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Abstract 
As the order fulfillment process (OFP) in supply chains shifts to outsourcing 
paradigm, the OFP performance relies on the coordination among supply chain 
partners to reach executable and effective plans.  The coordination of OFP among 
supply chain partners can be viewed as a distributed constraint satisfaction problem 
(DCSP).  This paper enhances the existing methods to solve the DCSP by adding the 
multi-agent negotiation mechanism.  We evaluated its enhancement on the OFP in 
the context of the metal industry via experiments and compared it with the centralized 
coordination mechanism.  The results show that the integrated system outperforms 
the existing distributed constraint satisfaction algorithms in various demand patterns. 
 
Keywords: order fulfillment process, supply chain management, distributed 
constraint satisfaction problem (DCSP), negotiation, multi-agent systems. 
 
 
1. Introduction 

A supply chain is a network of suppliers, factories, warehouses, distribution 
centers and retailers where the raw materials are acquired, manufactured to products, 
which then are delivered to consumers.  The increase of customer expectations in 
low cost and high quality services has added the premium to effective supply chain 
reengineering. Many efforts have been endeavoring to improve the supply chain 
performance to achieve high agility without increasing costs (Billington, 1994; 
Henkoff, 1994).  Electronic data interchange (EDI) and distributed databases have 
been considered as the most important technical advancement that benefits supply 
chain performance. At present, the multi-agent system (MAS) is believed as one of 
the new information platforms for managing supply chain activities. By virtue of an 
agent’s autonomy and information sharing, the dynamics of business processes in a 
supply chain can be better handled through information exchange, negotiation, and 
solution resolution among agents. Because a physical multi-agent system operates on 
the Internet, supply chain partners can cooperate in a more open and dynamic 
environment than the traditional EDI-based environment.  

Internet and agent technologies have changed the way connecting suppliers, 
manufacturers, distributors, and customers. The Internet enables a shift from 
individual business processes toward a more distributed, collaborative business model. 
For example, Rosetta Net, an organization responsible for establishing industry 
message formats, designs Internet communication mechanisms to streamline order 
fulfillment process through the supply chain. 

Besides new technology and standards, by transforming the order fulfillment 
problem in a supply chain into a distributed constraint satisfaction problem, we 
anticipate to taking advantage of the existing solutions for distributed constraint 
satisfaction problems to resolve order fulfillment scheduling conflicts in a supply 
chain. Moreover, we are aiming to incorporate negotiation techniques in reaching 
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globally executable order fulfillment plan. 
The objective of this paper is to propose and evaluate a multi-agent coordination 

mechanism in enhancing supply chain’s agility. This approach mainly integrates two 
methods: distributed constraint satisfaction algorithms (DCSA) and peer-wise 
negotiation. The order fulfillment process in a supply chain is formalized as a 
distributed constraint problem, where each agent embedded in a supply chain 
partner’s information systems maintains its local view of its supply chain status using 
constraint networks. In resolving the distributed constraints existing between agents, 
we design a peer-wise negotiation mechanism to reach common agreed states through 
agent communication protocols. 

The performance of the proposed methods is evaluated by the resulting order 
cycle time, order fulfillment rate, and inventory. Comparing with centralized 
constraint satisfaction mechanisms which tend to reach the best results but are 
infeasible in real world distributed supply chain, we anticipate to identifying the 
feasibility and effectiveness of the proposed methods for improving supply chain 
performance in various circumstances, such as order arrival patterns. 
 
2. Modeling the OFP in Supply Chains as the DCSP 
2.1 The OFP in supply chains 

A supply chain involves complex coordination and decision-making processes 
across organizational boundaries.  It expands the scope of the organization being 
managed beyond the enterprise level to include inter-organizational relationship 
(Malone, Yates and Benjamin, 1987). An order fulfillment process starts with 
receiving orders from customers and ends with delivery of the finished goods. A 
manufacturing practice is shifting toward the outsourcing paradigm; activities of a 
business process may take place across different companies, which hinder the 
centralized planning and scheduling. It becomes imperative to integrate the order 
fulfillment process (OFP) into supply chain to improve the OFP. Some research using 
multi-agent systems to model supply chains take OFP as the basic research process 
(Strader, Lin, and Shaw, 1998). Figure 1 is an example of supply chain of Taiwan 
metal industry. 

