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Abstract 

Geographical Information Science is challenged by an unprecedented increase in the availability of 

tracking data related to human and animal movement, typically captured through location-aware portable 

devices such as GPS receivers. Capture of trajectory data at fine temporal and spatial granularities has 

allowed with the representation of detailed geospatial lifelines, opening new options for analysis. In this 

respect we propose a dynamic perspective to analysis which, in contrast to summary trajectory statistics 

on speed, motion azimuth or sinuosity, that refers to the variability of motion properties throughout the 

developing lifeline. Four specific lifeline context operators are identified in this paper: ‘instantaneous’, 

‘interval’, ‘episodal’ and ‘total’. Using this framework, we discuss standardisations that integrate the 

extended set of motion descriptors within various temporal and spatial frames of reference and the 

proposed lifeline context operators and standardisations are illustrated using high resolution trajectory 

data obtained from homing pigeons carrying miniature global positioning devices. 

Keywords. Geospatial lifelines, mobile trajectories, movement, context operators, time geography. 

1. Introduction 

Opportunities to trace individual movement have grown in tandem with the development of electronic 

transaction networks, location-aware devices and surveillance systems, all capable of tracking people 

(Mountain and Raper 2001b), animals (Hulbert 2001) or vehicles (Wolfson, Sistla, Chamberlain, and 

Yesha 1999). Generically, this development has offered an opportunity to move ‘beyond the snapshot’ 

(Chrisman 1998) with respect to our understanding of processes involving individual movement. 

Specifically, the recent arrival of devices capable of the low cost capture of high resolution locational data 

now allows the widespread construction of individually-based geospatial lifelines (Mark 1998). Such 

individual lifelines presage a new era of movement analysis (Eagle and Pentland 2005) in which scientists 

from various research fields previously hampered by sparse and random movement observations can now 

be hard on the heels of their subjects as they move in space and time. 

Yet while there is a growing commitment of resources to the large-scale recording of paths, the 

analysis commonly conducted with trajectory data remains fairly limited in scope and sophistication 

(Wolfer, Madani, Valenti, and Lipp 2001). In disciplines outside of geography which do not commonly 

use geospatial methods or theory this may be due to a lack of awareness and understanding of the power 

of spatial analysis and GISystems, and within geography GIScience’s’ fetish for the static may be a factor 

(Raper 2002). What ever the cause, GIScience faces a challenge to develop sophisticated analytical tools 

that integrate geography’s spatial awareness with its long-term experience in processing large spatio-

temporal data bases. This paper discusses opportunities and shortcomings of analysing lifeline data from a 

GIScience perspective, specifically in the situation where three spatial dimensions are involved and where 

movement is largely unfettered. 

Clearly, the representation and analysis of geospatial lifelines challenge the GIScience community 

with respect to procedures for aggregation, generalisation, uncertainty and interpolation. Aggregation and 

generalisation of lifeline data can be considered to be important tools for coping with the voluminous 

outputs of movement-related agent-based simulations, for example with respect to emergency planning 

(Batty, Desyllas, and Duxbury 2003) or transportation planning (Nagel, Esser, and Rickert 2000). 

Uncertainty and generalisation of lifeline data is of interest for designers of location based services (LBS) 

analysing the lifelines of people tracked by location aware devices (Duckham, Kulik, and Worboys 2003; 

Mountain and Raper 2001a; Smyth 2001). The more basic derivation of actual motion descriptors, such as 

speed, motion azimuth, or path sinuosity, also merits attention. Such descriptors build, the underlying 

basis for attempts to investigate the similarity of trajectories (Sinha and Mark 2005), which is an 
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important task in spatio-temporal data mining and geographic knowledge discovery (Miller and Han 

2001), and may well pay dividends in the fields of spatialisation (Skupin and Fabrikant 2003), eye-

movement analysis (Fabrikant 2005) and the evolution of semantic relationships in cognitive spaces (Pike 

and Gahegan 2003). 

Lifeline data analysis is also relevant to a range of applied research fields outside of geography itself 

or in cognate areas, such as animal biology and biogeography. In behavioural ecology, the key factors in 

avian navigation are still not completely understood (Bonadonna, Bajzak, Benhamou, Igloi, Jouventin, 

Lipp, and Dell'Omo 2005; Wiltschko and Wiltschko 2003), but Steiner et al. (2000) identify the analysis 

of the homing routes of racing pigeons as the optimal method for almost any study in this field. Advanced 

path analysis is furthermore considered to be a crucial obligation for the interpretation of behavioural 

experiments conducted with genetically modified animals, for example for water maze experiments with 

mice exploring spatial learning (Wolfer, Madani, Valenti, and Lipp 2001). Similar analysis is also of 

increasing interest in agricultural science, contributing to the development, for example, of optimal 

grazing strategies for cattle with respect to livestock management (Ganskopp 2001). Research involving 

video surveillance (Ng 2001; Porikli 2004; Shim and Chang 2003) or sports scene analysis (Moore, 

Whigham, Holt, Aldridge, and Hodge 2003) are further examples where disciplines exhibit deep interests 

in individual trajectories. 

The distinctive feature of high resolution tracking data is that they allow the tracking of individuals 

along an actual movement path, leaving little need for interpretation between sparse observation points. 

