can be scaled during emergencies.
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Figure 9. Thermal emergency reductions of different
schedulers.

6.4 Performance improvement

Corresponding to the thermal emergencies removed, our
proposed Balancing-by-stack algorithm achieves the best
performance speedup among all algorithms discussed. This
is shown in Figure 10. The performance is the total execu-
tion time of all 8 tasks in a workload. The results are normal-



ized to the baseline performance. On average, the Balancing-
by-stack achieves a 7.22% speedup, while the Random, RR,
and Balancing-by-core algorithm achieve 2.60%, 2.73% and
1.35% improvement respectively. This is primarily due to
the amount of thermal emergencies our algorithm removed,
as well as the high efficiency in handling them with our new
thermal management mechansim.

In some cases, the performance may not improve even
if the thermal emergency time is reduced. This could hap-
pen when the temperature floats around the thermal thresh-
old. In such a scenario, there could be many DVFS trig-
gered, which introduce high transition penalty and overkills
the gains from scheduling. For example in the HHMM work-
load, the RR removes 5.14% of thermal emergency time
in baseline, but its performance is 0.68% worse than the
baseline. Our Balancing-by-stack consistently removes more
thermal emergency time than other schedulers and therefore
achieves the most performance improvement.

Performance improvement

[@random m roundrobin Oby_core O by_stack |

il

N
-1.00%
so00% B e & & @ﬂ NG o Qo

O
-5.00%

9.00%
7.00%
5.00% -
3.00%
1.00%

©

Normalized to baseline(%)

Figure 10. Performance speedups of different scheduler.

7 Conclusions

‘We have demonstrated in this paper that OS task schedul-
ing is an effective approach to improving the thermal con-
ditions in 3D chip multiprocessors. It can reduce the peak
temperature within the chip, reduce the thermal emergency
triggering amount, and improve the overall performance of
the executing tasks. In particular, we have shown that our
proposed scheduling mechanism, Balancing-by-stack, out-
performs other intuitive algorithms because of the following
three properties. First, our scheduler takes into account the
high thermal correlations among the layers in one core stack,
and schedules tasks in bundles. Second, within every stack of
cores, hot tasks are allocated to the layers that are closest to
the heat sink for best heat dissipation. Third, upon a thermal
emergency, power scaling is engaged in a core stack whose
temperature exceeds the threshold, and to the core that gen-
erates the largest power in this stack. This can quickly cool
down the core stack, reducing the performance penalty im-
posed to the task.
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