  
 
 
 
 
 
 
 
 
 
 

Figure 1.  An example of supply chain: Taiwan metal industries 
 

In the past, supply chain is usually coordinated on the EDI-based information 
infrastructure. EDI (Electronic Data Interchange), an information exchange topology 
centralized by the VAN (Value Added Network) center, provides the transfer method 
for electronic transactions. EDI involves the direct routing of information from one 
computer to another without interpretation or transcription by people, and to achieve 
this, the information must be structured according to predefined formats and rules, 
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which a computer can use directly (Holland, Lockett and Blackman, 1992). Because 
of the lack of standard, organization must agree on the translation software and data 
format provided by VAN centers.  

Several solutions have been proposed to relax the strict constraints of EDI on its 
limited connectivity and scalability by virtue of the Internet. For example, 
XML-based information exchanges through the Internet advocated by many industry 
wide consortiums, e.g., Rosetta Net, Covinst, Transora, etc. The gradual prevalence of 
Web services technologies further automate the connection of business processes 
among information systems owned by different companies through standard 
information formats, such as UDDI, WSDL, SOAP, and BPEL4WS. Besides that, a 
company that is gifted by autonomous capabilities but still wants to maintain coherent 
supply chain processes, demands more dynamic coordination facilitation. The 
agent-based approach greatly benefits Internet-based supply chain coordination. 

 
2.2 Modeling the OFP in a supply chain as the DCSP 

A constraint satisfaction problem (CSP) is a problem to find a consistent 
assignment of values to variables. A typical example of a CSP is a puzzle game called 
n-queens. This type of problems is called a constraint satisfaction problem since the 
objective is to find a configuration that satisfies the given constraints. Various 
applications about distributed CSP (DCSP) have been investigated, for example, 
distributed source allocation problems, distributed scheduling problems, distributed 
interpretation tasks, and multi-agent truth maintenance tasks (Yokoo, 2001). 

CSP is formally defined as m variables X1, X2 …Xm, taking their values from 
domains D1, D2…Dm respectively, and a set of constraints on their values. A constraint 
is defined by a predicate; that is, Pk ( Xk1.…Xkj ), where the constraint is a predicate 
which is defined on the Cartesian product Dk1 ×…. × Dkj. This predicate is true if 
and only if the instantiations of these variables satisfy this constraint. Solving a CSP is 
equivalent to finding an assignment of values to all the variables such that all 
constraints are satisfied. 

A distributed CSP is a CSP in which variables and constraints are distributed 
among multiple automated agents. To solve a DCSP is to assign values to these 
variables that satisfy inter-agent constraints in order to achieve coherence or 
consistency among agents. Various application problems in multi-agent systems 
(MAS) that are concerned with finding a consistent combination of agent actions can 
be formalized as distributed CSPs (Yokoo, Hirayama, 2000).  In modeling business 
partners of a supply chain as the combination of agents, this study views the supply 
chain coordination problem as the DCSP. 

According to Yokoo and Hirayama’s classification (2000), asynchronous 
weak-commitment search is the most popular distributed constraint satisfaction 
algorithm. Asynchronous backtracking has a weakness that the agent/variable 
ordering is statically determined. If the initial value of a higher priority agent is bad, 
the lower priority agents need to search solution space exhaustively to revise that bad 
initial value. In order to improve this weakness, the asynchronous weak-commitment 
search dynamically changes the agent/variable ordering, so that a bad initial value can 
be revised without performing an exhaustive search. Besides dynamic priority, the 
asynchronous weak-commitment search is basically identical to the asynchronous 
backtracking algorithm (Yokoo, 1995). 

 
3. The Integration of Multi-agent Negotiation with the DCSA 
3.1 Multi-agent negotiation 
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In a multi-agent system, negotiation is a key form of interaction that a group of 
agents make agreement mutually regarding their belief, goal, or plan. In many cases, 
agents need to negotiate because of limited available resources. The area of 
negotiation is broad and is suitable for use in different scenarios (Jennings, 2001). 
Jennings identified three broad and fundamental topics, negotiation protocols, objects, 
and strategies, for research on negotiation (Beer, et al., 1999).  