Thus, at almost every instant along the lifeline we can robustly determine the individual’s current 

movement properties, such as speed, acceleration, motion azimuth, path sinuosity, as well as generate 

even more complex motion properties. Section 2 reviews work in this area, and elaborates the nature of 

the existing analytical tool set. In section 3.1 we propose lifeline context operators to derive motion 

descriptors along dense trajectories, and adopt a dynamic analysis perspective for this. Section 3.2 

rehearses a number of well known motion descriptors such as speed or motion azimuth, and introduces 

additional measures before discussing their computation as lifeline context operators. Section 3.3 explores 

the wide variety of analytical options that can be deployed by applying various standardisations for 

statistical analysis or using different aggregations of the tracking data. To illustrate these possibilities the 

trajectories of homing pigeons are identified as a research milieu (section 4), and data from this area are 

utilised to demonstrate and critique the techniques (Section 5). The paper concludes in section 6 with a 

brief review of prospects. 

2. Related Work 

There is ample research on deriving overall descriptors of movement trajectories, such as time total, flying 

time, airline distance, net displacement, flight path, flight speed, bias from airline (e.g. Berger, Wagner, 

and Wolff 1999; Steiner et al. 2000; Turchin 1998; Wolfer, Madani, Valenti, and Lipp 2001). In avian 

navigation research, where detailed tracking was impossible until recently, the recording of the vanishing 

bearing of homing pigeons was used as a ‘whole flight’ indicator, since this direction was believed to be 

closely related to their loft’s direction (Steiner et al. 2000; Wiltschko and Wiltschko 2003). Further 

summary trajectory descriptors are the various measures describing the sinuosity or tortuosity of 

trajectories (Benhamou 2004; Claussen, Finkler, and Smith 1997). 

Much less work has been done on describing movement with respect to instantaneous or ongoing 

characteristics of the trajectory, although the database community, especially people working on Moving 

Object Databases (MOD), have contributed with specific data models and query languages designed to 

return the state of a moving object at a given time, with ‘state’ referring to location, speed, or even 

direction (Sistla, Wolfson, Chamberlain, and Dao 1997; Wolfson and Mena 2004). Yet it is only recently 

that the need to move further beyond summary trajectory measures, and to dynamically explore the 

detailed information stored in individual lifelines, has been acknowledged in the behavioural ecology 

literature (Benhamou 2004; Bonadonna et al. 2005). Benhamou (2004) for instance is exploring in-path 

variations of turning angles by using a window moving along the trajectory to derive the mean turning 

angle of the segments within that window. However, while a moving window is a straightforward device 



4  Movement Beyond the Snapshot  Dynamic Analysis of Geospatial Lifelines 

 

for deriving a range of motion properties along a trajectory, it fails to address the full complexity of dense 

spatio-temporal data. Mennis, Viger, and Tomlin (2005, p. 18) echo this situation in respect of the 

potential for additional approaches, noting that, it is very surprising that ‘despite the growing volume of 

research on spatio-temporal data models over the past dozen or so years, the extension of map algebra to 

the temporal dimension has been largely ignored by the spatio-temporal GIS research community.’ These 

authors propose ‘cube functions’ as an extension of map algebra for three dimensional spatio-temporal 

snapshot data (Mennis, Viger, and Tomlin 2005) or even multidimensional data (Mennis, Leong, and 

Khanna 2005), an approach also developed and critiqued in the context of movement and possible 

presence by Huisman (2006). 

This paper seeks to explore the ground between the simple global analysis of movement paths and the 

more complex creation of spatio-temporal algebras by extending the dynamic analysis tools that combine 

aggregation, generalisation and information on sequence to generate new movement descriptors. In doing 

this we acknowledge both power and danger of using multiple temporal granularities and temporal 

zooming in the process of spatio-temporal knowledge representation. Theoretically recognised (Hornsby 

2001; Hornsby and Egenhofer 2002), the actual algorithmic challenges of handling variable temporal 

granularities are sparsely addressed and the impact of different granularities on analyses is, as ever, a 

complex issue and under-researched. Dutton’s (1999) work is one of a small number of exceptions by 

addressing line sinuosity as a way to investigate scale-specificity and characteristic points for line 

generalisation. 

While more general approaches to derive procedural motion properties are also relatively few, a 

number of initiatives have encountered the issue of movement description. Dykes and Mountain refer to 

lifeline segments primarily for visualisation and exploratory analysis (2003), and propose the notion of 

episodes as well as a number of episode summaries and indices of movement, including absolute speed, 

direction, sinuosity and measurements of their variations. Mountain and Raper (2001a) also address 

summaries of point data histories for tailoring the information returned to a user from LBS. They also 

propose using rapid changes in speed and motion direction to identify breakpoints in lifelines, ultimately 

in order to sequence lifelines into episodes. Smyth (2001) presents knowledge discovery algorithms based 

on motion descriptors to design better LBS. These data mining algorithms attempt to assign predefined 

activities to segments of trajectories by analysing their measurable motion descriptors (such as speed, 

heading, acceleration). Brillinger et al. (2004) also address motion descriptors for exploratory purposes. 

They compute speed and predominant motion azimuth of moving elk and deer at various sub-lifeline 

granularities, analysing diurnal and seasonal motion patterns. Ng (2001) proposes an algorithms to detect 

outliers from a set of trajectories recorded with surveillance video footage. One of his algorithms detects 

outliers with respect to their motion speed characteristics. Finally, Laube et al. (2005) use motion 

descriptors in order to detect predefined motion patterns. They propose ‘detached attribute functions’, a 

technique to derive motion descriptors of lifelines at arbitrary given times irrespective of fix times. 