The number of parties participating in the negotiation can classify negotiation 
into bilateral and multilateral negotiations.  Distributive negotiation is a decision 
making process of resolving a conflict involving two or more parties over a single 
mutually exclusive goal (Lewicki 1997). The game theory describes this situation as a 
zero-sum game.  Integrative negotiation is unlike distributive negotiation, which 
allows negotiator to exploit trade-offs among different issues, and there would have a 
strategy to find the win-win solution. The game theory describes the situation as a 
win-win game. 

Based on the cooperation level, a negotiation is in the continuum of cooperation 
and self-interest. Without cooperation, self-interested negotiation also is called 
competitive negotiation, which happens between two self-interested agents (Weiss, 
1999), and each agent tries to maximize its local utility. In the opposite, in cooperative 
negotiation, agents try to reach the maximum global utility that considers the whole 
utility of both sides (Zhang, Poderozhny, and Lesser, 2000). 

Originating from the research of distributed artificial intelligence (DAI), a 
multi-agent system is defined as a loosely coupled network composed of many 
problem-solver entities that work together to find answers to problem that are beyond 
their individual capabilities or knowledge (Durfee, Lesser, and Corkill, 1989).  A 
multi-agent system possesses the following characteristics (Jennings, Sycara, 
Wooldridge, 1998): (1) each agent does not complete capabilities to solve a problem, 
(2) these is no global control in the system, (3) data is decentralized, and (4) 
computation is asynchronous. 

Interaction is one of the most important features of an agent. In other words, 
agents recurrently interact to share information and to perform tasks to achieve their 
goals. Researchers investigating agent interaction identify three key elements to 
achieve multi-agent interaction: (1) a common agent communication language and 
protocol, (2) a common format for the content of communication, and (3) a shared 
ontology. 

TAEMS (a framework for Task Analysis, Environment Modeling, and 
Simulation) proposed by Multi-Agent Systems Laboratory, UMACC, constructs a 
task environment-oriented modeling framework that can work hand-in-hand with 
agent-centered approaches.  TAEMS improves upon conventional task structures by 
adding such features as quantitative action characterizations, explicit models of local 
and remote interactions and mechanisms to represent the wide range of ways a 
particular task can be achieved. 
 
3.2 FIPA and JADE 

The Foundation for Intelligent Physical Agents (FIPA) is a multi-disciplinary 
group pursuing software standards for heterogeneous and interacting agents and 
agent-based systems (FIPA, 1997). This organization has made available a series of 
specifications to direct the development of multi-agent systems.  JADE (Java Agent 
Development Framework) is a software development framework aimed at developing 
multi-agent systems and applications conforming to FIPA standards for intelligent 
agents.  It includes two main products: a FIPA-compliant agent platform and a 

 1456



package to develop Java agents. It simplifies the implementation of multi-agent 
systems through a middle-ware that claims to comply with the FIPA specifications 
and through a set of tools that supports the debugging and deployment phase. 
 
3.3 The integrated multi-agent negotiation system for solving DCSP 

A constraint satisfaction process can be divided into two steps. The first step is 
called local constraint satisfaction, and the second step is called global constraint 
satisfaction. Local constraint satisfaction means that agent can resolve the constraint 
conflicts locally without affect other agents’ actions. For example, an agent 
(manufacturer) can revise its manufacture schedule to resolve the constraint conflicts. 
Global constraint satisfaction means that the agent asks other agents to coordinate by 
modifying their states and actions in order to resolve conflicts. For example, an agent 
(manufacturer) finds the reason that it cannot accept a customer order because of the 
shortage of materials.  This problem can be solved by asking its supplier to replenish 
immediately, or asking its customer to extend order due date. 

Figure 2 is the multi-agent system architecture for supply chain coordination. 
Each agent has two databases and one rule base. The belief database stores the agent’s 
local view of environment like supplier list, task structure and the committed order. 
The negotiation database stores the negotiation history and the constraint network 
used for DCSP. The local scheduler uses information in belief database to make a new 
feasible schedule. The coordination engine, the most important component of the 
agents, follows coordination rules to control the process of global constraint 
satisfaction. 
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Figure 2. The architecture of multi-agent negotiation in solving supply chain 
coordination problems 

 

In this research, we adopt the task representation of TAEMS to represent agent’s 
task structure and apply all task interrelationships and quality accumulation functions.  
When an agent receives an order from customer, it will negotiate with customer for 
finding a feasible schedule that could satisfy customer’s demand on cost, quality and 
cycle time. During the negotiation session, an agent (manufacturer) may not have the 
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accurate information of its suppliers, and the agent may negotiate with its customer by 
using the prior supplier information. Such historical information may be obsolete for 
resolving conflicts in fulfilling the order. 

We combine negotiation and the concept of distributed CSP to resolve global 
constraints in a supply chain. We adopt the asynchronous weak-commitment (AWC) 
search, a DCSP algorithm, to resolve the global constraint in supply chain. In the 
AWC search, the priority of each agent is dynamically changed, so that an inferior 
decision can be revised without performing an exhaustive search.   

In AWC, an agent uses two messages to communicate with others. “ok?” message 
is used to deliver the current value and priority value while “nogood” message is used 
to notice a new constraint. A “nogood” is a subset of an agent’s view, where the agent 
is unable to find any consistent value with the subset. “nogood” is a constraint that 
reduces the solution space, when there is no solution in possible solution space, the 
algorithm will terminate. 

An agent changes its assignments if its current value assignment is inconsistent 
with the higher priority agents, the agent generate a new constraint (called a 
“nogood”), and communicates the “nogood” to a high priority agent, and the agent’s 
priory increases. 

In real world supply chain, a company needs different expertise from different 
companies to deliver the product to its customers. It may negotiate with potential 
partners in such issues as price, quality, and cycle time, to reach agreement to acquire 
components for final product. In such an environment, the AWC algorithm can be 
extended to include negotiation mechanisms in resolving constraints imposed by 
partners. 

Let’s consider a situation that an agent (manufacturer) performs a non-local task, 
and at first it finds a potential supplier that can perform the non-local task and then 
make a proposal on the basis of its schedule which is made on the historical 
information of the non-local task. Because the historical information may be obsolete, 
e.g., a supplier’s capacity may have been committed to other tasks, to respond to the 
agent’s request, the supplier searches may find no solution satisfying the agent’s 
demands. 

According to the AWC algorithm, when an agent (supplier) cannot find a feasible 
value to satisfy the higher priority agents’ constraints, it should increase its priority 
and send a “nogood” message to the connected higher priority agents to inform them 
that this value assignment conflicts and cannot find alternative values. After sending 
the “nogood” message to these connected agents, the agent increases its priority to be 
higher than its neighbor agents.  In this example, a supplier will decide its value 
assignment and sends it to neighbor agents.  Because a supplier’s priority value is 
higher than its neighbors now, current value assignments would be a new constraint 
for the manufacturer. The manufacturer must update its value assignment under the 
constraint reflected from its supplier and customer. 

If an agent owns the ability to negotiate, it may find a better agreement between a 
manufacturer and a supplier than that entirely compromising supplier’s constraint. If 
no agreement is reached through negotiation, by following AWC algorithm, an agent 
with a lower priority accepts the offered solution from the high priority agent. Figure 
3 illustrates the concept of combining AWC and negotiation. 
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Figure 3. Global constraint satisfaction by integrating AWC and negotiation 

 
4. Experimental Design 

In order to evaluate efficiency of the proposed model for supply chain, we strive 
for designing an experimental environment that is similar to the real world supply 
chain environment. We use JADE, a multi-agent system design tools, to implement 
supply chain system embedded with the constraint satisfaction model. 
 