Fundamental to all these ideas is aggregation and the simplified representation of the lifeline. Having 

defined a specific measure, the next step in the analytical process is to superimpose structure on the 

tracking data to comply with that measure’s needs, since each parameter may require different approaches 

to aggregating the recorded fixes (Wolfer, Madani, Valenti, and Lipp 2001). The most fundamental 

analytical context for tracking data is the single fix, with its most important feature being the location in 

the embedding geography. Referring location to the fix’s encompassing zone, its proximity to a facility, 

or position on a linear feature is commonplace in mobile applications related to fleet management, vehicle 

guidance, prisoner monitoring or LBS. 

The most obvious and embracing aggregation is the global one, grouping fixes into individual 

trajectories. Analytical tasks on individual trajectories range from visualisation (Kraak and Koussoulakou 

2004; Zhao 2003) to the identification of behavioural episodes (Dykes and Mountain 2003) to quite 

complex exploratory analysis approaches seeking to identify repetitive patterns (Imfeld 2000). A 

standardised measure of the distance or time travelled in-path may furthermore be of interest in 

investigating the navigational strategy ‘path integration’ or ‘dead reckoning’ respectively, i.e. the 



Submitted to CEUS  5 

integration of walking speed and angular variation along an outbound path in order to construct a homing 

vector (Merkle, Rost, and Alt). 

The most complex level of aggregation is required for the analysis of the lifelines of an entire 

population of n individuals. Occupancy maps (Steiner et al. 2000; Wolfer, Madani, Valenti, and Lipp 

2001) or continuous density surfaces (Dykes and Mountain 2003; Kwan 2000) give a summary overview 

of the recorded space-time activity, not only of populations of moving objects but also of individuals. 

Brillinger et al. (Brillinger, Preisler, Ager, and Kie 2004) use a two-dimensional spatial frame of 

reference to explore a continuous field of movement properties, in their case the diurnal variation of 

movement azimuth of deer. Kwan et al. (2000) introduced another means of imposing structure to a 

population of lifelines. Their method for lifeline standardisation aligns all lifelines along a semantic axis, 

for example ‘work location-home location’ in order to uncover distinctive outliers with respect to the 

commuting pattern of the whole population. Finally, coming back to geography, the flow metaphor has 

been used to aggregate the movement of large numbers of tourists with respect to two-dimensional and 

three-dimensional mapping and exploratory analysis (Forer, Chen, and Zhao 2004; Forer and Simmons 

2000). 

3. Methods 

This section introduces a set of analytical approaches for lifeline data. Mark (1998, p. 12) defines a 

geospatial lifeline as a “continuous set of positions occupied in space over some time period. Geospatial 

lifeline data consists of discrete space-time observations of a geospatial lifeline, describing an 

individual’s location in geographic space at regular or irregular intervals”. All methods introduced in this 

section apply for a data set consisting of n individuals, mn fixes of the form (x, y, (z,) t) per lifeline, and a 

total of p fixes per population. The individual trajectories need not be equal in length nor start or end at 

the same time. The straight line connector between two consecutive fixes is referred to as step. The steps 

of a trajectory can be of equal or unequal lengths. If the tracking device samples at constant sampling 

intervals and the object moves at variable speeds, the step lengths are unequal. If, by contrast, the device 

records a fix only after having travelled a certain distance, step lengths may be equal. Figure 1 illustrates 

a typical geospatial lifeline connecting an origin O with a destination D.  

 

Place Fig. 1. approximately here 

3.1. Lifeline Context Operators 

Individual lifelines allow a dynamic perception of movement, providing the detailed data to investigate 

movement properties at arbitrary instantaneous times along given lifelines. Analysis of lifelines normally 

involves use of movement descriptors such as speed, acceleration, movement azimuth, and sinuosity. An 

analogy to spatial analysis may help to illustrate the analytical opportunities inherent in individual 

lifelines. Spatial variables may be investigated using local, focal, zonal, or global context operators 

(DeMers 2002; Tomlin 1990; Worboys and Duckham 2004). Individual lifelines permit modelling of the 

movement descriptors described above as one-dimensional continuous streams, very much like two-

dimensional continuous fields. Thus, in derivation of movement descriptor measures d along a lifeline, the 

two-dimensional context operators can be adopted for one-dimensional lifelines (figure 2) 

• instantaneous (“local”). Derive dt = d(t) at an infinitesimal instant in time. 
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• interval (“focal”). Use a moving interval (moving temporal window) to investigating a fixed 

length segment of the lifeline, computing dint = d(t ± t) respectively. 

• episodal (“zonal”). Preliminary analysis may result in a partition of the lifeline in delimited 

episodes, each represented by a movement descriptor deps = d[tbegin, …, tend]. 

• total (“global”). Movement descriptors can be computed for whole trajectories as dtot = d[t0, …, 

tm]. This is the traditional static perspective of lifelines. 

 

Place Fig. 2. approximately here 

. 

Computing instantaneous movement descriptors often requires in practice the inclusion of at least two 

consecutive fixes or a short segment of the lifeline. Deriving speed and azimuth from given fixes requires 

at least two consecutive fixes, acceleration three. A measure such as sinuosity is intrinsically an interval 

measure, requiring a certain number of fixes or a segment of certain length to produce reasonable results. 