4.1 Experimental settings 

We built the multi-agent system using JADE for an experimental OEM supply 
chain by referencing Taiwan’s mental industry. Because it is a highly trusted, 
inter-dependent partner relationship, the main issue of order fulfillment process is to 
find a global feasible schedule to satisfy customers’ requests. To simplify the problem 
in order to emphasize the constraint satisfaction problem, we only consider the time 
issue, and ignore cost and quality issues. 

In the experiment system we built, there is no competitor to compete for receiving 
outsourcing tasks. The issue of outsourcing is not on selecting suppliers, but on 
generating executable schedules in executing tasks. 
(1) Global parameters and variable setting 

In experiments, ten companies (A, B, C,…, J) compose the experimental supply 
chain, which makes three types of products (X, Y, and Z).  Each product needs n 
companies in the supply chain to finish the product. For example, product X made by 
the process A→ B→C needs three companies, and product Y made by the process 
C→A→B→D needs four companies to finish the product. Figure 4 is an example 
manufacturing process to produce molds. 
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Figure 4. An example of a manufacturing process to produce molds 
 

One company is responsible for receiving orders from customers outside the 
supply chain. When a company accepts orders, it will start the order fulfillment 
process to integrate the supply chain to fulfill the order.  The system time step is set 
to day to denote the time unit to produce products and the order deadline. We make 
additional two conditions to define supply chain settings.  First, each agent adopts 
the FCFS scheduling policy that an agent schedules tasks as early as possible in order 
to reduce the cycle time. Second, in order to create variations to simulate real world 
supply chain partners, we suppose that each agent participates in other supply chains, 
so that the state of an agent is changed both by the focal supply chain and other 
supply chains. A partner may accept orders from another supply chains, which may 
consume its limited capability.  We set a variable called random_order_outside to 0.1 
to denote that an agent has probability 0.1% to accept an order from other supply 
chain partners each day. An agents accepting order outside will randomly reduce three 
days production capabilities in 100 day. 
 
(2) Local parameters and variable setting 
   An agent’s capability is fixed per day.  A company has its local task tree to 
produce products. A local task tree, a part of global task tree, records a company’s 
manufacturing variables to perform tasks.  We predefine the importance rank value 
for each company. In this setting, the company participating in more products 
manufacturing process has higher importance rank because it is hard to acquire 
resources from them. Table 1 lists the values set for the global environment. 
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Table 1. Global parameters for the experimental setting 

Parameters Value 
Main issue time 
System time unit day 
Probability of receive order from another supply 
chain per day  

10% per day to receive order 
occupying its 3 day capability 
(Random in 100 day) 

Number of companies 10 (A, B, C…. J) 
Number of products 3 (X, Y, Z) 
Average manufacturing time of Product X 25 
Average manufacture time of Product Y 20 
Average manufacturing time of Product Z  15 
Number of Product X manufacturing processes 6 

(B, C, E, G, H, J) 
Number of Product Y manufacturing processes 6 

(A, E, F, G, I, J) 
Number of Product Z manufacturing processes 5 

(A, C, D, E, H) 
Schedule rules FCFS 

 
(3) Random order generation setting 

An order generator randomly generates an order for one kind of products with the 
order arrival date and the expected shipping date, and use three parameters to adjust 
and generate orders. The first parameter is the order inter-arrival time to control the 
frequency of order arrival. The second is order quantity to randomly generate the 
order quantity.  In order to differentiate the fulfillment difficulty of each order, a 
formula to generate the expected shipping date is defined as expected shipping date = 
order arrival date +(average manufacturing date of a product * order quantity)* 
variation allowance.  Variation allowance is a random variable ranging between 1 
and 2. When the allowance value moves toward 1, it means that it is getting urgent to 
fulfill orders.  