However, the concept of a smoothing moving window of an interval function moving along a lifeline may 

be adopted for the derivation of all movement descriptors listed above, for example, in the case of noisy 

or fragmentary data. 

The length of the segment for interval analysis can be delimited in various ways, depending on the 

given tracking data and the research question. The interval can be given as a fixed time interval dint = d(t 

± t). This procedure may include variable numbers of fixes if the fix sampling is irregular. The same is 

true if the length of the segment is held constant. If the computation of the movement descriptor at that 

time requires a fixed number of variables, the number of included fixes can be used to define the segment 

dint = d(fix(t) ± i fixes) (figure 2). 

The sampling times at which d is computed, need not to be restricted to the sampling times of the 

fixes. Many analytical techniques require for instance equal step lengths (Benhamou 2004), a feature that 

is hardly found in tracking data that often feature a constant sampling time. Thus, interval functions may 

be used to interpolate between known fixes (referred to as ‘re-discretisation’ in the biological literature 

(Claussen, Finkler, and Smith 1997)) or to aggregate a set of fixes. 
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3.2. Computing Selected Lifeline Context Operators 

Just as with spatial-context operators, the variability of possible lifeline-context operators seems to be 

unlimited. It is not the intention of this work to provide an all-inclusive overview of lifeline context 

operators. In contrast, this section discusses the potential of lifeline context operators, referring to both 

well known and new movement descriptors. Whereas some movement descriptors (e.g. speed, 

acceleration, and movement azimuth) can be computed using instantaneous, interval or episodal 

operators, others intrinsically require at least interval operators (e.g., sinuosity). 

Location. At a first glance it may come as a surprise to classify ‘location’ as a movement descriptor. 

However, keeping in mind that analysis of movement descriptors may be performed independently from 

the recorded fixes, lifeline-context operators may be used to interpolate a hypothetical location of an 

object at a time it had not been fixed in the first instance. Such an interpolation may use a simple interval 

average or an interval mean of x and y of the involved fixes. Furthermore, using distance-weighted 

averages it is possible to underline the importance of proximal over distal fixes. An episodal or even total 

representation of location may refer to the centroid of an episode or the entire trajectory. 

Speed and acceleration. In kinematics the average velocity vav is defined to be the vector quantity 

equal to the displacement divided by the time interval (Sears, Zemansky, and Young 1987). The 

instantaneous velocity of a moving object at a specific point in the path, or at a specific instant of time, is 

called the instantaneous velocity. This parameter is defined in magnitude and direction to be the limit 

approached by the average velocity as the two specified fixes near each other. However, most 

applications use the notion of speed as the scalar magnitude of the instantaneous velocity, computing it 

from the two closest fixes to query time qt. 

v = d / dt      (1) 

whereas d represents the distance travelled between the two fixes and dt refers to the elapsed time. 

Quite similarly, instantaneous acceleration has a scalar and a vector component. However, the simplest 

computation of instantaneous acceleration considers the change of speed of two consecutive steps v, 

three consecutive fixes respectively. 

a = v / dt      (2) 

Speed and acceleration are well suited for interval and episodal operators such as average, weighted 

average or median functions. 

Movement azimuth. The simplest computation of an instantaneous movement azimuth computes the 

straight-line vector of two consecutive fixes. Interval, episodal and total azimuth operators must consider 

a given number of movement azimuth indications, originating from a set of successive steps. Movement 

azimuth can be conceptualized as a vector or a scalar. The use of the summary vector connecting the first 

and the last fix of an interval is a straightforward vector representation for azimuth. Directional statistics 

allow the computation of an average movement azimuth as a scalar (Mardia and Jupp 2000). The azimuth 

summary vector and the azimuth mean scalar may substantially vary since the latter does not consider the 

lengths of the included steps (figure 3b). 
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Place Fig. 3. approximately here 

Sinuosity. The terms tortuosity, sinuosity, straightness, and path entropy all refer to the degree of 

windingness of a trajectory. In this paper we list the most frequent concepts and refer to the literature for 

more detailed information. Tortuosity is normally calculated as the ratio represented by the greatest 

distance between any two points on the trajectory divided by the length of the path (Benhamou 2004; 

Claussen, Finkler, and Smith 1997). Sinuosity is normally computed from an equal step length 

rediscretized path, considering the standard deviation of the directional changes and the rediscretisation 

step length (Bovet and Benhamou 1988; Claussen, Finkler, and Smith 1997). The straightness index is 

given as the ratio of the beeline connector distance and the travelled path length (Benhamou 2004; 

Weimerskirch, Bonadonna, Bailleul, Mabille, Dell'Omo, and Lipp 2002). Other authors use a fractal 

dimension of trajectories (Bovet and Benhamou 1988), or an indication for path entropy (Guilford, 

Roberts, Biro, and Rezek 2004; Roberts, Guilford, Rezek, and Biro 2004). Even though these sinuosity 

measures are mainly applied as total operators, in effect they are perfectly suited for interval and episodal 

operators. 

Navigational displacement. The navigational displacement refers to the deviation of a trajectory to 

the direct beeline to the destination (see figure 4). We propose to evaluate the homing direction at every 

fix and use this azimuth to compute a dynamic measure of navigational displacement (figure 4). The 

navigational displacement can be assessed as a directed measure ranging from –  to , or as an undirected 

absolute value ranging form 0 to . 

 

Place Fig. 4. approximately here 

Approaching rate. The approaching rate is a measure that describes whether and how intensively a 

moving object approaches its destination D. We propose an absolute and a standardised approaching rate. 

The absolute approaching rate expresses a speed at which the object approaches D. It is given as the 

fraction of the approaching distance travelled towards D during an interval  

d(t ± t) over the temporal extent of the interval 2 t. Since it is a speed indication, it is expressed in 

appropriate units (e.g., m/s). The standardised approaching rate expresses the fraction of the distance da 

actually travelled towards D and the total distance travelled during that interval d. This measure ranges 

from 1 (straight home), through 0 (perpendicular to home) to -1 (straight away form home). 
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Place Fig. 5. approximately here 

First derivatives. A further opportunity we only start to explore is the investigation of first 

derivatives of movement descriptors. Rates of change of speed, azimuth or sinuosity may for instance be 

used for algorithms that automatically delimit different movement episodes in lifelines. Different 

behavioural episodes express different movement trajectories, and peaks in the first derivatives of the 

movement properties plots may help to delimit such episodes. In figure 6, for example, the final episode 

of fast and direct movement towards the end is indicated by a sudden drop in the trajectories’ rate of 

change of azimuth as well as a drop in sinuosity and an increase of speed. 

 

Place Fig. 6. approximately here 

Interval standard deviation of a movement descriptor. Finally, in certain cases one may want to 

investigate the distribution of a movement property within a moving interval. Using an interval function 

to derive the movement descriptor, the computation of its distribution introduces a second moving 

window, assigning, for example, the observed standard deviation of the movement descriptor under study 

to the central query time of the interval. Such a procedure results in a framed interval-interval measure, 

with the outer frame delimiting the interval used to compute the standard deviation and the inner frame 

delimiting the interval used to compute the movement descriptor. 
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Place Fig. 7. approximately here 

3.3. Lifeline Standardisation 

Whereas mapping and visualisation of high-resolution geospatial lifelines provides useful first 

impressions of the richness of tracking data, for many scientific applications it is necessary to impose 

some degree of structure to the data before analysing it, in other words, to aggregate the movement 

descriptors in order to perform some type of statistical analysis. Lifelines extend both in space and time. 

Depending on the research question at hand, one may want to conduct analysis on movement descriptors 

using different frames of reference. A farmer may be interested in the spatial distribution of the grazing 

speed of cattle, an ethologist studying animal navigation, in contrast, may want to investigate sinuosity 

along standardised trajectories as a time-series analysis. Despite the differences in objectives, however, 

both analytical tasks require the computation of movement descriptors at given points in space and time, 

the only differences being the standardisation of the trajectory data. 

The quantitative analysis and comparison of a set of n trajectories bears a number of methodological 

challenges. Firstly, trajectories of tracked entities are rarely of equal length. Be it tracked animals, people 

or vehicles, moving in an unrestricted space intrinsically produce variable solutions with respect to 

trajectory lengths. Moreover, it is very likely that at least some of the trajectories feature variable starting 

or ending times, or both. Thus, analytical efforts to compare trajectories adopting a dynamic perspective, 

that is concurrently moving along a set of n trajectories and comparing movement properties with respect 

to equal ‘in path times’ or ‘equal travel distances from start’, must first adopt a strategy of 

standardisation. 

Different standardisations may aggregate along spatial (s) or temporal (t) dimensions, or combinations 

of the two (figure 8). 
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• time series analysis (1t). Movement descriptors can be analysed in time series analysis, where a 

single temporal axis is the frame of reference (A). 

• path time (1t) or path distance (1s) analysis. For some applications it may be relevant to 

investigate the variance of movement properties with respect to time or path already travelled in a 

trajectory (A and E), or vice versa, time to go or distance ahead in a trajectory (B and F). 

• equal duration (1t) or equal track (1s) wrapping. Trajectories of unequal lengths can be ‘wrapped’ 

so that all trajectories correspond to a given duration or track (C and E). Such an approach is 

adequate if one wishes to investigate, for example, whether a set of moving entities all increase speed 

in the last quarter of their journey. 

• Spatial distance (1s) or temporal distance analysis (1t). Trajectories relating to specific locations 

in space (such as a nest, release site, origin or destination) can be analysed with respect to distance to 

or from that specific location (H). Such an approach permits statistical analysis of movement 

properties such as speed, azimuth or sinuosity in distance classes (for example, in box-and-whisker 

plots). Similar aggregations can be used on a single temporal axis with respect to an event e (D). 

Event e separates all fixes furthermore in the two aggregations before e and after e. 

• bipolar analysis (1s). Other trajectories may be aligned along a bipolar set of two locations (I), such 

as origin-destination, release site-loft, work-home, and summer habitat-winter habitat. The two poles 

may or may not be fixed in space. Using semantic poles with variable locations, such as ‘home-work’ 

or variable ‘release sites’ and ‘loft sites’, a preliminary standardisation may align the trajectories for 

the bipolar analysis.  

• spatial variance analysis (2s). Having a dense and potentially disperse cloud of fixes from either a 

single or a set of trajectories one can finally investigate two-dimensional variance of movement 

descriptors (H) (Guilford, Roberts, Biro, and Rezek 2004). 