 
4.2 Experimentation 

We use the order fulfillment process to evaluate the constraint satisfaction model. 
This experiment tests the efficiency of the model in four different demand order 
arrival patterns. Two parameters, order quantity and order inter-arrival time, are used 
to generate demand orders. We design four experiments by changing different setting 
of order quantity and order inter-arrival time. Table 2 lists the settings of the four 
experiments. 
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Table 2.  Experimental setting of the experimentation 
 Demand pattern Order quantity Order inter-arrival time
 
Experiment A 

High order inter-arrival 
time variation and normal 
order quantity variation 

 
Rand (1~3) 

 
Rand (1~17) 

 
Experiment B 

Normal order inter-arrival 
time variation and normal 
order quantity variation 

 
Rand (1~3) 

 
Rand (1~13) 

 
Experiment C 

High order inter-arrival 
time variation and high 
order quantity variation 

 
Rand (1~5) 

 
Rand (1~17) 

 
Experiment D 

Normal order inter-arrival 
time variation and high 
order quantity variation 

 
Rand (1~5) 

 
Rand (1~13) 

* rand(a~b) denotes the random number generated by uniform distribution between a 
and b. 

 
In each experiment, according to the experiment settings, the order generator 

generates 50 orders.  Before the experiment starts, we randomly feed five orders into 
supply chain.  After the warm up time, we start to feed these 50 orders into the 
supply chain according to order_arrival_time.  Supply chain performance is analyzed 
from ten-time experiments.  A contrast experiment is used as a benchmark to test the 
negotiation model’s performance.  We assume that ten companies A, B, C,…, J 
belong to an enterprise, and an agent for the enterprise can build a global task tree and 
schedule the production schedule for these companies by pooling complete capacity 
information from each company.  To generate executable global schedules is viewed 
as a centralized constraint satisfaction problem. The global agent’s experimental 
results serve as the benchmark to compare with the distributed cooperative model. 

 
5.3 Four evaluation criteria 

Experimental results are measured in four criteria: order fulfillment rate, cycle 
time, WIP (Work-In-Process) inventory cost, and final product inventory cost. Order 
fulfillment rate denotes the ratio that arrival orders can be finished by the due dates. 
Cycle time represents the duration from the order received to the finished final 
product delivered. WIP inventory cost denotes the cost to store work-in-process 
materials, which may be caused by unconcatenated tasks executed by different 
companies. For example, it is not allowed for an agent to adjust the schedule after its 
suppliers accept its proposal by returning “ok” message. If A wants B to perform a 
task from 10th to 40th day, B says “ok, I can do it for you from day 15th to 40th.” There 
will be a WIP inventory cost from day 10th to 14th. The final product inventory cost is 
calculated by counting the days after the final product is finished before the 
customer’s due date. 

 
5. Evaluation and Discussions 
5.1 Evaluation results of the distributed coordination model 

We list the difference of OFP performance between centralized and distributed 
coordination methods (i.e., performance outcomes of centralized minus distributed 
methods).  We normalize the degree of performance gap between centralized and 
distributed CSPs as shown in Table 3. The normalization formulas are shown as 
follows. 
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Gap of order fulfillment rate = 

ratetfulfillmenorderCCSP
ratetfulfillmenorderDCSPratetfulfillmenorderCCSP −  

Gap of cycle time rate =
timecycleCCSP

timecycleDCSPtimecycleCCSP −  

Gap of WIP inventory cost =
tinventoryWIPCCSP

tinventoryWIPDCSPtinventoryWIPCCSP
cos

coscos −  

Gap of inventory cost =
tinventoryDCSP

tinventoryCCSPtinventoryDCSP
cos

coscos −  

 
The performance of the distributed coordination method approaches to that of the 

centralized method in experiments A and B.  It indicates that the distributed 
coordination method is more suitable for the OFP in a supply chain with less demand 
pattern variation.  As the demand pattern variation increases, the performance gap 
increases. 

There is a relation between cycle time, WIP inventory cost and inventory cost. 
The cycle time is the sum of real manufacturing time and WIP inventory transfer time. 
The duration from order arrival day to shipping date is the sum of cycle time and the 
waiting time for final product inventory sitting in the warehouse.  Therefore, these 
three criteria are correlated.  

In WIP inventory cost, the performance gap in experiments A and B (product 
quantity 1~3) is less than that in experiments C and D (product quantity 1~5). This 
performance gap also indicates that the distributed coordination method exhibits less 
performance gap from benchmarks in relatively stable demand patterns.  