 

 

Place Fig. 8. approximately here 

4. Examples 

This section illustrates the methodology introduced above using data emerging from an interdisciplinary 

study in behavioural ecology, investigating the navigation of homing pigeons. Given a data set of a total 

of approximately mn = 30000 fixes of n = 54 individual pigeon flight trajectories (Guilbert, Dennis, and 

Walker). 
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4.1. Applying Lifeline Context Operators 

Example 1: The sinuosity of the trajectories of homing pigeons is considered to express navigational 

uncertainty: the more variance in path direction, the greater the uncertainty (Roberts, Guilford, Rezek, 

and Biro 2004). Following the biological hypothesis that the homing trajectory of a pigeon consists of 

different navigational episodes, dynamic analysis is preferred over a global approach (Benhamou 2004; 

Claussen, Finkler, and Smith 1997). A first exploratory approach is to map the sinuosity patterns as they 

develop along the trajectories (figure 9).  

 

Place Fig. 9. approximately here 

Example 2: The second example illustrates the analysis of first derivatives of movement descriptors. 

The figure describes the rate of change of trajectory sinuosity of pigeon 22. For research of the 

navigational abilities and mechanisms of pigeons, it would be of great interest if one could quantitatively 

identify an event when an individual pigeon enters the familiar area near the loft (Burt, Holland, and 

Guilford 1997). This event may be characterised by a sudden increase in speed and a parallel decrease of 

path sinuosity. In the mapped track in figure 10, the sudden colour at the last change of direction towards 

loft (arrow) may indicate such an event. 
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Place Fig. 10. approximately here 

4.2. Applying Lifeline Standardisations 

Example 3: Standardisation of homing trajectories emerging from different homing experiments but equal 

‘release site-loft configurations’ allows generation of large populations of comparable trajectories. 

Therefore one might shift all trajectories in time so that they all arrive at loft at the same time, in order to 

potentially reveal interesting temporal patterns. Figure 11 illustrates the navigational displacement of five 

such harmonised trajectories. Such a time-series analysis may help to identify different navigational 

states. Pigeon 22 for example expresses very distinct navigational ‘episodes’, illustrated as rather plateau-

shaped sections of the plot, with intermittent events of sudden change of the direction (and therefore 

navigational displacement). 
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Place Fig. 11. approximately here 

Example 4: Distance to loft is a very relevant reference for the analysis of flight trajectories of homing 

pigeons. In avian navigation research it may be of interest to quantify differences in the trajectory 

sinuosity with respect to distance to loft (figure 8G). Figure 12 illustrates this relation. From the figure It 

is very obvious that the sinuosity of the trajectories is high near the loft (0-500m, 500-1000m) and the 

release site (5500-6000m, 6000-6500m). This pattern may be explained by specific take-off, position 

determination and landing behaviours around the loft and the release site. 
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Place Fig. 12. approximately here 
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Example 5: Sinuosity can also be mapped as a two-dimensional spatial field. We used kriging with a 

rather coarse cell size (100m) and clipped the resulting surface with the convex hull of all fixes in order to 

minimise edge effects. We are well aware that the data present are not optimal for the interpolation of a 

continuous surface. However, interpreting with care, we may derive some spatial characteristics of the 

computed trajectory sinuosity surface. On the one hand we find low sinuosity corridors oriented along the 

direct beeline connector between release site and loft. On the other we see very distinct high sinuosity 

spots around the release site and the loft. This general pattern correspond with the findings of Guilford et 

al. (2004). 

 

Place Fig. 13. approximately here 

5. Discussion 

This paper has identified a framework for enriching the toolset available for analysing densely sampled 

lifelines, and has explored ways to implement a growing range of movement parameters within that broad 

framework. These have covered movement properties of lifelines already deployed in other research, such 

as speed, movement azimuth, turning angles, or sinuosity, as well as additional measures and 

standardisations. In section 3 we showed that there are, for many movement descriptors, more than one 

means of computation, including varying parameters such as interval lengths or weight factors. The 

choice of these naturally has impacts on the final analysis. For example the length of the analytical 

interval may be as influential as the dimension of a moving window in other focal operators: an important 

parameter for analysis but also a major influence as a smoothing filter. This observation is significant in 

movement research in that often little information is provided about lifeline data models and algorithms 

employed in computing movement descriptors in a particular study. In order to increase the transparency 

and the repeatability of analysis of movement trajectories, we suggest that researchers report more detail 

about how their lifeline descriptors are computed.  

Our experience with pigeon flight data suggests that the selection of the algorithms used to compute 

lifeline context operators needs some care because not all algorithms are suitable for all data models or 

data-capture procedures. The interplay of the data of interest and the applied context operator algorithms 

may produce artefacts that are, once introduced, hard to recognize. One example of this is the impact of 

coarse position fix sampling rates on length estimates. Coarse sampling generally results in an inaccurate 
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representation of the actual path of a moving object, and ultimately underestimates the distance travelled 

(Estevez and Christman; Turchin 1998), leading to an underestimation of derived speed parameters. As 

another example, the detection of directional change is very sensitive to variable sampling rates along a 

trajectory. The last curve towards D in figure 1 illustrates this problem. The moving object slows down 

making a curve. Having a fixed temporal sampling rate thus leads to a finer sampling in the curved area 

of the trajectory. This finer local sampling rate results in smaller directional changes occurring per unit 

time, and ultimately introduces an artefact because the curve itself is over sampled and over-partitioned. 

In that ‘high resolution’ or ‘dense’ lifelines nonetheless cover a range of sampling frequencies it is also 

clear that the spatiotemporal resolution of the data comprising a movement trajectory limits the 

applicability of the various lifeline context operators.  

Many authors also identify general difficulties in comparing lifelines of unequal length employing 

only total trajectory descriptors. Solutions sought include deploying fractal dimensions (Claussen, 

Finkler, and Smith 1997; Dicke and Burrough 1988) or path entropy (Guilford, Roberts, Biro, and Rezek 

2004; Roberts, Guilford, Rezek, and Biro 2004) as measures which are scale independent and free from 

the effects of variable sampling rates. The very same idea has also been adopted in order to assess lifeline 

similarity. Porikli (2004) uses, for example, a trajectory distance metric based on Hidden Markov Models 

when assessing the similarity of the models representing the individual lifelines. These techniques are 

helpful but rely on total context (global) operators and thus exclude the detailed dynamic perspective of 

the line. In this paper, in contrast, we argue that applying standardisations such as wrapping or shifting to 

equalise the start and end times offers an alternative way to address the problem of unequal lifelines 

without excluding the dynamic view. For example a joint exploration of a harmonised series of temporal 

graphs as in figure 11 may reveal detailed interrelation patterns that unfold in the developing trajectories.  

Some issues (such as the navigational displacement or the approaching rate) might be considered as 

specific to studies of animal navigation or movement. However, although lifelines produced by GPS 

tracked-animals which unrestrictedly move in heterogeneous space may be quite different from humans 

acting in a normally constrained geography, some elements of the methods presented in this paper are of 

generic nature and thus of general interest for a wider GIScience audience. We might expect tracking 

information from people to be manifest in several forms. Typically, people move on network structures, 

be it an urban street network or the network of a public transport system, and movement representation 

may be constrained to these. In the future, trajectories may one day be available from telecommunication 

providers that model the individual’s movement on a network consisting of antenna cells. Since the data 

model underlying these kinds of trajectories may be very different from animals carrying GPS collars, 

context operators for network bound movement may look somewhat different. Since directions and the 

shapes of paths on a network are restricted, measures such as bearing or sinuosity make less sense and 

may need substantial reformulating. However, context operators relating distance and time, such as speed 

or acceleration, may be more easily transposed. One might even think of proposing operators that 

consider network constraints such as speed limits. Such a measure could, for instance, compute speeding 

values of individuals for each segment used on a certain travel path, and just as with the homing pigeons 

one might think of context operators that are specifically tailored for a specific LBS application utilising 

to trajectories on an antenna cell network. Such a measure could quantify the time spent in the cells along 

a trajectory, considering the current cell and some defined context or neighbourhood. 

Finally, the analogy of the lifeline context operators and the field operators associated with Tomlin’s 

map algebra could be discussed in more detail. Considering the GIScience community’s growing interest 

in spatio-temporal phenomena, exploring possible extensions of two-dimensional field operations into the 

spatio-temporal realm appears worthy of exploration such as those of. Mennis and Huisman. Mennis el al. 

(2005), for example, propose a cubic map algebra for spatio-temporal analysis and explore the utility of 

this through a case study on spatio-temporal variability of remotely-sensed data on the ‘El Nino’ 

phenomenon. In an urban context, Huisman (2006) used three-dimensional context operators to analyse 

geospatial lifelines of commuting students. Both examples show that the approach has merit, but the very 

different nature of spatial and temporal dimensions adds complexity and sometimes a degree of ambiguity 

when we try to integrate three-dimensional neighbourhood operators into analysis. Consequently this 

paper focuses simply on the adoption of local operators, neighbourhood effects and chlorplethic zoning 



Submitted to CEUS  17 

for a one-dimensional data stream describing a geospatial lifeline and leave any integration of the spatial 

and temporal dimension of operators to the future. 

6. Conclusions and Outlook 

Acknowledging the emerging opportunities for the mass analysis of individual movement data, an 

eclectic set of disciplines interested in movement have recently shown a growing interest in dynamic 

spatio-temporal analytical methods for trajectory data. These disciplines include geography, GIScience, 

data base research, animal behaviour research, surveillance and security analysts, transport analysts and 

market researchers.  

In this paper we have adopted the concept of spatial context operators, often associated with Tomlin’s 

map algebra to create a framework for the computation of descriptive measures of lifeline data. We have 

proposed instantaneous, interval, episodal, and total context operators applicable to a continuous stream 

of movement descriptors along a trajectory. We have illustrated this conceptual framework by applying it 

to some well known existing movement properties such as speed, sinuosity, and movement azimuth, and 

we additionally propose some new movement descriptors which we believe show value. We have 

consequently proposed a set of standardisations to harmonise lifelines of differing length or chronology 

so as to allow statistical analysis. 