Inventory cost is calculated by counting days after the final product is finished and 
before the customer’s expected shipping date. The results show that the centralized 
method results in more inventory cost than the distributed method because the former 
has generated a more compact schedule that keeps the cycle time shorter than that 
from the distributed method. Therefore, those early finished products sit in the 
warehouse to wait for customers to pick up by the expected shipping dates.  It also 
shows that the final inventory cost resulting from these two methods is much closer in 
experiments A, B, and C. This indicates these two methods have similar outcomes in 
final product inventory in the stable demand patterns. 

Table 3. The comparison of normalized performance gap 

 Order 
fulfillment rate 

Average 
cycle time 

Average WIP 
inventory cost 

Average 
Inventory cost 

Experiment A 0.0494 0.0596 0.8229 0.1338 
Experiment B 0.0322 0.0655 1.3901 0.187 
Experiment C 0.0574 0.0527 0.3464 0.2139 
Experiment D 0.1236 0.0881 0.4167 0.8059 

 
5.2 The explanation of experimental results 

Since the centralized schedule as the benchmark indicates the optimal schedule for 
the order fulfillment process, we anticipate that the proposed distributed constraint 
satisfaction methods can approximate in certain degree to the optimal result. The gap 
between these two methods draws us to identify the usability of the distributed 
coordination methods under different demand environments. The following reasons 
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address the possible explanation of these outcomes. 
The first reason is that, in distributed coordination model, when an agent 

negotiates with others for time to schedule a feasible partial solution, the agent cannot 
make a local optimal solution though the simplified negotiation process. Because lack 
of precise knowledge about the product and negotiation strategy, a contractor may 
propose a large time slot for contractees to choose its suitable time. The redundant 
time slot of the time range in the proposal causes the WIP inventory and makes 
capability more fragmented. The fragmented time slots make backtracking happen 
more frequently and make the distributed approach harder to find an optimal solution. 

The second reason is the schedule ability of local scheduler. With the simplified 
scheduling process, an agent may not adjust the schedule to find a better local solution 
after it receives all responses from other agents and once constraints are satisfied.  

The third reason is that the nature of DCSP just focuses on finding a feasible 
solution. An agent for solving DCSP just checks if the partial solution is consistent, 
but it does not check if this solution can be further improved to obtain better results. 
The DCSP method satisfies the global solution in a distributed way, but in each 
backtracking domain, the partial solution is not optimal and the combined solution is 
not optimal either.  Not only local optimal solutions cannot achieve, but also, bad 
partial solutions may aggregate to even worse global solutions. This phenomenon will 
constantly happen to make each agent’s capability more fragmented, where 
fragmented capability leads DCSP harder to find an optimal partial solution. It is a 
vicious circle.  

Because of commerce secret and enormous cost of gaining all information, 
centralized model is impracticable in the real supply chain. The distributed 
coordination model is still a practicable solution that exhibits stable performance for 
supply chain.  
 
6. Conclusions 

This study proposes an agent-based cooperative model for supply chains to 
commit orders by satisfying constraints. Due to the limitation of the real world 
environment, the centralized schedule model to handle constraint satisfaction is 
impractical, it is important to excise the distributed constraint satisfaction model to 
meet the outsourcing paradigm of supply chain management. 

We propose a distributed constraint satisfaction model integrating the negotiation 
mechanism to conduct the order fulfillment process in a supply chain. In order to 
evaluate the proposed distributed coordination method, we design and conduct 
experiments to compare the OFP performance with the centralized method in four 
criteria under different degrees of order inter-arrival time and ordering quantity. The 
results have shown that that the OFP performance of the proposed distributed 
coordination method approaches well to that of the centralized method which may 
renders more optimal performance.  

But in a pity, we found that the performance gap between these two methods 
exhibits significant difference using t-test. As the demand pattern variation increases, 
the performance gap also increases. It indicates that the distributed method may be 
more applicable to less variant demand environment. The results lead us to identify 
the possible cues that explain the failure of the distributed method to reach better 
results.  We refer the performance gap to the failure of local optimum caused by the 
primitive negotiation strategy, and the nature of constraint satisfaction problem, which 
is not aiming to seek the optimal schedule.   
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