Even though the contributions of this research are conceptual, our research is to a large degree closely 

coupled applied contexts where we are involved in a dialectic between data sets and the techniques for 

their analysis. This dialectic reveals several avenues for further research. The most straightforward is 

broadening our experience by deploying different data sets from different contexts. Existing or on-stream 

data bases portraying terrestrial animal and human movement represent an immediate opportunity. In this 

paper we argued that the quantitative analysis of movement is very sensitive to the data capture 

procedures being deployed, to the data models representing the moving object and to the algorithms 

which derive descriptive measures from the trajectories. Exploring the unlimited variety of lifeline 

context operators reveals that there is not just one natural way of computing variables such as ‘speed’ or 

‘movement direction’. Clearly there is room to examine the performance characteristics of various 

movement indicators relative to different algorithms or parameters for analysis. A related issue is 

undoubtedly that of granularity and scale in revealing patterns. High resolution lifeline data open up nice 

opportunities for sensitivity experiments with systematically varied granularities of lifelines. All interval 

context operators used in section 4 are based on an interval width of ±30 seconds in order to maintain 

comparability throughout the paper. However, we will perform numerical experiments quantifying the 

sensitivity of the similarity measures to lifeline granularity. For instance, using different measures of 

sinuosity or tortuosity. 

These however are somewhat technical issues, a more fundamental issue needs to dominate the 

ongoing agenda. That is the investigation of how lifeline properties relate to, and perhaps can draw 

definition from, the underlying (or surrounding) geography and the spatial processes that the individual is 

engaged in. This is not just a challenge in describing the nature of movement but an important foundation 

for gaining a greater knowledge of movement as a manifestation of process and structuration. Since we 

know from the literature that homing pigeons also use landmark features such as rivers or streets 

(Guilford, Roberts, Biro, and Rezek 2004; Lau, Roberts, Biro, Freeman, Meade, and Guilford 2006), one 

could try to quantify the relation of the obvious alignment of the west-most two trajectories with the 

underlying street network in Figure 9. With different fauna, and especially with humans, different and 

even richer challenges emerge. In this respect such movement research is likely to be one of the major 

driving forces in the field of behavioural ecology research, where geography’s strong spatial awareness 

can empower behavioural ecology by linking movement data to their geographical context. The 

quantification of how moving objects, be they animals or people, react to their environment will 

ultimately help us to better understand their space-time use and a range of spatio-temporal processes. One 

important aspect of this movement/environment relationship is the degree to which the environment 

imposes highly differentiated spaces on the individual moving entity (for instance restricting movement to 

highways or gorges or differentially enabling individuals’ mobility, as in a varied terrain).  
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In the end movement can be represented in many spaces, and we might expect each one might offer 

different opportunities for the representation of movement “beyond the snapshot” 
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Figure legends 

Fig. 1. A typical high-resolution geospatial lifeline. 

Fig. 2. Four different perspectives to derive the movement descriptor azimuth from a lifeline (top). In many cases also 

instantaneous measures require the inclusion of at least two fixes. Which fixes are included for interval measures may 

depend on the way the interval is defined. The temporal interval ± t includes different fixes than using a fixed number 

fixes. 

Fig. 3.  Interval operator for movement azimuth. (a) Movement azimuth at query time qt can be computed as the average 

direction of all involved step azimuths (az ), or as the azimuth of the summary vector of the interval ( 'az ). (b) Whereas the 

first approach considers only directions, the latter considers also the lengths of the involved vectors, thus the direction of 

the summary vector of (p1 p5) is not equal (p1 p5’). 

Fig. 4. The navigational displacement at query time qt is computed as the angle between the current homing direction 

towards D and the current motion azimuth a(qt). 

Fig. 5. Interval operator for approaching rate. The approaching rate at query time qt can be expressed as an absolute 

measure da/(2 t) [m/s] or as a standardised measure da/ d, producing values from -1 to 1. 

Fig. 6. Analysing the first derivative of trajectory sinuosity. The upper graph provides a sketch of the sinuosity of the 

plotted lifeline as it develops, derived for example using an interval sinuosity operator. The lower graph sketches the first 

derivative of the sinuosity. The emergent change events may thereafter be used to delimit episodes of the lifeline. 

Fig. 7. The standard deviation of a movement descriptor computed as an interval operator at query time qt. The rate of 

change of a movement descriptor can be investigated using a framed interval-interval measure, assessing the standard 

deviation in an external interval Ie for a focal movement descriptor of a set of internal intervals Ii. 

Fig. 8. Temporal and spatial standardisation approaches for lifeline data. The given lifelines have a temporal extent (top 

left) and a spatial extent (bottom left). Standardisations may be performed along one temporal dimension (t) and two spatial 

dimensions (s). A to K all represent a form of lifeline standardisation. 

Fig. 9. Map of local sinuosity of 54 homing pigeon trajectories, the sampling rate is 1 second; the interval to derive the 

sinuosity is ±30 seconds. 

Fig. 10. Rate of change of movement sinuosity of pigeon 22. The darker the fixes, the higher is the rate of change. The high 

rates of change around the last turn in the path may indicate the event, when the pigeon finally figured out where it was and 

started to fly straight home (arrow). Please note that the fixes close to the release site and the loft have been excluded to 

remove noise introduced by starting and landing behaviour.  

Fig. 11. Navigational displacement of 5 pigeons, absolute values, standardised with respect to their arrival at the loft (t = 0). 

The sampling rate is 5 second; the interval to derive the displacement as an interval measure is ±30 seconds. 

Fig. 12. Trajectory sinuosity of 54 pigeons, aggregated in 13 concentric rings around the loft to express the relation 

between distance to loft and flight sinuosity. 

Fig. 13. Trajectory sinuosity mapped spatially using density surfaces basing on kriging. The darker the grid cell, the higher 

the local sinuosity of this interpolated trend surface. 


